Goldman flows on the moduli space of flat SU(2)-connections over a nonorientable surface.

David Klein

July 30, 2007

Basics

Surface Σ , trivial G-bundle

$$G \to G \times \Sigma$$

$$\downarrow$$

$$\Sigma$$

Flat connections $\mathcal{A}_{\text{flat}}(\Sigma) \subset \Omega^1(\Sigma) \otimes \mathfrak{g}$

Gauge transformations $\mathfrak{G}(\Sigma) = C^{\infty}(\Sigma, G)$

Based gauge transformations $\mathcal{G}(\Sigma, p) \subset \mathcal{G}(\Sigma)$

Moduli space
$$\mathcal{M}(\Sigma) = \mathcal{A}_{\text{flat}}(\Sigma)/\mathcal{G}(\Sigma)$$

= $(\mathcal{A}_{\text{flat}}(\Sigma)/\mathcal{G}(\Sigma, p))/G$
 $\cong \text{Hom}(\pi_1(\Sigma, p), G)/G$

Fact: $\mathcal{A}_{\text{flat}}(\Sigma)/\mathcal{G}(\Sigma,p) \cong \text{Hom}(\pi_1(\Sigma,p),G)$.

For this talk, we work exclusively with G = SU(2), with inner product $\langle \cdot, \cdot \rangle$ on $\mathfrak{g} = \mathfrak{su}(2)$:

$$\begin{aligned} \langle \zeta, \eta \rangle &= -\frac{1}{2} \mathrm{tr}(\zeta \eta) \\ &= -\frac{1}{8} \mathrm{tr}(\mathrm{ad}_{\zeta} \circ \mathrm{ad}_{\eta}). \end{aligned}$$

Goldman Flows

Let $U \cong S^1 \times (-1, 1)$ be an embedded oriented cylinder with coordinates (θ, s) , and consider the simple closed oriented curve γ with base point p, shown here:

If Σ is oriented then assume that the embedding is orientation preserving.

If f is any smooth conjugation \mathbb{R} -valued invariant function defined on a subset $G \setminus X$ of G, then the associated Goldman flow $\{\Xi_t\}_{t\in\mathbb{R}}$ is an \mathbb{R} -action on

$$\mathcal{M}_{\gamma} = \{ A \in \mathcal{A}_{\text{flat}}(\Sigma) : \text{Hol}_{\gamma} A \notin X \} / \mathfrak{G}(\Sigma).$$

Although any one orbit is periodic, the periods usually differ from orbit to orbit.

In this talk, we only considered the function

$$f(g) = \operatorname{Arccos}(\frac{1}{2}\operatorname{tr}(g)),$$

which produces an S^1 -action. The function

$$f_0(g) = \operatorname{tr}(g),$$

for instance, produces an \mathbb{R} -action that is defined on the entire moduli space $\mathcal{M}(\Sigma)$. The fixed point set of this \mathbb{R} -action is exactly where the S^1 -action is not defined.

Let S_{γ} be the set of flat connections whose holonomy along γ is not central:

$$S_{\gamma} = \{ A \in \mathcal{A}_{\text{flat}}(\Sigma) : \text{Hol}_{\gamma} A \neq \pm 1 \}$$

= $\{ A \in \mathcal{A}_{\text{flat}}(\Sigma) : \frac{1}{2} \text{tr}(\text{Hol}_{\gamma} A) \neq \pm 1 \};$

 S_{γ} is an open dense subset of $\mathcal{A}_{\text{flat}}(\Sigma)$.

Let
$$\mathcal{M}_{\gamma} = \mathcal{S}_{\gamma}/\mathcal{G}(\Sigma) \subset \mathcal{M}(\Sigma)$$
.

Define an \mathbb{R} -valued function f_{γ} on \mathcal{S}_{γ} ,

$$f_{\gamma}(A) = \operatorname{Arccos}\left(\frac{1}{2}\operatorname{tr}(\operatorname{Hol}_{\gamma}A)\right);$$

 f_{γ} is $\mathfrak{G}(\Sigma)$ -invariant, and may thus be viewed as a function on \mathfrak{M}_{γ} .

Our goal is to define the Goldman flow $\{\Xi_t\}_{t\in\mathbb{R}}$ associated to the curve $\gamma \subset U$; it is a periodic \mathbb{R} -action on \mathcal{M}_{γ} , i.e. an S^1 -action.

Let $\eta_{-}(s)$, (resp. $\eta_{+}(s)$), be a smooth bump function that integrates to 1 and is compactly supported on (-1,0), (resp. (0,1)).

Define a logarithm ℓ on $G \setminus \{\pm 1\}$ by requiring that $\exp(\ell(g)) = g$ and $\det(\ell(g)) < \pi$. Define the *normalized* logarithm F on $G \setminus \{\pm 1\}$:

$$F(g) = \frac{\ell(g)}{\sqrt{\langle \ell(g), \ell(g) \rangle}}.$$

Lemma. Suppose $A \in \mathcal{S}_{\gamma} \subset \mathcal{A}_{\text{flat}}(\Sigma)$. There is a unique based gauge transformation $u \in \mathcal{G}(U,p)$ on the cylinder U such that $u.(A|_{U}) = \frac{d\theta}{-2\pi} \otimes \ell(\text{Hol}_{\gamma}A)$.

For $t \in \mathbb{R}$, define

$$\Xi_t^{\pm}(A) = A + \eta_{\pm}(s) ds \otimes Ad_{u^{-1}}(tF(Hol_{\gamma}A)),$$

where the second term, a \mathfrak{g} -valued 1-form on U, extends by zero to 1-form on Σ .

Aside:

$$\overline{\text{If } A|_{U}} = \frac{d\theta}{-2\pi} \otimes ({}^{i\alpha}{}_{-i\alpha}), \text{ where } \alpha \in (0, \pi), \text{ then}$$

$$\Xi_{t}^{\pm}(A)|_{U} = \frac{d\theta}{-2\pi} \otimes ({}^{i\alpha}{}_{-i\alpha}) + \eta_{\pm}(s) ds \otimes ({}^{it}{}_{-it}).$$

 $\{\Xi_t^+\}_{t\in\mathbb{R}}$ and $\{\Xi_t^-\}_{t\in\mathbb{R}}$ define \mathbb{R} -actions on S_{γ} satisfying the following conditions:

- (i) The \mathbb{R} -actions Ξ_t^{\pm} have "support" in U in the following sense: $\Xi_t^-(A) = A$ outside of some compact subset of $S^1 \times (-1,0) \subset U$, and $\Xi_t^+(A) = A$ outside of some compact subset $S^1 \times (0,1) \subset U$.
- (ii) Ξ_t^- and Ξ_t^+ are $\mathcal{G}(\Sigma)$ -equivariant: if $A \in \mathcal{S}_{\gamma}$ and $\psi \in \mathcal{G}(\Sigma)$, then $\Xi_t^{\pm}(\psi.A) = \psi.(\Xi_t^{\pm}(A))$.
- (iii) If $A \in S_{\gamma}$ and $t \in \mathbb{R}$, then there exists $\psi \in \mathcal{G}(\Sigma)$ such that $\psi.\Xi_t^-(A) = \Xi_t^+(A)$.
- (iv) If $d(f_{\gamma})_A$ is the tangent map of f_{γ} at A, then

$$d(f_{\gamma})_{A}(B) = \int_{U} \left\langle \left(\frac{d}{dt}\big|_{t=0} \Xi_{t}^{\pm} A\right) \wedge B \right\rangle,$$

for $B \in T_A S_{\gamma} = T_A \mathcal{A}_{\text{flat}}(\Sigma)$.

Theorem (Goldman, Jeffrey and Weitsman). The \mathbb{R} actions Ξ_t^+ and Ξ_t^- on \mathbb{S}_{γ} define a (common) \mathbb{R} -action $\{\Xi_t\}_{t\in\mathbb{R}}$ on \mathbb{M}_{γ} ; the action Ξ_t is periodic, with period π if $\Sigma \setminus \gamma$ is disconnected and period 2π if $\Sigma \setminus \gamma$ is connected. Thus Ξ_t defines an S^1 -action on \mathbb{M}_{γ} ,
called a Goldman flow.

Remark:

If Σ is compact and oriented then there is a symplectic form on $\mathcal{M}(\Sigma)$ given by

$$\omega_{[A]}([B], [C]) = \int_{M} \langle B \wedge C \rangle,$$

(see, for instance, Atiyah and Bott's paper *The Yang-Mills equation over Riemann surfaces*, or McDuff and Salamon's text *Introduction to symplectic topology*); conditions (i) and (iv) imply that

$$d(f_{\gamma})_{[A]}([B]) = \int_{M} \left\langle \left(\frac{d}{dt}\Big|_{t=0} \Xi_{t}^{\pm} A\right) \wedge B \right\rangle$$
$$= \omega_{[A]} \left(\frac{d}{dt}\Big|_{t=0} \Xi_{t}[A], [B]\right),$$

and so $\{\Xi_t\}_{t\in\mathbb{R}}$ is the (periodic) flow of the Hamiltonian vector field on \mathcal{M}_{γ} with Hamiltonian f_{γ} .

Aside:

$$d_{A} = d - [A \wedge \cdot] : \Omega^{k}(\Sigma) \otimes \mathfrak{g} \to \Omega^{k+1}(\Sigma) \otimes \mathfrak{g}$$

$$T_{A}\mathcal{A}_{\text{flat}}(\Sigma) = \{B \in \Omega^{1}(\Sigma) \otimes \mathfrak{g} \mid d_{A}B = 0\}$$

$$= \{d_{A} \text{ 1-cocycles}\}$$

$$T_{A}(\mathfrak{G}(\Sigma).A) = \{d_{A}f \mid f \in C^{\infty}(\Sigma) \otimes \mathfrak{g}\}$$

$$= \{d_{A} \text{ 1-coboundaries}\}$$

$$T_{[A]}\mathcal{M}(\Sigma) = H^{1}(\Omega^{\bullet}(\Sigma) \otimes \mathfrak{g}, d_{A})$$

Ξ_t^{\pm} and holonomy

Suppose $\sigma: [0,1] \to \Sigma$ is a curve that either has both endpoints at p, or has one endpoint at p and one endpoint in $\Sigma \setminus U$; suppose further that σ does not otherwise intersect γ . Given $A \in \mathbb{S}_{\gamma}$, let

$$\zeta_t = \exp(tF(\operatorname{Hol}_{\gamma}A)),$$

where F(g) is the normalized logarithm; then the holonomy of $\Xi_t^{\pm}(A)$ along σ is given in the following table.

	$\operatorname{Hol}_{\sigma}(\Xi_t^-(A))$	$\operatorname{Hol}_{\sigma}(\Xi_{t}^{+}(A))$
	$\mathrm{Ad}_{\zeta_t}(\mathrm{Hol}_{\sigma}A)$	$\operatorname{Hol}_{\sigma} A$
σ	$\operatorname{Hol}_{\sigma} A$	$\mathrm{Ad}_{\zeta_t^{-1}}(\mathrm{Hol}_\sigma A)$
	$(\operatorname{Hol}_{\sigma} A)(\zeta_t^{-1})$	$(\zeta_t^{-1})(\operatorname{Hol}_{\sigma} A)$
σ	$(\zeta_t)(\operatorname{Hol}_{\sigma} A)$	$(\operatorname{Hol}_{\sigma} A)(\zeta_t)$
σ	$(\operatorname{Hol}_{\sigma} A)(\zeta_t^{-1})$	$\operatorname{Hol}_{\sigma} A$
σ	$\operatorname{Hol}_{\sigma} A$	$(\zeta_t^{-1})(\operatorname{Hol}_{\sigma}A)$
σ	$\operatorname{Hol}_{\sigma} A$	$(\operatorname{Hol}_{\sigma} A)(\zeta_t)$
()	$(\zeta_t)(\mathrm{Hol}_{\sigma}A)$	$\operatorname{Hol}_{\sigma} A$

Σ compact and nonorientable...

Pullback by the covering map induces

$$\iota: \mathcal{M}(\Sigma) \to \mathcal{M}(\widetilde{\Sigma}),$$

and pullback by the deck transformation induces

$$\tau: \mathcal{M}(\widetilde{\Sigma}) \to \mathcal{M}(\widetilde{\Sigma}).$$

In Nan-Kuo Ho's paper The real locus of an involution map on the moduli space of flat connections on a Riemann surface, the fixed point set of τ , $\mathcal{M}(\widetilde{\Sigma})^{\tau}$, is shown to be a Lagrangian submanifold of $\mathcal{M}(\widetilde{\Sigma})$.

Theorem (K, 2007).

- (i) $\Phi_t \circ \Psi_{-t} \ preserves \ \mathcal{M}(\widetilde{\Sigma})^{\tau}$,
- (ii) $\Phi_t \circ \Psi_{-t}$ preserves $\iota(\mathfrak{M}(\Sigma))$,
- (iii) $(\Phi_t \circ \Psi_{-t}) \circ \iota = \iota \circ \Xi_t$.

Example

Suppose the compact and nonorientable surface Σ has Euler characteristic $\chi(\Sigma) = -1$.

$$\pi_{1}(\Sigma, p) = \langle \gamma, \beta, \alpha \mid \gamma \beta \gamma^{-1} \beta^{-1} \alpha^{2} = 1 \rangle$$
Let $\mathcal{R} = \{(c, b, a) \in G^{3} : cbc^{-1}b^{-1}a^{2} = 1\}$

$$\cong \operatorname{Hom}(\pi_{1}(\Sigma, p), G)$$

$$\cong \mathcal{A}_{\operatorname{flat}}(\Sigma)/\mathfrak{G}(\Sigma, p),$$

and let G act on \Re :

$$g.(c, b, a) = (gcg^{-1}, gbg^{-1}, gag^{-1}).$$

We identify $\mathcal{M} := \mathcal{R}/G \cong \mathcal{M}(\Sigma)$.

Let
$$\widetilde{\mathcal{R}} = \left\{ \begin{aligned} (c, b, a, \overline{c}, \overline{b}, \overline{a}) &\in G^6 : \\ cbc^{-1}b^{-1}a\overline{a} &= 1, \overline{c}\overline{b}\overline{c}^{-1}\overline{b}^{-1}\overline{a}a &= 1 \end{aligned} \right\}$$

$$\cong \mathcal{A}_{\text{flat}}(\widetilde{\Sigma})/\mathfrak{G}(\widetilde{\Sigma}, P, \overline{P}),$$

and let $G \times G$ act on $\widetilde{\mathfrak{R}}$:

$$\begin{split} &(g,h).(c,b,a,\overline{c},\overline{b},\overline{a})\\ &=(gcg^{-1},gbg^{-1},gah^{-1},h\overline{c}h^{-1},h\overline{b}h^{-1},h\overline{a}g^{-1}). \end{split}$$

We identify $\widetilde{\mathcal{M}} := \widetilde{\mathcal{R}}/(G \times G) \cong \mathcal{M}(\widetilde{\Sigma}).$

For $t \in \mathbb{R}$ and $g \in G \setminus \{\pm 1\}$, let $\zeta(g) = \exp(tF(g))$.

The \mathbb{R} -action Ξ_t^- on $\mathcal{R}_{\gamma} \subset \mathcal{R}$,

$$\mathcal{R}_{\gamma} := \{ (c, b, a) \in \mathcal{R} \mid c \neq \pm 1 \},\$$

$$\Xi_t^-(c,b,a) = (c,b(\zeta_t^{-1}(c)),a),$$

covers the Goldman flow Ξ_t on $\mathcal{M}_{\gamma} = \mathcal{R}_{\gamma}/G$.

The \mathbb{R} -action Φ_t^- on $\mathcal{R}_{\Gamma} \subset \mathcal{R}$,

$$\widetilde{\mathfrak{R}}_{\Gamma} := \{ (c, b, a, \overline{c}, \overline{b}, \overline{a}) \in \widetilde{\mathfrak{R}} \mid c \neq \pm 1 \},$$

$$\Phi_t^-(c,b,a,\overline{c},\overline{b},\overline{a}) = (c,b(\zeta_t^{-1}(c)),a,\overline{c},\overline{b},\overline{a}),$$

covers the Goldman flow Φ_t on $\widetilde{\mathcal{M}}_{\Gamma} = \widetilde{\mathcal{R}}_{\Gamma}/(G \times G)$.

The \mathbb{R} -action Ψ_t^+ on $\mathcal{R}_{\overline{\Gamma}} \subset \mathcal{R}$,

$$\widetilde{\mathfrak{R}}_{\overline{\Gamma}} := \{(c,b,a,\overline{c},\overline{b},\overline{a}) \in \widetilde{\mathfrak{R}} \mid \overline{c} \neq \pm 1\} \subset \widetilde{\mathfrak{R}},$$

$$\Psi_t^+(c, b, a, \overline{c}, \overline{b}, \overline{a}) = (c, b, a, \overline{c}, \overline{b}(\zeta_t(\overline{c})), \overline{a}),$$

covers the Goldman flow Ψ_t on $\mathfrak{M}_{\overline{\Gamma}} = \mathfrak{R}_{\overline{\Gamma}}/(G \times G)$.

Since the cylinders V and \overline{V} in $\widetilde{\Sigma}$ are disjoint, the flows Φ_t^+ and Ψ_t^- commute. The \mathbb{R} -action $\Phi_t^- \circ \Psi_{-t}^+$ on $\widetilde{\mathcal{R}}_{\Gamma} \cap \widetilde{\mathcal{R}}_{\overline{\Gamma}}$ covers a periodic \mathbb{R} -action $\Phi_t \circ \Psi_{-t}$ on $\widetilde{\mathcal{M}}_{\Gamma} \cap \widetilde{\mathcal{M}}_{\overline{\Gamma}}$:

$$\Phi_t^- \circ \Psi_{-t}^+(c, b, a, \overline{c}, \overline{b}, \overline{a})$$

$$= (c, b(\zeta_t^{-1}(c)), a, \overline{c}, \overline{b}(\zeta_{-t}(\overline{c})), \overline{a})$$

Lemma (Nan-Kuo Ho). For $x \in G$, let

$$\mathcal{N}_{x} = \left\{ \begin{array}{l} (c, b, a, c, b, ax) \in \widetilde{\mathcal{R}} \mid \\ xcx^{-1} = c, \ xbx^{-1} = b, \ xax^{-1} = a \end{array} \right\};$$

the fixed point set of τ is

$$\mathcal{M}(\widetilde{\Sigma})^{\tau} = \bigcup_{x \in G} (\mathcal{N}_x / (G \times G)),$$

and the image of ι is

$$\iota(\mathcal{M}(\Sigma)) = \mathcal{N}_1/(G \times G).$$

Theorem (K).

- (i) $\Phi_t \circ \Psi_{-t}$ preserves $\mathcal{M}(\widetilde{\Sigma})^{\tau}$,
- (ii) $\Phi_t \circ \Psi_{-t}$ preserves $\iota(\mathfrak{M}(\Sigma))$,
- (iii) $(\Phi_t \circ \Psi_{-t}) \circ \iota = \iota \circ \Xi_t$.

To prove the first two statements, it suffices to show that the flow $\Phi_t^- \circ \Psi_{-t}^+$ on $\widetilde{\mathcal{R}}$ preserves \mathcal{N}_x , for each $x \in G$.

To prove the last statement, work with the maps $\Phi_t^- \circ \Psi_{-t}^+$ on $\widetilde{\mathcal{R}}$ and Ξ_t^- on \mathcal{R} ; alternatively, work with the gauge theoretic description: use a bump function $\eta_-(s)$ with support in (-1,0) to define Ξ_t and Φ_t , and use $\eta_+(s) := \eta_-(-s)$ to define Ψ_t .