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Basics

G— GxY
Surface >, trivial G-bundle l
>

Flat connections Ag.t(X) C QYY) ®@ g
Gauge transformations §(X) = C*(X, G7)
Based gauge transformations G(2, p) C §(%)
Moduli space M(X) = Agat(2)/G(X)

= (Asat(X)/5(5,0))/G
= Hom(m (%, p), G)/G

Fact: Agat(2)/G(2, p) = Hom(m (X, p), G).

For this talk, we work exclusively with G = SU(2),
with inner product (-,-) on g = su(2):

(C,m) = —5tr(¢n)
= —str(ad¢ o ad,).



Goldman Flows

Let U = St x (—1,1) be an embedded oriented cylinder
with coordinates (0, s), and consider the simple closed
oriented curve v with base point p, shown here:

N aara —
p S > ;
L\ TRV,

Y

orient®* df A ds

If X2 is oriented then assume that the embedding is orien-
tation preserving.

If f is any smooth conjugation R-valued invariant func-
tion defined on a subset G ~. X of G, then the associated
Goldman flow {=; };cr is an R-action on

={A € Apt(X) : HolLA ¢ X}/G(2).
Although any one orbit is periodic, the periods usually
differ from orbit to orbit.

In this talk, we only considered the function

f(g) = Arccos(5tr(g)),

which produces an S'-action. The function

folg) = tr(g),

for instance, produces an R-action that is defined on the
entire moduli space M(X). The fixed point set of this
R-action is exactly where the S'-action is not defined.
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Let 8, be the set of flat connections whose holonomy
along ~y is not central:

S, ={A € Ag(X) : Hol,A# 1}
= {A € Agu(Z) : 3tr(Hol,A) # £1};
S is an open dense subset of Aga(2).

Let M, = 8, /S(X) € M(X).

Define an R-valued function f, on 3.,
f+(A) = Arccos (5tr(Hol, A)) ;
[+ 1s G(X)-invariant, and may thus be viewed as a function

on Mv-

Our goal is to define the Goldman flow {=; };cr associated
to the curve v C U; it is a periodic R-action on M,, i.e.
an S'-action.

e VAR " o /N
p — =
RV, NV

Y

orient® df A ds




Let n_(s), (resp. n.(s)), be a smooth bump function that
integrates to 1 and is compactly supported on (—1,0),

(resp. (0,1)).
n-(s) 1+(s)
N

—1 0 0 1

Define a logarithm ¢ on G ~ {#£1} by requiring that
exp(f(g)) = g and det(¢(g)) < m. Define the normal-
ized logarithm F on G ~ {£1}:

Lemma. Suppose A € 8, C Aga(X). There is a
unique based gauge transformation u € G(U, p) on the

cylinder U such that u.(Aly) = f—; ® ¢(Hol, A).
For t € R, define

=5 (A) = A+ ny(s)ds @ Ad, 1 (tF(Hol,A)),
where the second term, a g-valued 1-form on U, extends
by zero to 1-form on ..

Aside:
If Alp = £ @ (" _,, ), where a € (0, ), then
Ao =SE@ (" ) +nx(s)ds @ ().
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{=] }er and {Z; }er define R-actions on 8., satisfying
the following conditions:

(i) The R-actions =i have “support” in U in the fol-
lowing sense: =, (A) = A outside of some compact
subset of S' x (—=1,0) C U, and = (A) = A outside
of some compact subset S! x (0,1) C U.

(ii) =, and Z; are G(X)-equivariant: if A € 8. and
b € S(5), then Z(.A) = 16.(ZH(A)).

(iii) If A € 8, and ¢ € R, then there exists ¢ € G(X)
such that ¢¥.Z; (A) = = (A).
(iv) If d(fy)a is the tangent map of f, at A, then

A)aB) = [ (Gl =FA) A B),
for B € TAS7 = TAAﬂat(Z>.

Theorem (Goldman, Jeffrey and Weitsman). The R-
actions = and Z; on 8., define a (common) R-action
{Zther on M,; the action =; is periodic, with period
m of X\ 7y 1§ disconnected and period 2w if X N\ 7y
is connected. Thus Z; defines an S*-action on M.,

called a Goldman flow.



Remark:

If > is compact and oriented then there is a symplectic
form on M(X) given by

W (Bl [C)) = / (BAC),

M
(see, for instance, Atiyah and Bott’s paper The Yang-

Mills equation over Riemann surfaces, or McDuff and
Salamon’s text Introduction to symplectic topology);
conditions (i) and (iv) imply that

A0F,) o ([B)) = /M (4], ZEA) A B)

= wia (G —o=ilA [B])

and so {=Z; }ser is the (periodic) flow of the Hamiltonian
vector field on M, with Hamiltonian f.

Aside:
dag=d—[AN] *O)2g— XDy
Ty g (X) ={B e Q' (X)®g | duaB =0}

= {d4 I-cocycles}

TA(S(X).A) ={daf | f € C*(X) ® g}
= {d4 1-coboundaries}

TiaM(E) = H'(Q*(X) ® 0. da)




E?E and holonomy

Suppose ¢ : [0,1] — X is a curve that either has both
endpoints at p, or has one endpoint at p and one endpoint
in X N\ U; suppose further that o does not otherwise
intersect . Given A € §,,, let

(¢ = exp(tF'(Hol, A)),
where F'(g) is the normalized logarithm; then the holo-
nomy of = (A) along ¢ is given in the following table.

Hol,(Z; (A)) | Hol,(Zf(A))
02+ [ Adg(Hol,A) | Hol,A
I | Hol,A Ad1(Hol,A)
g o[ HLAYGY) | (G (Hol,A)
v o [ (¢)(Hol,A) (Hol, A)(G)
ori\entE do A ds UX‘( | (Hol, A) (¢ Hol, A
" 7o oA (G)(Hol, A)
/ +~0 (| Hol,A (Holy A)(G)
| (¢)(Hol,A) Hol, A




> compact and nonorientable. ..

Pullback by the covering map induces
L M) — M(D),

and pullback by the deck transformation induces

T M(D)

In Nan-Kuo Ho’s paper The real locus of an tnvolution

— M(D).

map on the moduli space of flat connections on a Rie-

mann surface, the fixed point set of 7, M(2)7, is shown
to be a Lagrangian submanifold of M(2J).
oriented flow @, flow U,
deck \ double v, v
transf* C 2 cover 5. ‘ | .5
r r
, covering
covering i )
orient™ map orient™
map i .
preserving reversing
flow Et
gl

Theorem (K, 2007).

(i) &, 0 W_; preserves 3\/[( )7

(ii) ®; 0o U_; preserves L(

<111> <(I)t O \D_t> OL=160 _,t.

M),




Example

Suppose the compact and nonorientable surface
>, has Euler characteristic y(3) = —1.

771<27p> — <V767 Q ‘ Wﬁfy_lﬁ_loéz — 1>
Let R = {(c,b,a) € G® : cbc b a® =1}
= HOm(ﬂ'l(Z,p% G)

= Aﬁat(z)/9<zap)7
and let G act on R:

g.(c,b,a) = (gcg™", gbg™", gag™").
We identify M = R/G = M(Y).
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_ . 6 .
Letjz{(c,b,a,c,b,a)EG : }

che b \ag = 1,cbe "D Ga = 1
~ At (X)/S(2, P, P),
and let G x G act on R:

(g,h).(c,b,a,C,b,a) B
= (gcg™t, gbg™!, gah™, heh™, hbh™!, hag™!).

~ ~ ~

We identify M := R/(G x G) = M(X).
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Fort € Rand g € G~ {£1}, let ((g9) = exp(tF'(g)).
! / _B B- “ \
Tl Gl
\ A A J
r \ / r
/ 2
,. e
Iy
\ :

g

The R-action Et_ on R, C R,
={(¢c,b,a) € R | c # %1},

”_(C b,a) = (¢, b(¢; (), a),
covers the Goldman flow Z; on M, = R, /G.

The R-action @, on Rr C R,
Rr = {(c,b,a,c,b,a) € R | c # £1},
®; (c,b,a,c,b,a) = (cb(Ct ()) a,c,b,a),
covers the Goldman flow ®; on J\/[p = pr /(G x G).
The R-action U7 on Ry C R,
Rf ={(c,b,a,¢,b,a) € R |c#£+1} C R,
UH(e,b,a,¢ b,a) = (cbacb(@}()) a),
covers the Goldman flow U, on Mp = RF /(G x G).
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Since the cylinders V and V in > are disjoint, the flows
®F and U; commute. The R-action ®; o™, on Rr ﬂﬁf
covers a periodic R-action ®; o W_; on Jv[p N JVEF:

d; oWt (¢, b,a,¢c0b,a)

— (Ca b(Ct_1<C))> a, c, E(C—t(é))v 5)

Lemma (Nan-Kuo Ho). For z € G, let
N (c,b,a,c,b,a:v)ei\ _
! rex ' =c, xbr'=0b, zax ' =a |’
the fized point set of T 1s
M(E) = [ JN/(G x G)),

rxeG
and the image of v 1S

(M(D)) = N1 /(G x Q).
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Theorem (K).

(i) &y 0 Wy preserves M(X )T,
(ii) ®; 0 U_; preserves L( (X)),
<111> <(Dt @) \Ij_t> OL=10 —'t'

To prove the first two statements, it suffices to show that
the flow ®; o UF, on R preserves N, for each z € G.

To prove the last statement, work with the maps ®; o U™,

on R and =, on R; alternatively, work with the gauge
theoretic description: use a bump function n_(s) with
support in (—1,0) to define =; and ®;, and use 1, (s) :=
n_(—s) to define Wy.
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