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The maximal density of sphere packings in 3-space is π√
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Inside the Proof: Slicing and Measuring Space

Lemma 751442360

2.512 ≤ x1 ≤ 2.6962 →
4 ≤ x2 ≤ 2.1682 →
4 ≤ x3 ≤ 2.1682 →

4 ≤ x4 ≤ 2.512 →
4 ≤ x5 ≤ 2.512 →
4 ≤ x6 ≤ 2.512 →

−x1x3 − x2x4 + x1x5 + x3x6 − x5x6 +
x2(−x2 + x1 + x3 − x4 + x5 + x6)√√√√√√4x2

 x2x4(−x2 + x1 + x3 − x4 + x5 + x6) +
x1x5(x2 − x1 + x3 + x4 − x5 + x6) +

x3x6(x2 + x1 − x3 + x4 + x5 − x6)
− x1x3x4 − x2x3x5 − x2x1x6 − x4x5x6


< tan

(π

2
− 0.74

)

Proof 1
Homegrown, Refined
Interval Arithmic

Proof 2
Computer Algebra
System . . .

Proof 3
Proof Assistant:
“Flyspeck” project
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What is a proof?
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Theorem

∀n ∈ N.

n∑
k=0

k = n(n + 1)/2

Proof.

1 + . . . + n
n + . . . + 1

(n + 1) + . . . + (n + 1)
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Theorem

∀n ∈ N.

n∑
k=0

k2 = n(n2 + 1)/2

Proof.

1 + . . . + n2

n2 + . . . + 1
(n2 + 1) + . . . + (n2 + 1)

Example

1 + 4 + 9 = 3 · (9 + 1)/2,

i.e.
14 = 15.
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Not a Theorem!

∀n ∈ N.

n∑
k=0

k2 = n(n2 + 1)/2

Proof by intimidation.

1 + 2 + . . . + n2

n2 + (n − 1)2 + . . . + 1
(n2 + 1) + (n2 − 2n + 3) + . . . + (n2 + 1)

Example

1 + 4 + 9 = 3 · (9 + 1)/2,

i.e.
14 = 15.
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Theorem

∀n ∈ N.

n∑
k=0

k = n(n + 1)/2

A More Detailed Proof.
By induction on n.

Basis: 0 = 0

Step: Suppose
n∑

k=0

k = n(n + 1)/2. Then

n+1∑
k=0

k =
n∑

k=0

k + (n + 1)

= n(n + 1)/2 + (n + 1) by hypothesis
= (n + 1)(n + 2)/2 by algebra
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Computer-Assisted Proofs

What is a proof?
⇒ An object that can in principle be refined to a formal
proof.

What is a formal proof? ⇒ A proof in a formal language:
Frege’s Begriffsschrift (1879)
de Bruijn’s Automath system (1967)
Coq system

Computers can assist us to . . .

. . . find proofs.

. . . check proofs.

Proof assistents are software themselves, so why should
we trust them?

Architecture: small, well-tested kernel
“Coq in Coq”
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Big Proofs

Theorem

∀x ∈ [0; 1]. 0 ≤ f x

Proof.
Assume x ∈ [0; 1]. Let Xi := [(i − 1)/n; i/n]. Then

x ∈ X1 ∨ . . . ∨ x ∈ Xn.

In each of these cases 0 ≤ f̂ Xi and thus 0 ≤ f x .

The necessary n depends on f . Is there a largest n such
that this a proof?
Non-toy examples with quite large “n”: Four Color
Theorem, Pocklington Prime Numbers
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Taylor Models and Chebyshev Balls

Definition
Taylor models: T[n] := R[n]× I.
For f : D → R (where D ⊆ Rn),

f ∈̃ (p,∆) :⇔ ∀x ∈ D. f x − p x ∈ ∆.

Definition
Chebyshev balls: Q[n] := R[n]× R.
For f : D → R (where D ⊆ Rn),

f ∈̃ (p, δ) :⇔ ‖f −̊ p‖∞ ≤ δ.

Chebyshev balls are centered Taylor models:

f ∈̃ (p,∆) ⇔ f ∈̃
(

p + m ∆,
|∆|
2

)
Economy: Lemmas about ‖ · ‖∞ can be reused.
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Extensions and Lifts

Definition

g : (Rn1 → R) → . . . → (Rnr → R) → (Rnr+1 → R)
G : Q[n1] → . . . → Q[nr ] → Q[nr+1]

G is an extension of g :⇔

∀f , F . f1 ∈̃ F1 → . . . → fr ∈̃ Fr → g f1 . . . fr ∈̃ G F1 . . . Fr .

Definition

g : Rr → R
G : (Q[n])r → Q[n]

G is a lift of g :⇔
G extends f1 . . . fr x1 . . . xn 7→ g (f1 x1 . . . xn) . . . (fr x1 . . . xn)
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Arithmetic

Definition

(p1,∆1) +̃ (p2,∆2) := (p1 + p2,∆1 +̂ ∆2)

(p1,∆1) ·̃ (p2,∆2) := ((p1p2)≤l , (p1p2)>l + k1p2 + p1k2 + k1k2)

where k1 ∈ ∆1 and k2 ∈ ∆2 are fresh variables.

Lemma
+̃ and ·̃ are lifts of + and ·.

Proof (for ·̃).
Assume f1 ∈̃ (p1,∆1) and f2 ∈̃ (p2,∆2).
Let d1 := f1 −̊ p1 and d2 := f2 −̊ p2.

f1f2 = (p1 +̊ d1)(p2 +̊ d2) = p1p2 +̊ p1d2 +̊ d1p2 +̊ d1d2

∈̃ ((p1p2)≤l , (p1p2)>l + k1p2 + p1k2 + k1k2)
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Extending Function Composition

Definition

(p, δ) ◦̃ F := [p] F +̃ (0, δ)

Lemma
◦̃ : Q[1] → Q[n] → Q[n] is an extension of
◦ : (R → R) → (Rn → R) → (Rn → R).

Proof.
Assume g ∈̃ (p, δ) and f ∈̃ F . Then

‖g ◦ f −̊ [p] ◦ f‖∞ ≤

‖g −̊ [p]‖∞ ≤ δ.

Furthermore [p] ◦ f = [p]◦ f ∈̃ [p]∼ F , hence

g ◦ f ∈̃ [p]∼ F +̃ (0, δ) = (p, δ) ◦̃ F .
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Lifting Elementary Functions

Lemma
For g : R 7→ R and G : Q[1], if g ∈̃ G then F 7→ G ◦̃ F lifts g.

Proof.
By definition of lift this means that F 7→ G ◦̃ F extends
f x 7→ g (f x) = f 7→ g ◦ f . The extension property is preserved
by partial application.

Remaining Problem: Polynomial Approximation

For a given g : X 7→ R (where X ⊂ R) find G : Q[1] such that
g ∈̃ G.

Bernstein slow convergence
Taylor easy to implement, good local convergence

Chebyshev Is there a good Jackson theorem?
Remez difficult to implement, but optimal
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Lifting Elementary Functions: by Taylor/Lagrange

Tl
a g x :=

l∑
k=0

∂kg a
k !

(x − a)k

Rl
a g := g −̊ Tl

a g

Ll
a g X :=

∂ l+1g X
(l + 1)!

(X −̂ a)l+1

Taylor’s Theorem with Lagrange remainder

∀x ∈ X . Rl
a g x ∈ Ll

a g X

g ∈̃ (Tl
a g, Ll

a g X )

No addition theorem needed. Move the value a instead.
Taking the argument’s constant part for a yields the same
result as in [Makino-PhD] etc.
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Lifting Elementary Functions: with Sharp Remainder

Observation
If

∀x ∈ [x1, x2]. sgn(∂ (Rl
a g) x) ≥ 0

then
∀x ∈ [x1, x2]. Rl

a g x ∈
[
Rl

a g x1; Rl
a g x2

]
.

sgn(∂ (Rl
a g) x) = sgn(Rl−1

a (∂g) x) R and ∂ commute

⊆ sgn(Ll−1
a (∂g) X ) Lagrange remainder

= sgn
(

1
l!
· ∂ lg X · (X −̂ a)l

)
= sgn(∂ lg X ) · sgn(X −̂ a)l
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Lifting Elementary Functions: with Sharp Remainder

Lemma

∂ ◦ Rl
a = Rl−1

a ◦ ∂

Proof.

∂Rl
a g = ∂x 7→ g x −

l∑
k=0

∂kg a
k !

(x − a)k

= x 7→ ∂g x −
l∑

k=1

∂kg a
(k − 1)!

(x − a)k−1

= x 7→ ∂g x −
l−1∑
k=0

∂k (∂g) a
k !

(x − a)k

= Rl−1
a (∂g)
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Lifting Elementary Functions: by Remez

Remaining Problem: Polynomial Approximation

For a given g : X 7→ R (where X ⊂ R) find G : Q[1] such that
g ∈̃ G.

This problem has an optimal solution: the Remez
polynomial

The correctness proof is hard, but we don’t need it: Once
we have obtained G = (p, δ) we can compute ‖g − [p]‖∞
by interval arithmetic.
The polynomial p can be obtained from outside the proof
assistant: Sollya system by Arenaire in Lyon
Remez is slower than Taylor: build a reusable database for
different domains and degrees
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Summary

Formal proofs are necesseary if we want to rely on
software.

Generalized Taylor models don’t depend on Taylor’s
theorem.
Chebyshev balls simplify proofs.
Don’t use the Lagrange remainders if deratives’ signs are
constant.
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