
Machine-Checkable Correctness Proofs:
Formalizing Taylor Models

Roland Zumkeller

Project TypiCal, INRIA
École Polytechnique, Paris

Project MathComponents
Microsoft Research / INRIA Joint Lab, Paris

Taylor Model Methods V, May 2008, Toronto

Roland Zumkeller Formalizing Taylor Models

Conjecture (Johannes Kepler, 1611)
The maximal density of sphere packings in 3-space is π√

18
.

Proof (Thomas Hales, 1998)

300 pages

Geometry
Analysis

40.000 lines, several weeks

Graph Enumeration
Linear Optimization
Non-linear Optimization

Roland Zumkeller Formalizing Taylor Models

Conjecture (Johannes Kepler, 1611)
The maximal density of sphere packings in 3-space is π√

18
.

Proof (Thomas Hales, 1998)

300 pages

Geometry
Analysis

40.000 lines, several weeks

Graph Enumeration
Linear Optimization
Non-linear Optimization

Roland Zumkeller Formalizing Taylor Models

Conjecture (Johannes Kepler, 1611)
The maximal density of sphere packings in 3-space is π√

18
.

Proof (Thomas Hales, 1998)

300 pages

Geometry
Analysis

40.000 lines, several weeks

Graph Enumeration
Linear Optimization
Non-linear Optimization

Roland Zumkeller Formalizing Taylor Models

Conjecture (Johannes Kepler, 1611)
The maximal density of sphere packings in 3-space is π√

18
.

Proof (Thomas Hales, 1998)

300 pages

Geometry
Analysis

40.000 lines, several weeks

Graph Enumeration
Linear Optimization
Non-linear Optimization

Roland Zumkeller Formalizing Taylor Models

Inside the Proof: Slicing and Measuring Space

Lemma 751442360

2.512 ≤ x1 ≤ 2.6962 →
4 ≤ x2 ≤ 2.1682 →
4 ≤ x3 ≤ 2.1682 →

4 ≤ x4 ≤ 2.512 →
4 ≤ x5 ≤ 2.512 →
4 ≤ x6 ≤ 2.512 →

−x1x3 − x2x4 + x1x5 + x3x6 − x5x6 +
x2(−x2 + x1 + x3 − x4 + x5 + x6)√√√√√√4x2

 x2x4(−x2 + x1 + x3 − x4 + x5 + x6) +
x1x5(x2 − x1 + x3 + x4 − x5 + x6) +

x3x6(x2 + x1 − x3 + x4 + x5 − x6)
− x1x3x4 − x2x3x5 − x2x1x6 − x4x5x6

< tan

(π

2
− 0.74

)

Proof 1
Homegrown, Refined
Interval Arithmic

Proof 2
Computer Algebra
System . . .

Proof 3
Proof Assistant:
“Flyspeck” project

Roland Zumkeller Formalizing Taylor Models

Inside the Proof: Slicing and Measuring Space

Lemma 751442360

2.512 ≤ x1 ≤ 2.6962 →
4 ≤ x2 ≤ 2.1682 →
4 ≤ x3 ≤ 2.1682 →

4 ≤ x4 ≤ 2.512 →
4 ≤ x5 ≤ 2.512 →
4 ≤ x6 ≤ 2.512 →

−x1x3 − x2x4 + x1x5 + x3x6 − x5x6 +
x2(−x2 + x1 + x3 − x4 + x5 + x6)√√√√√√4x2

 x2x4(−x2 + x1 + x3 − x4 + x5 + x6) +
x1x5(x2 − x1 + x3 + x4 − x5 + x6) +

x3x6(x2 + x1 − x3 + x4 + x5 − x6)
− x1x3x4 − x2x3x5 − x2x1x6 − x4x5x6

< tan

(π

2
− 0.74

)

Proof 1
Homegrown, Refined
Interval Arithmic

Proof 2
Computer Algebra
System . . .

Proof 3
Proof Assistant:
“Flyspeck” project

Roland Zumkeller Formalizing Taylor Models

Inside the Proof: Slicing and Measuring Space

Lemma 751442360

2.512 ≤ x1 ≤ 2.6962 →
4 ≤ x2 ≤ 2.1682 →
4 ≤ x3 ≤ 2.1682 →

4 ≤ x4 ≤ 2.512 →
4 ≤ x5 ≤ 2.512 →
4 ≤ x6 ≤ 2.512 →

−x1x3 − x2x4 + x1x5 + x3x6 − x5x6 +
x2(−x2 + x1 + x3 − x4 + x5 + x6)√√√√√√4x2

 x2x4(−x2 + x1 + x3 − x4 + x5 + x6) +
x1x5(x2 − x1 + x3 + x4 − x5 + x6) +

x3x6(x2 + x1 − x3 + x4 + x5 − x6)
− x1x3x4 − x2x3x5 − x2x1x6 − x4x5x6

< tan

(π

2
− 0.74

)

Proof 1
Homegrown, Refined
Interval Arithmic

Proof 2
Computer Algebra
System . . .

Proof 3
Proof Assistant:
“Flyspeck” project

Roland Zumkeller Formalizing Taylor Models

Inside the Proof: Slicing and Measuring Space

Lemma 751442360

2.512 ≤ x1 ≤ 2.6962 →
4 ≤ x2 ≤ 2.1682 →
4 ≤ x3 ≤ 2.1682 →

4 ≤ x4 ≤ 2.512 →
4 ≤ x5 ≤ 2.512 →
4 ≤ x6 ≤ 2.512 →

−x1x3 − x2x4 + x1x5 + x3x6 − x5x6 +
x2(−x2 + x1 + x3 − x4 + x5 + x6)√√√√√√4x2

 x2x4(−x2 + x1 + x3 − x4 + x5 + x6) +
x1x5(x2 − x1 + x3 + x4 − x5 + x6) +

x3x6(x2 + x1 − x3 + x4 + x5 − x6)
− x1x3x4 − x2x3x5 − x2x1x6 − x4x5x6

< tan

(π

2
− 0.74

)

Proof 1
Homegrown, Refined
Interval Arithmic

Proof 2
Computer Algebra
System . . .

Proof 3
Proof Assistant:
“Flyspeck” project

Roland Zumkeller Formalizing Taylor Models

What is a proof?

Roland Zumkeller Formalizing Taylor Models

Theorem

∀n ∈ N.

n∑
k=0

k = n(n + 1)/2

Proof.

1 + . . . + n
n + . . . + 1

(n + 1) + . . . + (n + 1)

Roland Zumkeller Formalizing Taylor Models

Theorem

∀n ∈ N.

n∑
k=0

k2 = n(n2 + 1)/2

Proof.

1 + . . . + n2

n2 + . . . + 1
(n2 + 1) + . . . + (n2 + 1)

Example

1 + 4 + 9 = 3 · (9 + 1)/2,

i.e.
14 = 15.

Roland Zumkeller Formalizing Taylor Models

Theorem

∀n ∈ N.

n∑
k=0

k2 = n(n2 + 1)/2

Proof.

1 + . . . + n2

n2 + . . . + 1
(n2 + 1) + . . . + (n2 + 1)

Example

1 + 4 + 9 = 3 · (9 + 1)/2,

i.e.
14 = 15.

Roland Zumkeller Formalizing Taylor Models

Not a Theorem!

∀n ∈ N.

n∑
k=0

k2 = n(n2 + 1)/2

Proof by intimidation.

1 + 2 + . . . + n2

n2 + (n − 1)2 + . . . + 1
(n2 + 1) + (n2 − 2n + 3) + . . . + (n2 + 1)

Example

1 + 4 + 9 = 3 · (9 + 1)/2,

i.e.
14 = 15.

Roland Zumkeller Formalizing Taylor Models

Theorem

∀n ∈ N.

n∑
k=0

k = n(n + 1)/2

A More Detailed Proof.
By induction on n.

Basis: 0 = 0

Step: Suppose
n∑

k=0

k = n(n + 1)/2. Then

n+1∑
k=0

k =
n∑

k=0

k + (n + 1)

= n(n + 1)/2 + (n + 1) by hypothesis
= (n + 1)(n + 2)/2 by algebra

Roland Zumkeller Formalizing Taylor Models

Computer-Assisted Proofs

What is a proof?
⇒ An object that can in principle be refined to a formal
proof.

What is a formal proof? ⇒ A proof in a formal language:
Frege’s Begriffsschrift (1879)
de Bruijn’s Automath system (1967)
Coq system

Computers can assist us to . . .

. . . find proofs.

. . . check proofs.

Proof assistents are software themselves, so why should
we trust them?

Architecture: small, well-tested kernel
“Coq in Coq”

Roland Zumkeller Formalizing Taylor Models

Computer-Assisted Proofs

What is a proof?
⇒ An object that can in principle be refined to a formal
proof.
What is a formal proof? ⇒ A proof in a formal language:

Frege’s Begriffsschrift (1879)

de Bruijn’s Automath system (1967)
Coq system

Computers can assist us to . . .

. . . find proofs.

. . . check proofs.

Proof assistents are software themselves, so why should
we trust them?

Architecture: small, well-tested kernel
“Coq in Coq”

Roland Zumkeller Formalizing Taylor Models

Computer-Assisted Proofs

What is a proof?
⇒ An object that can in principle be refined to a formal
proof.
What is a formal proof? ⇒ A proof in a formal language:

Frege’s Begriffsschrift (1879)
de Bruijn’s Automath system (1967)

Coq system
Computers can assist us to . . .

. . . find proofs.

. . . check proofs.

Proof assistents are software themselves, so why should
we trust them?

Architecture: small, well-tested kernel
“Coq in Coq”

Roland Zumkeller Formalizing Taylor Models

Computer-Assisted Proofs

What is a proof?
⇒ An object that can in principle be refined to a formal
proof.
What is a formal proof? ⇒ A proof in a formal language:

Frege’s Begriffsschrift (1879)
de Bruijn’s Automath system (1967)
Coq system

Computers can assist us to . . .

. . . find proofs.

. . . check proofs.

Proof assistents are software themselves, so why should
we trust them?

Architecture: small, well-tested kernel
“Coq in Coq”

Roland Zumkeller Formalizing Taylor Models

Computer-Assisted Proofs

What is a proof?
⇒ An object that can in principle be refined to a formal
proof.
What is a formal proof? ⇒ A proof in a formal language:

Frege’s Begriffsschrift (1879)
de Bruijn’s Automath system (1967)
Coq system

Computers can assist us to . . .

. . . find proofs.

. . . check proofs.

Proof assistents are software themselves, so why should
we trust them?

Architecture: small, well-tested kernel
“Coq in Coq”

Roland Zumkeller Formalizing Taylor Models

Computer-Assisted Proofs

What is a proof?
⇒ An object that can in principle be refined to a formal
proof.
What is a formal proof? ⇒ A proof in a formal language:

Frege’s Begriffsschrift (1879)
de Bruijn’s Automath system (1967)
Coq system

Computers can assist us to . . .

. . . find proofs.

. . . check proofs.

Proof assistents are software themselves, so why should
we trust them?

Architecture: small, well-tested kernel
“Coq in Coq”

Roland Zumkeller Formalizing Taylor Models

Computer-Assisted Proofs

What is a proof?
⇒ An object that can in principle be refined to a formal
proof.
What is a formal proof? ⇒ A proof in a formal language:

Frege’s Begriffsschrift (1879)
de Bruijn’s Automath system (1967)
Coq system

Computers can assist us to . . .

. . . find proofs.

. . . check proofs.

Proof assistents are software themselves, so why should
we trust them?

Architecture: small, well-tested kernel

“Coq in Coq”

Roland Zumkeller Formalizing Taylor Models

Computer-Assisted Proofs

What is a proof?
⇒ An object that can in principle be refined to a formal
proof.
What is a formal proof? ⇒ A proof in a formal language:

Frege’s Begriffsschrift (1879)
de Bruijn’s Automath system (1967)
Coq system

Computers can assist us to . . .

. . . find proofs.

. . . check proofs.

Proof assistents are software themselves, so why should
we trust them?

Architecture: small, well-tested kernel
“Coq in Coq”

Roland Zumkeller Formalizing Taylor Models

Big Proofs

Theorem

∀x ∈ [0; 1]. 0 ≤ f x

Proof.
Assume x ∈ [0; 1]. Let Xi := [(i − 1)/n; i/n]. Then

x ∈ X1 ∨ . . . ∨ x ∈ Xn.

In each of these cases 0 ≤ f̂ Xi and thus 0 ≤ f x .

The necessary n depends on f . Is there a largest n such
that this a proof?
Non-toy examples with quite large “n”: Four Color
Theorem, Pocklington Prime Numbers

Roland Zumkeller Formalizing Taylor Models

Big Proofs

Theorem

∀x ∈ [0; 1]. 0 ≤ f x

Proof.
Assume x ∈ [0; 1]. Let Xi := [(i − 1)/n; i/n]. Then

x ∈ X1 ∨ . . . ∨ x ∈ Xn.

In each of these cases 0 ≤ f̂ Xi and thus 0 ≤ f x .

The necessary n depends on f . Is there a largest n such
that this a proof?

Non-toy examples with quite large “n”: Four Color
Theorem, Pocklington Prime Numbers

Roland Zumkeller Formalizing Taylor Models

Big Proofs

Theorem

∀x ∈ [0; 1]. 0 ≤ f x

Proof.
Assume x ∈ [0; 1]. Let Xi := [(i − 1)/n; i/n]. Then

x ∈ X1 ∨ . . . ∨ x ∈ Xn.

In each of these cases 0 ≤ f̂ Xi and thus 0 ≤ f x .

The necessary n depends on f . Is there a largest n such
that this a proof?
Non-toy examples with quite large “n”: Four Color
Theorem, Pocklington Prime Numbers

Roland Zumkeller Formalizing Taylor Models

Taylor Models and Chebyshev Balls

Definition
Taylor models: T[n] := R[n]× I.
For f : D → R (where D ⊆ Rn),

f ∈̃ (p,∆) :⇔ ∀x ∈ D. f x − p x ∈ ∆.

Definition
Chebyshev balls: Q[n] := R[n]× R.
For f : D → R (where D ⊆ Rn),

f ∈̃ (p, δ) :⇔ ‖f −̊ p‖∞ ≤ δ.

Chebyshev balls are centered Taylor models:

f ∈̃ (p,∆) ⇔ f ∈̃
(

p + m ∆,
|∆|
2

)
Economy: Lemmas about ‖ · ‖∞ can be reused.

Roland Zumkeller Formalizing Taylor Models

Taylor Models and Chebyshev Balls

Definition
Taylor models: T[n] := R[n]× I.
For f : D → R (where D ⊆ Rn),

f ∈̃ (p,∆) :⇔ ∀x ∈ D. f x − p x ∈ ∆.

Definition
Chebyshev balls: Q[n] := R[n]× R.
For f : D → R (where D ⊆ Rn),

f ∈̃ (p, δ) :⇔ ‖f −̊ p‖∞ ≤ δ.

Chebyshev balls are centered Taylor models:

f ∈̃ (p,∆) ⇔ f ∈̃
(

p + m ∆,
|∆|
2

)
Economy: Lemmas about ‖ · ‖∞ can be reused.

Roland Zumkeller Formalizing Taylor Models

Taylor Models and Chebyshev Balls

Definition
Taylor models: T[n] := R[n]× I.
For f : D → R (where D ⊆ Rn),

f ∈̃ (p,∆) :⇔ ∀x ∈ D. f x − p x ∈ ∆.

Definition
Chebyshev balls: Q[n] := R[n]× R.
For f : D → R (where D ⊆ Rn),

f ∈̃ (p, δ) :⇔ ‖f −̊ p‖∞ ≤ δ.

Chebyshev balls are centered Taylor models:

f ∈̃ (p,∆) ⇔ f ∈̃
(

p + m ∆,
|∆|
2

)

Economy: Lemmas about ‖ · ‖∞ can be reused.

Roland Zumkeller Formalizing Taylor Models

Taylor Models and Chebyshev Balls

Definition
Taylor models: T[n] := R[n]× I.
For f : D → R (where D ⊆ Rn),

f ∈̃ (p,∆) :⇔ ∀x ∈ D. f x − p x ∈ ∆.

Definition
Chebyshev balls: Q[n] := R[n]× R.
For f : D → R (where D ⊆ Rn),

f ∈̃ (p, δ) :⇔ ‖f −̊ p‖∞ ≤ δ.

Chebyshev balls are centered Taylor models:

f ∈̃ (p,∆) ⇔ f ∈̃
(

p + m ∆,
|∆|
2

)
Economy: Lemmas about ‖ · ‖∞ can be reused.

Roland Zumkeller Formalizing Taylor Models

Extensions and Lifts

Definition

g : (Rn1 → R) → . . . → (Rnr → R) → (Rnr+1 → R)
G : Q[n1] → . . . → Q[nr] → Q[nr+1]

G is an extension of g :⇔

∀f , F . f1 ∈̃ F1 → . . . → fr ∈̃ Fr → g f1 . . . fr ∈̃ G F1 . . . Fr .

Definition

g : Rr → R
G : (Q[n])r → Q[n]

G is a lift of g :⇔
G extends f1 . . . fr x1 . . . xn 7→ g (f1 x1 . . . xn) . . . (fr x1 . . . xn)

Roland Zumkeller Formalizing Taylor Models

Extensions and Lifts

Definition

g : (Rn1 → R) → . . . → (Rnr → R) → (Rnr+1 → R)
G : Q[n1] → . . . → Q[nr] → Q[nr+1]

G is an extension of g :⇔

∀f , F . f1 ∈̃ F1 → . . . → fr ∈̃ Fr → g f1 . . . fr ∈̃ G F1 . . . Fr .

Definition

g : Rr → R
G : (Q[n])r → Q[n]

G is a lift of g :⇔
G extends f1 . . . fr x1 . . . xn 7→ g (f1 x1 . . . xn) . . . (fr x1 . . . xn)

Roland Zumkeller Formalizing Taylor Models

Arithmetic

Definition

(p1,∆1) +̃ (p2,∆2) := (p1 + p2,∆1 +̂ ∆2)

(p1,∆1) ·̃ (p2,∆2) := ((p1p2)≤l , (p1p2)>l + k1p2 + p1k2 + k1k2)

where k1 ∈ ∆1 and k2 ∈ ∆2 are fresh variables.

Lemma
+̃ and ·̃ are lifts of + and ·.

Proof (for ·̃).
Assume f1 ∈̃ (p1,∆1) and f2 ∈̃ (p2,∆2).
Let d1 := f1 −̊ p1 and d2 := f2 −̊ p2.

f1f2 = (p1 +̊ d1)(p2 +̊ d2) = p1p2 +̊ p1d2 +̊ d1p2 +̊ d1d2

∈̃ ((p1p2)≤l , (p1p2)>l + k1p2 + p1k2 + k1k2)

Roland Zumkeller Formalizing Taylor Models

Arithmetic

Definition

(p1,∆1) +̃ (p2,∆2) := (p1 + p2,∆1 +̂ ∆2)

(p1,∆1) ·̃ (p2,∆2) := ((p1p2)≤l , (p1p2)>l + k1p2 + p1k2 + k1k2)

where k1 ∈ ∆1 and k2 ∈ ∆2 are fresh variables.

Lemma
+̃ and ·̃ are lifts of + and ·.

Proof (for ·̃).
Assume f1 ∈̃ (p1,∆1) and f2 ∈̃ (p2,∆2).
Let d1 := f1 −̊ p1 and d2 := f2 −̊ p2.

f1f2 = (p1 +̊ d1)(p2 +̊ d2) = p1p2 +̊ p1d2 +̊ d1p2 +̊ d1d2

∈̃ ((p1p2)≤l , (p1p2)>l + k1p2 + p1k2 + k1k2)

Roland Zumkeller Formalizing Taylor Models

Arithmetic

Definition

(p1,∆1) +̃ (p2,∆2) := (p1 + p2,∆1 +̂ ∆2)

(p1,∆1) ·̃ (p2,∆2) := ((p1p2)≤l , (p1p2)>l + k1p2 + p1k2 + k1k2)

where k1 ∈ ∆1 and k2 ∈ ∆2 are fresh variables.

Lemma
+̃ and ·̃ are lifts of + and ·.

Proof (for ·̃).
Assume f1 ∈̃ (p1,∆1) and f2 ∈̃ (p2,∆2).
Let d1 := f1 −̊ p1 and d2 := f2 −̊ p2.

f1f2 = (p1 +̊ d1)(p2 +̊ d2) = p1p2 +̊ p1d2 +̊ d1p2 +̊ d1d2

∈̃ ((p1p2)≤l , (p1p2)>l + k1p2 + p1k2 + k1k2)

Roland Zumkeller Formalizing Taylor Models

Arithmetic

Definition

(p1,∆1) +̃ (p2,∆2) := (p1 + p2,∆1 +̂ ∆2)

(p1,∆1) ·̃ (p2,∆2) := ((p1p2)≤l , (p1p2)>l + k1p2 + p1k2 + k1k2)

where k1 ∈ ∆1 and k2 ∈ ∆2 are fresh variables.

Lemma
+̃ and ·̃ are lifts of + and ·.

Proof (for ·̃).
Assume f1 ∈̃ (p1,∆1) and f2 ∈̃ (p2,∆2).
Let d1 := f1 −̊ p1 and d2 := f2 −̊ p2.

f1f2 = (p1 +̊ d1)(p2 +̊ d2) = p1p2 +̊ p1d2 +̊ d1p2 +̊ d1d2

∈̃ ((p1p2)≤l , (p1p2)>l + k1p2 + p1k2 + k1k2)

Roland Zumkeller Formalizing Taylor Models

Extending Function Composition

Definition

(p, δ) ◦̃ F := [p] F +̃ (0, δ)

Lemma
◦̃ : Q[1] → Q[n] → Q[n] is an extension of
◦ : (R → R) → (Rn → R) → (Rn → R).

Proof.
Assume g ∈̃ (p, δ) and f ∈̃ F . Then

‖g ◦ f −̊ [p] ◦ f‖∞ ≤

‖g −̊ [p]‖∞ ≤ δ.

Furthermore [p] ◦ f = [p]◦ f ∈̃ [p]∼ F , hence

g ◦ f ∈̃ [p]∼ F +̃ (0, δ) = (p, δ) ◦̃ F .

Roland Zumkeller Formalizing Taylor Models

Extending Function Composition

Definition

(p, δ) ◦̃ F := [p] F +̃ (0, δ)

Lemma
◦̃ : Q[1] → Q[n] → Q[n] is an extension of
◦ : (R → R) → (Rn → R) → (Rn → R).

Proof.
Assume g ∈̃ (p, δ) and f ∈̃ F . Then

‖g ◦ f −̊ [p] ◦ f‖∞ ≤

‖g −̊ [p]‖∞ ≤ δ.

Furthermore [p] ◦ f = [p]◦ f ∈̃ [p]∼ F , hence

g ◦ f ∈̃ [p]∼ F +̃ (0, δ) = (p, δ) ◦̃ F .

Roland Zumkeller Formalizing Taylor Models

Extending Function Composition

Definition

(p, δ) ◦̃ F := [p] F +̃ (0, δ)

Lemma
◦̃ : Q[1] → Q[n] → Q[n] is an extension of
◦ : (R → R) → (Rn → R) → (Rn → R).

Proof.
Assume g ∈̃ (p, δ) and f ∈̃ F . Then

‖g ◦ f −̊ [p] ◦ f‖∞ ≤

‖g −̊ [p]‖∞ ≤ δ.

Furthermore [p] ◦ f = [p]◦ f ∈̃ [p]∼ F , hence

g ◦ f ∈̃ [p]∼ F +̃ (0, δ) = (p, δ) ◦̃ F .

Roland Zumkeller Formalizing Taylor Models

Extending Function Composition

Definition

(p, δ) ◦̃ F := [p] F +̃ (0, δ)

Lemma
◦̃ : Q[1] → Q[n] → Q[n] is an extension of
◦ : (R → R) → (Rn → R) → (Rn → R).

Proof.
Assume g ∈̃ (p, δ) and f ∈̃ F . Then

‖g ◦ f −̊ [p] ◦ f‖∞ ≤ ‖g −̊ [p]‖∞ ≤ δ.

Furthermore [p] ◦ f = [p]◦ f ∈̃ [p]∼ F , hence

g ◦ f ∈̃ [p]∼ F +̃ (0, δ) = (p, δ) ◦̃ F .

Roland Zumkeller Formalizing Taylor Models

Extending Function Composition

Definition

(p, δ) ◦̃ F := [p] F +̃ (0, δ)

Lemma
◦̃ : Q[1] → Q[n] → Q[n] is an extension of
◦ : (R → R) → (Rn → R) → (Rn → R).

Proof.
Assume g ∈̃ (p, δ) and f ∈̃ F . Then

‖g ◦ f −̊ [p] ◦ f‖∞ ≤ ‖g −̊ [p]‖∞ ≤ δ.

Furthermore [p] ◦ f = [p]◦ f ∈̃ [p]∼ F , hence

g ◦ f ∈̃ [p]∼ F +̃ (0, δ) = (p, δ) ◦̃ F .

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions

Lemma
For g : R 7→ R and G : Q[1], if g ∈̃ G then F 7→ G ◦̃ F lifts g.

Proof.
By definition of lift this means that F 7→ G ◦̃ F extends
f x 7→ g (f x) = f 7→ g ◦ f . The extension property is preserved
by partial application.

Remaining Problem: Polynomial Approximation

For a given g : X 7→ R (where X ⊂ R) find G : Q[1] such that
g ∈̃ G.

Bernstein slow convergence
Taylor easy to implement, good local convergence

Chebyshev Is there a good Jackson theorem?
Remez difficult to implement, but optimal

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions

Lemma
For g : R 7→ R and G : Q[1], if g ∈̃ G then F 7→ G ◦̃ F lifts g.

Proof.
By definition of lift this means that F 7→ G ◦̃ F extends
f x 7→ g (f x) = f 7→ g ◦ f . The extension property is preserved
by partial application.

Remaining Problem: Polynomial Approximation

For a given g : X 7→ R (where X ⊂ R) find G : Q[1] such that
g ∈̃ G.

Bernstein slow convergence
Taylor easy to implement, good local convergence

Chebyshev Is there a good Jackson theorem?
Remez difficult to implement, but optimal

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions

Lemma
For g : R 7→ R and G : Q[1], if g ∈̃ G then F 7→ G ◦̃ F lifts g.

Proof.
By definition of lift this means that F 7→ G ◦̃ F extends
f x 7→ g (f x) = f 7→ g ◦ f . The extension property is preserved
by partial application.

Remaining Problem: Polynomial Approximation

For a given g : X 7→ R (where X ⊂ R) find G : Q[1] such that
g ∈̃ G.

Bernstein slow convergence
Taylor easy to implement, good local convergence

Chebyshev Is there a good Jackson theorem?
Remez difficult to implement, but optimal

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions

Lemma
For g : R 7→ R and G : Q[1], if g ∈̃ G then F 7→ G ◦̃ F lifts g.

Proof.
By definition of lift this means that F 7→ G ◦̃ F extends
f x 7→ g (f x) = f 7→ g ◦ f . The extension property is preserved
by partial application.

Remaining Problem: Polynomial Approximation

For a given g : X 7→ R (where X ⊂ R) find G : Q[1] such that
g ∈̃ G.

Bernstein slow convergence
Taylor easy to implement, good local convergence

Chebyshev Is there a good Jackson theorem?
Remez difficult to implement, but optimal

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions

Lemma
For g : R 7→ R and G : Q[1], if g ∈̃ G then F 7→ G ◦̃ F lifts g.

Proof.
By definition of lift this means that F 7→ G ◦̃ F extends
f x 7→ g (f x) = f 7→ g ◦ f . The extension property is preserved
by partial application.

Remaining Problem: Polynomial Approximation

For a given g : X 7→ R (where X ⊂ R) find G : Q[1] such that
g ∈̃ G.

Bernstein slow convergence
Taylor easy to implement, good local convergence

Chebyshev Is there a good Jackson theorem?
Remez difficult to implement, but optimal

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions

Lemma
For g : R 7→ R and G : Q[1], if g ∈̃ G then F 7→ G ◦̃ F lifts g.

Proof.
By definition of lift this means that F 7→ G ◦̃ F extends
f x 7→ g (f x) = f 7→ g ◦ f . The extension property is preserved
by partial application.

Remaining Problem: Polynomial Approximation

For a given g : X 7→ R (where X ⊂ R) find G : Q[1] such that
g ∈̃ G.

Bernstein slow convergence
Taylor easy to implement, good local convergence

Chebyshev Is there a good Jackson theorem?
Remez difficult to implement, but optimal

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions

Lemma
For g : R 7→ R and G : Q[1], if g ∈̃ G then F 7→ G ◦̃ F lifts g.

Proof.
By definition of lift this means that F 7→ G ◦̃ F extends
f x 7→ g (f x) = f 7→ g ◦ f . The extension property is preserved
by partial application.

Remaining Problem: Polynomial Approximation

For a given g : X 7→ R (where X ⊂ R) find G : Q[1] such that
g ∈̃ G.

Bernstein slow convergence
Taylor easy to implement, good local convergence

Chebyshev Is there a good Jackson theorem?
Remez difficult to implement, but optimal

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions

Lemma
For g : R 7→ R and G : Q[1], if g ∈̃ G then F 7→ G ◦̃ F lifts g.

Proof.
By definition of lift this means that F 7→ G ◦̃ F extends
f x 7→ g (f x) = f 7→ g ◦ f . The extension property is preserved
by partial application.

Remaining Problem: Polynomial Approximation

For a given g : X 7→ R (where X ⊂ R) find G : Q[1] such that
g ∈̃ G.

Bernstein slow convergence
Taylor easy to implement, good local convergence

Chebyshev Is there a good Jackson theorem?
Remez difficult to implement, but optimal

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions

Lemma
For g : R 7→ R and G : Q[1], if g ∈̃ G then F 7→ G ◦̃ F lifts g.

Proof.
By definition of lift this means that F 7→ G ◦̃ F extends
f x 7→ g (f x) = f 7→ g ◦ f . The extension property is preserved
by partial application.

Remaining Problem: Polynomial Approximation

For a given g : X 7→ R (where X ⊂ R) find G : Q[1] such that
g ∈̃ G.

Bernstein slow convergence
Taylor easy to implement, good local convergence

Chebyshev Is there a good Jackson theorem?
Remez difficult to implement, but optimal

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions: by Taylor/Lagrange

Tl
a g x :=

l∑
k=0

∂kg a
k !

(x − a)k

Rl
a g := g −̊ Tl

a g

Ll
a g X :=

∂ l+1g X
(l + 1)!

(X −̂ a)l+1

Taylor’s Theorem with Lagrange remainder

∀x ∈ X . Rl
a g x ∈ Ll

a g X

g ∈̃ (Tl
a g, Ll

a g X)

No addition theorem needed. Move the value a instead.
Taking the argument’s constant part for a yields the same
result as in [Makino-PhD] etc.

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions: by Taylor/Lagrange

Tl
a g x :=

l∑
k=0

∂kg a
k !

(x − a)k

Rl
a g := g −̊ Tl

a g

Ll
a g X :=

∂ l+1g X
(l + 1)!

(X −̂ a)l+1

Taylor’s Theorem with Lagrange remainder

∀x ∈ X . Rl
a g x ∈ Ll

a g X

g ∈̃ (Tl
a g, Ll

a g X)

No addition theorem needed. Move the value a instead.
Taking the argument’s constant part for a yields the same
result as in [Makino-PhD] etc.

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions: by Taylor/Lagrange

Tl
a g x :=

l∑
k=0

∂kg a
k !

(x − a)k

Rl
a g := g −̊ Tl

a g

Ll
a g X :=

∂ l+1g X
(l + 1)!

(X −̂ a)l+1

Taylor’s Theorem with Lagrange remainder

∀x ∈ X . Rl
a g x ∈ Ll

a g X

g ∈̃ (Tl
a g, Ll

a g X)

No addition theorem needed. Move the value a instead.

Taking the argument’s constant part for a yields the same
result as in [Makino-PhD] etc.

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions: by Taylor/Lagrange

Tl
a g x :=

l∑
k=0

∂kg a
k !

(x − a)k

Rl
a g := g −̊ Tl

a g

Ll
a g X :=

∂ l+1g X
(l + 1)!

(X −̂ a)l+1

Taylor’s Theorem with Lagrange remainder

∀x ∈ X . Rl
a g x ∈ Ll

a g X

g ∈̃ (Tl
a g, Ll

a g X)

No addition theorem needed. Move the value a instead.
Taking the argument’s constant part for a yields the same
result as in [Makino-PhD] etc.

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions: with Sharp Remainder

Observation
If

∀x ∈ [x1, x2]. sgn(∂ (Rl
a g) x) ≥ 0

then
∀x ∈ [x1, x2]. Rl

a g x ∈
[
Rl

a g x1; Rl
a g x2

]
.

sgn(∂ (Rl
a g) x) = sgn(Rl−1

a (∂g) x) R and ∂ commute

⊆ sgn(Ll−1
a (∂g) X) Lagrange remainder

= sgn
(

1
l!
· ∂ lg X · (X −̂ a)l

)
= sgn(∂ lg X) · sgn(X −̂ a)l

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions: with Sharp Remainder

Observation
If

∀x ∈ [x1, x2]. sgn(∂ (Rl
a g) x) ≥ 0

then
∀x ∈ [x1, x2]. Rl

a g x ∈
[
Rl

a g x1; Rl
a g x2

]
.

sgn(∂ (Rl
a g) x) = sgn(Rl−1

a (∂g) x) R and ∂ commute

⊆ sgn(Ll−1
a (∂g) X) Lagrange remainder

= sgn
(

1
l!
· ∂ lg X · (X −̂ a)l

)
= sgn(∂ lg X) · sgn(X −̂ a)l

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions: with Sharp Remainder

Observation
If

∀x ∈ [x1, x2]. sgn(∂ (Rl
a g) x) ≥ 0

then
∀x ∈ [x1, x2]. Rl

a g x ∈
[
Rl

a g x1; Rl
a g x2

]
.

sgn(∂ (Rl
a g) x) = sgn(Rl−1

a (∂g) x) R and ∂ commute

⊆ sgn(Ll−1
a (∂g) X) Lagrange remainder

= sgn
(

1
l!
· ∂ lg X · (X −̂ a)l

)
= sgn(∂ lg X) · sgn(X −̂ a)l

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions: with Sharp Remainder

Observation
If

∀x ∈ [x1, x2]. sgn(∂ (Rl
a g) x) ≥ 0

then
∀x ∈ [x1, x2]. Rl

a g x ∈
[
Rl

a g x1; Rl
a g x2

]
.

sgn(∂ (Rl
a g) x) = sgn(Rl−1

a (∂g) x) R and ∂ commute

⊆ sgn(Ll−1
a (∂g) X) Lagrange remainder

= sgn
(

1
l!
· ∂ lg X · (X −̂ a)l

)

= sgn(∂ lg X) · sgn(X −̂ a)l

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions: with Sharp Remainder

Observation
If

∀x ∈ [x1, x2]. sgn(∂ (Rl
a g) x) ≥ 0

then
∀x ∈ [x1, x2]. Rl

a g x ∈
[
Rl

a g x1; Rl
a g x2

]
.

sgn(∂ (Rl
a g) x) = sgn(Rl−1

a (∂g) x) R and ∂ commute

⊆ sgn(Ll−1
a (∂g) X) Lagrange remainder

= sgn
(

1
l!
· ∂ lg X · (X −̂ a)l

)
= sgn(∂ lg X) · sgn(X −̂ a)l

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions: with Sharp Remainder

Lemma

∂ ◦ Rl
a = Rl−1

a ◦ ∂

Proof.

∂Rl
a g = ∂x 7→ g x −

l∑
k=0

∂kg a
k !

(x − a)k

= x 7→ ∂g x −
l∑

k=1

∂kg a
(k − 1)!

(x − a)k−1

= x 7→ ∂g x −
l−1∑
k=0

∂k (∂g) a
k !

(x − a)k

= Rl−1
a (∂g)

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions: by Remez

Remaining Problem: Polynomial Approximation

For a given g : X 7→ R (where X ⊂ R) find G : Q[1] such that
g ∈̃ G.

This problem has an optimal solution: the Remez
polynomial

The correctness proof is hard, but we don’t need it: Once
we have obtained G = (p, δ) we can compute ‖g − [p]‖∞
by interval arithmetic.
The polynomial p can be obtained from outside the proof
assistant: Sollya system by Arenaire in Lyon
Remez is slower than Taylor: build a reusable database for
different domains and degrees

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions: by Remez

Remaining Problem: Polynomial Approximation

For a given g : X 7→ R (where X ⊂ R) find G : Q[1] such that
g ∈̃ G.

This problem has an optimal solution: the Remez
polynomial
The correctness proof is hard, but we don’t need it: Once
we have obtained G = (p, δ) we can compute ‖g − [p]‖∞
by interval arithmetic.

The polynomial p can be obtained from outside the proof
assistant: Sollya system by Arenaire in Lyon
Remez is slower than Taylor: build a reusable database for
different domains and degrees

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions: by Remez

Remaining Problem: Polynomial Approximation

For a given g : X 7→ R (where X ⊂ R) find G : Q[1] such that
g ∈̃ G.

This problem has an optimal solution: the Remez
polynomial
The correctness proof is hard, but we don’t need it: Once
we have obtained G = (p, δ) we can compute ‖g − [p]‖∞
by interval arithmetic.
The polynomial p can be obtained from outside the proof
assistant: Sollya system by Arenaire in Lyon

Remez is slower than Taylor: build a reusable database for
different domains and degrees

Roland Zumkeller Formalizing Taylor Models

Lifting Elementary Functions: by Remez

Remaining Problem: Polynomial Approximation

For a given g : X 7→ R (where X ⊂ R) find G : Q[1] such that
g ∈̃ G.

This problem has an optimal solution: the Remez
polynomial
The correctness proof is hard, but we don’t need it: Once
we have obtained G = (p, δ) we can compute ‖g − [p]‖∞
by interval arithmetic.
The polynomial p can be obtained from outside the proof
assistant: Sollya system by Arenaire in Lyon
Remez is slower than Taylor: build a reusable database for
different domains and degrees

Roland Zumkeller Formalizing Taylor Models

Summary

Formal proofs are necesseary if we want to rely on
software.

Generalized Taylor models don’t depend on Taylor’s
theorem.
Chebyshev balls simplify proofs.
Don’t use the Lagrange remainders if deratives’ signs are
constant.

Roland Zumkeller Formalizing Taylor Models

Summary

Formal proofs are necesseary if we want to rely on
software.
Generalized Taylor models don’t depend on Taylor’s
theorem.

Chebyshev balls simplify proofs.
Don’t use the Lagrange remainders if deratives’ signs are
constant.

Roland Zumkeller Formalizing Taylor Models

Summary

Formal proofs are necesseary if we want to rely on
software.
Generalized Taylor models don’t depend on Taylor’s
theorem.
Chebyshev balls simplify proofs.
Don’t use the Lagrange remainders if deratives’ signs are
constant.

Roland Zumkeller Formalizing Taylor Models

Summary

Formal proofs are necesseary if we want to rely on
software.
Generalized Taylor models don’t depend on Taylor’s
theorem.
Chebyshev balls simplify proofs.
Don’t use the Lagrange remainders if deratives’ signs are
constant.

Roland Zumkeller Formalizing Taylor Models

