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Context

My field: interval arithmetic and arbitrary precision.

Recurring problems:

I how to detect that the current computing precision does not
suffice?

I how to increase the current computing precision?

Today’s problem: how to increase the current computing
precision?
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Ideally. . .

Let the exact solution of a given problem be x∗.

Goal: compute an approximation x̃ of the exact solution x∗ with
prescribed accuracy:

|x̃ − x∗| ≤ ε.

The optimal computing precision to reach this accuracy is p∗.
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In the real world. . .

Let the exact solution of a given problem be x∗.
Goal: compute an approximation x̃ of the exact solution x∗ with
prescribed accuracy:

|x̃ − x∗| ≤ ε.

The optimal computing precision to reach this accuracy is p∗

but p∗ is unknown.

Method:

I try to compute with a precision p0

I if the result is not accurate enough, change the precision to p1

try to compute with the precision p1

I try with precisions p2 . . . pi . . . pn

until the precision pn ≥ p∗.
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Assumptions

Let x̃(p) be the approximation computed with precision p.
Let ε(p) be the accuracy: |x̃(p)− x∗| ≤ ε(p).

ε(p) → 0 as p → +∞.
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Notations

Optimal precision p∗ Computing time t∗

precision p0 computing time t0
precision p1 computing time t1

...
...

precision pn computing time tn

finally pn ≥ p∗ total computing time T =
∑n

i=0 ti

overhead = T/t∗
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Question

How to minimize the overhead?
In other words, if pi is not large enough,
how should we choose pi+1?
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Motivation

Theoretical results exist. . .
but practical experiments + intuition contradict these
results!

Approach:

I survey existing work

I analyse the theoretical result to determine where and when we
disagree.
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iRRAM
Müller 2000, based on Brattka and Hertling 1995

It is well-known that the asymptotic complexity of sequences of
iterated computations is of the same order as the complexity of the
last iteration.
Choice of the new precision:

pi = p0 + g
f i − 1

f − 1
, with g = 50 and f = 1.25.

or equivalently

pi − p0 = g + f .(pi−1 − p0).

the precision bound is incremented as above, the computation is
restarted from the beginning.
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Mathemagix
van der Hoeven 2006

Then we let pi+1 > pi be such that ti+1 ' 2ti and we replace our
pi -digit approximation by a pi+1-digit approximation.
[. . .]
Consequently the total time is approximately twice the time of the
last iteration and less than 4 times the optimal time.
More generally, the evaluation at different precisions p1, . . . pn

requires at most four times the evaluation at the maximal precision
max(p1, . . . , pn).
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MPFR
Fousse, Hanrot, Lefèvre, Pélissier, Théveny, Zimmermann et al.

In theory: increase the precision to be able to round correctly
take into account the probability of failure
increment the current precision p by log p
average of the overhead OK: large overheads are very unlikely

In practice:
first iteration: just add one extra-word
next iterations: precision is a geometric series of ratio 1.5
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Interval Newton using MPFI
Revol 2003

Context:
determine the zeros of a function with a prescribed accuracy
using interval Newton and a given precision.

Adaptation of the computing precision:
if the accuracy is not reached,
double the precision
since the result will be twice more accurate.

No mention neither of the computing time nor of the overhead.
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Reminder: Notations

Optimal precision p∗ Computing time t∗

precision p0 computing time t0
precision p1 computing time t1

...
...

precision pn computing time tn

finally pn ≥ p∗ total computing time T =
∑n

i=0 ti

overhead = T/t∗
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Theoretical results
Kreinovich and Rump, 2006

Result 1:
if precision pi so that ti = 2ti−1

then overhead = 4.
Furthermore: 4 is the minimal overhead for every geometric
sequence of (ti ).

Result 2:
for every increasing sequence of (ti ),
if the total time is T =

∑n
i=0 ti

then overhead ≥ 4.
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Questions

I Is this optimal result really optimal

I Can the overhead be < 4?

I Can the overhead be only 2 for Newton?

I Can the overhead be even less?
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Assumptions

The new iteration can benefit from the previous computations,
instead of being restarted from scratch.

Typical example: Newton
Starting from the last iterate and doubling the computing precision
yields a result with twice the precision of the last iterate.
t∗ = t∗0 + t∗1 + . . .+ t∗i + t∗i+1 + . . .+ t∗n∗
T = t0 + t1 + . . .+ tn−1 +tn

Overhead ≤ 1 + tn/t∗.
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Example of Newton with time linear in the precision

Example: if ti = c .p∗i and p∗i = 2p∗i−1,
optimal time t∗ =

∑n
i=0 c .p∗i =

∑n
i=0 c .p∗/2i = 2.c .p∗:

time of the last iteration = time of all previous iterations.

If p∗ is not known,
iterations with precisions po , p1, . . . pn−1 < p∗, pn ≥ p∗.
At worse pn ' 2p∗,
time for this extra-iteration = time of all previous iterations '
optimal time.

In conclusion, total time ' 2 optimal time
i.e. overhead ≤ 2.
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Notations

Ideal world precision p∗0 time t∗0
precision p∗1 time t∗1

...
...

precision p∗m time t∗m

p∗ := p∗m total computing time T ∗ =
∑m

i=0 t∗i
Real world precision p0 computing time t0

precision p1 computing time t1
...

...
precision pn computing time tn

finally pn ≥ p∗ total computing time T =
∑n

i=0 ti
overhead = T/T ∗
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Simplifying Assumptions

Computing times are proportional to the computing precision:
t = p.
Precisions are equal except the last one:

p0 = p∗0 , p1 = p∗1 , . . . pn−1 < p∗m ≤ pn.

Thus
T − T ∗ = tn − t∗ ≤ tn − tn−1.
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Important point

p∗

p∗ pn

pn

pn−1

pn−1
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Asymptotically optimal results

Idea: inspired from amortized techniques by Floyd and Brent
adapted from [Beaumont, Daoudi, Maillard, Manneback, Roch].

Principle: increase pi at a slower pace as i increases
so as no to overtake p∗ by too far:

pi = ρf (i).p0

where ρ > 1 and f (i) →∞ when i →∞ ,
but not too quickly: f (i)/i → 0 when i →∞.
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First example: f (i) = iα with 0 < α < 1

T − T ∗ ≤ tn − tn−1

≤ ρnα − ρ(n−1)α

≤ ρ(n−1)α · (ρnα−(n−1)α − 1)

≤ ρ(n−1)α · ρα·nα−1+o(nα−1)

When n →∞, since 0 < α < 1, α · nα−1 → 0 and ρα·nα−1 → 1.
Thus

T − T ∗ ∼ ρ(n−1)α
< p∗

T

T ∗ − 1 < 1

and finally
T

T ∗ < 2.
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Nathalie Revol INRIA, Université de Lyon LIP, ENS Lyon, France Nathalie.Revol@ens-lyon.frAutomatic Adaptation of the Computing Precision



Problem
Experimental and theoretical results

New results
Conclusion and future work

Assumptions and new results
Asymptotically optimal results

First example: f (i) = iα with 0 < α < 1

T − T ∗ ≤ tn − tn−1

≤ ρnα − ρ(n−1)α

≤ ρ(n−1)α · (ρnα−(n−1)α − 1)

≤ ρ(n−1)α · ρα·nα−1+o(nα−1)

When n →∞, since 0 < α < 1, α · nα−1 → 0 and ρα·nα−1 → 1.
Thus

T − T ∗ ∼ ρ(n−1)α
< p∗

T

T ∗ − 1 < 1

and finally
T

T ∗ < 2.
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Nathalie Revol INRIA, Université de Lyon LIP, ENS Lyon, France Nathalie.Revol@ens-lyon.frAutomatic Adaptation of the Computing Precision



Problem
Experimental and theoretical results

New results
Conclusion and future work

Assumptions and new results
Asymptotically optimal results

Second example: f (i) = i/ log i

T − T ∗ ≤ tn − tn−1

≤ ρ
n

log n − ρ
n−1

log(n−1)

≤ ρ
n−1

log(n−1) · (ρ
n

log n
− n−1

log(n−1) − 1)

Since n
log n −

n−1
log(n−1) < 1

log(n−1)

T − T ∗ ≤ ρ(n−1)α · (ρ
1

log(n−1) − 1)

≤ ρ(n−1)α · 1
log(n−1)

using this lemma: n − 1 ∼ logρ p∗ · log logρ p∗ as p∗ →∞.
Thus

T
T∗ − 1 < 1

log(n−1)
T
T∗ → 1 as n →∞.
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General case

Remaining work: take into account the different paces in the
progressions of p∗i and pj .

Idea: one iteration using the optimal p∗i requires several iterations
using the pj , to reach a sufficient precision.

Recommendation: use large ρ.
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Discussion

Large ρ. . .
If p∗ small and ρ large: pn much larger than p∗.

Assumptions: ρ must be large, p∗ must be large, pn must be large
and pn should not be much larger than p∗.

Asymptotical result. . .
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Conclusion and future work

When adaptive precision is used,

I optimal overhead = 4 when computations must be restarted

I optimal overhead smaller otherwise:
smaller than 2 with doubling precision
asymptotically made as small as desired.

To do:

I Detect automatically when the precision does not suffice:
compute with current precision and doubled precision to guess
the need of higher precision.

I Imagine incremental computations.
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