High accuracy Hermite approximation for space curves in \mathbb{R}^{d}

A. RABABAH

Department of Mathematics, Jordan University of Science and Technology Irbid 22110, Jordan

May 14, 2008

1 Introducing the method

this talk we describe approximation procedures for curves in \mathbb{R}^{d} which significantly improve the standard approximation order. These methods are based on the observation that the parametrization of a curve is not unique and can be suitably modified to improve the approximation order.
Let

$$
\mathcal{C}: t \mapsto\left(f_{1}(t), \ldots, f_{d}(t)\right) \in \mathbb{R}^{d}, \quad t \in[0, h]
$$

be a regular smooth curve in \mathbb{R}^{d}. We want to approximate \mathcal{C} using information at the points 0 and h by a polynomial curve

$$
\mathcal{P}: t \mapsto\left(X_{1}(t), \ldots, X_{d}(t)\right) \in \mathbb{R}^{d},
$$

where $X_{i}(t), \quad i=1, \ldots, d$ are polynomials of degree $\leq m$. Furthermore, by a change of variables (replacing t by $\frac{t}{h}$) we may assume that $h=1$. If we choose for $X_{i}(t), \quad i=1, \ldots, d$ the piecewise Taylor polynomial of degree $\leq m$, then \mathcal{P} approximates \mathcal{C} with order $m+1$, i.e.

$$
f_{i}(t)-X_{i}(t)=\mathcal{O}\left(t^{m+1}\right), \quad i=1, \ldots, d
$$

2 de Boor, Höllig, Sabin

de Boor, K. Höllig and M. Sabin, High accuracy geometric Hermite interpolation, Comput. Aided Geom. Design 4 (1988), 269-278.

A better approximation order appeared first for planar curves by generalization of cubic Hermite interpolation yielding $6^{\text {th }}$ order accuracy. In addition to position and tangent, the curvature is interpolated at each endpoint of the cubic segments.

Let

$$
\mathcal{C}: s \rightarrow\left(f_{1}(s), f_{2}(s)\right) \in \mathbb{R}^{2}
$$

be a planar curve. Let $p(t)$ be a cubic polynomial curve that approximates the curve \mathcal{C} using
the conditions:

$$
\begin{aligned}
p(i) & =f\left(s_{i}\right) \\
\frac{p^{\prime}(i)}{\left|p^{\prime}(i)\right|} & =\frac{f^{\prime}\left(s_{i}\right)}{\left|f^{\prime}\left(s_{i}\right)\right|} \\
\frac{\left|p^{\prime}(i) \times p^{\prime \prime}(i)\right|}{\left|p^{\prime}(i)\right|^{3}} & =\frac{\left|f^{\prime}\left(s_{i}\right) \times f^{\prime \prime}\left(s_{i}\right)\right|}{\left|f^{\prime}\left(s_{i}\right)\right|^{3}}
\end{aligned}
$$

where $i=0,1$. Note that the curvature of $p(t)$ and $f(s)$ will be the same at the end points $t=$ $0, t=1$. The polynomial $p(t)$ is presented in the Bézier Form

$$
p(t)=\sum_{i=0}^{3} b_{i} B_{i}^{3}(t) \quad t \in[0,1],
$$

where $B_{i}^{3}(t)$ are the Bernstein polynomials, and $b_{i}, i=0,1,2,3$ denote the Bézier control points.
Applying these conditions gives

$$
\begin{align*}
& p(0)=f\left(s_{0}\right) \\
& p \quad b_{0}=f\left(s_{0}\right) \\
& p(1)=f\left(s_{1}\right) \quad \Rightarrow \quad b_{3}=f\left(s_{1}\right) \tag{1}\\
& \frac{p^{\prime}(0)}{\left|p^{\prime}(0)\right|}=\frac{f^{\prime}\left(s_{0}\right)}{\left|f_{0}^{\prime}\left(s_{0}\right)\right|} \Rightarrow \quad b_{1}=b_{0}+\frac{\left|p^{\prime}(0)\right|}{3} \frac{f^{\prime}\left(s_{0}\right)}{\left.\mid f_{0}^{\prime}\left(s_{0}\right)\right)}, \\
& \frac{p^{\prime}(1)}{\left|p^{\prime}(1)\right|}=\frac{f^{\prime}\left(s_{1}\right)}{\left|f^{\prime}\left(s_{1}\right)\right|} \Rightarrow \quad b_{2}=b_{3}-\frac{\mid p^{\prime}(1)}{3} \frac{f^{\prime}\left(s_{1}\right)}{\left|f^{\prime}\left(s_{1}\right)\right|} .
\end{align*}
$$

For the sake of simplicity, we define

$$
d_{0}=\frac{f^{\prime}\left(s_{0}\right)}{3\left|f^{\prime}\left(s_{0}\right)\right|}, \quad d_{1}=\frac{f^{\prime}\left(s_{1}\right)}{3\left|f^{\prime}\left(s_{1}\right)\right|}
$$

$$
\begin{aligned}
f\left(s_{0}\right)=f_{0}, & f\left(s_{1}\right)=f_{1} \\
\left|p^{\prime}(0)\right|=\alpha_{0}, & \left|p^{\prime}(1)\right|=\alpha_{1} .
\end{aligned}
$$

Thus the equations become

$$
\begin{gather*}
b_{0}=f_{0}, \quad b_{3}=f_{1}, \\
b_{1}=b_{0}+\alpha_{0} d_{0}, \quad b_{2}=b_{3}-\alpha_{1} d_{1} . \tag{2}
\end{gather*}
$$

The Bézier control points b_{1}, b_{2} are determined by two unknown parameters α_{0}, α_{1}.
The curvatures at the end points $t=0, t=1$ are

$$
\begin{aligned}
& \kappa_{0}=\frac{\left|p^{\prime}(0) \times p^{\prime \prime}(0)\right|}{\left|p^{\prime}(0)\right|^{3}}, \\
& \kappa_{1}=\frac{\left|p^{\prime}(1) \times p^{\prime \prime}(1)\right|}{\left|p^{\prime}(1)\right|^{3},}
\end{aligned}
$$

where

$$
\kappa_{i}=\frac{\left|f^{\prime}\left(s_{i}\right) \times f^{\prime \prime}\left(s_{i}\right)\right|}{\left|f^{\prime}\left(s_{i}\right)\right|^{3}} \quad, i=0,1 .
$$

Since

$$
p^{\prime}(0)=3\left(b_{1}-b_{0}\right) \quad, \quad p^{\prime \prime}(0)=6 b_{1}-12 b_{2}+6 b_{3},
$$

thus we have

$$
\kappa_{0}=\frac{\left|3\left(b_{1}-b_{0}\right) \times\left(6 b_{0}-12 b_{1}+6 b_{2}\right)\right|}{\left|3\left(b_{1}-b_{0}\right)\right|} .
$$

Thus the equations become

$$
\begin{equation*}
\kappa_{0}=\frac{2}{3 \alpha_{0}^{2}} d_{0} \times\left(b_{2}-b_{1}\right) . \tag{3}
\end{equation*}
$$

Observing that

$$
b_{2}-b_{1}=\left(f_{1}-f_{0}\right)-\alpha_{1} d_{1}-\alpha_{0} d_{0}
$$

and set $a=f_{1}-f_{0}$, thus we get

$$
\begin{equation*}
\left(d_{0} \times d_{1}\right) \alpha_{1}=\left(d_{0} \times a\right)-\frac{3}{2} \kappa_{0} \alpha_{0}^{2} \tag{4}
\end{equation*}
$$

Similar simplification at the other end point $t=1$ gives

$$
\begin{equation*}
\left(d_{0} \times d_{1}\right) \alpha_{0}=\left(a \times d_{1}\right)-\frac{3}{2} \kappa_{1} \alpha_{1}^{2} . \tag{5}
\end{equation*}
$$

To summarize, we get the following nonlinear quadratic system

$$
\begin{align*}
\left(d_{0} \times d_{1}\right) \alpha_{1} & =\left(d_{0} \times a\right)-\frac{3}{2} \kappa_{0} \alpha_{0}^{2} \\
\left(d_{0} \times d_{1}\right) \alpha_{0} & =\left(a \times d_{1}\right)-\frac{3}{2} \kappa_{1} \alpha_{1}^{2} \tag{6}
\end{align*}
$$

with the unknown parameters α_{0}, α_{1}.

Theorem 1 If f is a smooth curve with non vanishing curvature and

$$
h:=\sup _{i}\left|f_{i+1}-f_{i}\right|
$$

is sufficiently small, then positive solutions of the nonlinear system exist and the corresponding $p(t)$ satisfies $\operatorname{dist}(f(s), p(t))=\mathcal{O}\left(h^{6}\right)$.

3 Example

Consider the circle

$$
\mathcal{C}: s \rightarrow(\cos (s), \sin (s)) \in \mathbb{R}^{2}
$$

We want to find the cubic polynomial approximation $p(t)$ that satisfies the nonlinear system at the points $s_{0}=0$ and $s_{1}=\pi / 8, \pi / 16, \pi / 32$.
We compute $p(t)$ at the starting point $\left(s_{0}=0, s_{1}=\right.$ $\pi / 8)$, the other cases are similarly.
To solve the quadratic system we have to compute the following quantities:

$$
\begin{aligned}
d_{0}=\frac{f^{\prime}(0)}{\left|f^{\prime}(0)\right|} & =(0,1) \\
d_{1}=\frac{f^{\prime}(\pi / 2)}{\left|f^{\prime}(\pi / 2)\right|} & =(-0.382683432,0.9238795327) . \\
a=f_{1}-f_{0} & =(-0.076120467,0.3826834324) . \\
\kappa_{0} & =\kappa_{1}=1
\end{aligned}
$$

Then the quadratic system becomes

$$
\begin{aligned}
& 0.382683432 \alpha_{0}=0.0761204678-\frac{3}{2} \alpha_{1}^{2} \\
& 0.382683432 \alpha_{1}=0.076120467-\frac{3}{2} \alpha_{0}^{2}
\end{aligned}
$$

number of points	error	order
4	0.14×10^{-2}	
8	0.55×10^{-4}	-6.07
16	0.32×10^{-6}	-6.02
32	0.49×10^{-8}	-6.01

Table 1: Error and order of approximation
Solving this system numerically for the unknowns α_{0} and α_{1} yields the solution

$$
\alpha_{1}=0.1715093022, \alpha_{0}=0.08361299186
$$

The Bézier control points $b_{i}, i=0,1,2,3$ associated with this solution are
$b_{0}=(1,0), b_{1}=(1,0.08361299186)$,
$b_{2}=(0.989513301,0.224229499), b_{3}=(0.92387953,0.38268343)$.

4 Rababah: Planar Curves

A. Rababah, Taylor theorem for planar curves, Proc. Amer. Math. Soc. Vol 119 No. 3 (1993), 803-810.

A conjecture is studied, which generalizes Taylor theorem and achieves the accuracy of $2 m$ for planar curves (rather than $m+1$) in special cases.

Let

$$
\mathcal{C}: t \rightarrow(f(t), g(t)) \in \mathbb{R}^{2}
$$

be a regular smooth planar curve. We seek a polynomial curve

$$
\mathcal{P}: t \rightarrow(X(t), Y(t)) \in \mathbb{R}^{2}
$$

where $X(t), Y(t)$ are polynomials of degree m, that approximate the planar curve \mathcal{C} with high accuracy.

Conjecture: A smooth regular curve in \mathbb{R}^{2} can be approximated by a polynomial curve of degree $\leq m$ with order $\alpha=2 m$

To illustrate the conjecture, assume, with out loss of generality, that

$$
(f(0), g(0))=(0,0)
$$

and

$$
\left(f^{\prime}(0), g^{\prime}(0)\right)=(1,0)
$$

Hence for small t, f^{-1} exist. Thus, the parameter $x=f(t)$ can be chosen as a local parameter for \mathcal{C}, i.e

$$
\mathcal{C}: t \rightarrow x=f(t) \rightarrow(x, \phi(x))
$$

where

$$
\phi(x)=\left(g \circ f^{-1}\right)(x)
$$

Again, since $X(0)=0$, and $X^{\prime}(0)>0$, the parameter $x=X(t)$ can be chosen as a local parameter for \mathcal{P}, i.e.

$$
\mathcal{P}: t \rightarrow x=X(t) \rightarrow(x, \psi(x))
$$

where

$$
\psi(x)=\left(Y \circ X^{-1}\right)(x) .
$$

Thus, the parametrization for \mathcal{C} is given by

$$
\mathcal{C}: t \rightarrow X(t) \rightarrow(X(t), \phi(X(t))) .
$$

Hence, the polynomial curve \mathcal{P} approximates the planar curve \mathcal{C} with order $\alpha \in \mathbb{N}$ iff

$$
\phi(X(t))-Y(t)=\mathcal{O}\left(t^{\alpha}\right)
$$

i.e., iff
$\left.\left(\frac{d}{d t}\right)\{\phi(X(t))-Y(t)\}\right|_{t=0}=0, \quad j=1, \ldots, \alpha-1$,
and

$$
X(0)=Y(0)=0 .
$$

Assume that $X^{\prime}(0)=1$, then the system is determined by $2 m-1$ free parameters. The conjecture follows by comparing the number of equations with the number of parameters.

5 Example: Cubic case

To illustrate the conjecture in a special case, a cubic parametrization $\mathcal{P}(t)$ is constructed to achieve the optimal approximation order 6 .
To this end, the following nonlinear system should be solved:

$$
\begin{aligned}
& \phi_{1} X_{1}-Y_{1}=0 \\
& \phi_{2} X_{1}^{2}+\phi_{1} X_{2}-Y_{2}=0 \\
& \phi_{3} X_{1}^{3}+3 \phi_{2} X_{1} X_{2}+\phi_{1} X_{3}=0 \\
& \phi_{4} X_{1}^{4}+6 \phi_{3} X_{1}^{2} X_{2}+3 \phi_{2} X_{2}^{2}+4 \phi_{2} X_{1} X_{3}=0 \\
& \phi_{5} X_{1}^{5}+10 \phi_{4} X_{1}^{3} X_{2}+15 \phi_{3} X_{1} X_{2}^{2}+10 \phi_{3} X_{1}^{2} X_{3}+10 \phi_{2} X_{2} X_{3}=0
\end{aligned}
$$

where $\phi_{i}=\phi_{i}(X(0)), X_{i}=X_{i}(0)$, and $Y_{i}=Y_{i}(0)$ are the $i^{\text {th }}$ derivatives of ϕ, X, and Y respectively. The assumption $X_{1}=1$ reduce the nonlinear system to the form

$$
\begin{aligned}
& \phi_{1}-Y_{1}=0 \\
& \phi_{2}+\phi_{1} X_{2}-Y_{2}=0 \\
& \phi_{3}+3 \phi_{2} X_{2}+\phi_{1} X_{3}-Y_{3}=0 \\
& \phi_{4}+6 \phi_{3} X_{2}+3 \phi_{2} X_{2}^{2}+4 \phi_{2} X_{3}=0 \\
& \phi_{5}+10 \phi_{4} X_{2}+15 \phi_{3} X_{2}^{2}+10 \phi_{3} X_{3}+10 \phi_{2} X_{2} X_{3}=0
\end{aligned}
$$

This nonlinear system has a solution with some restrictions at the derivatives of ϕ, the following result shows an improvement of the standard Taylor approximation.

Theorem 2 For $m>3$, define

$$
n_{1}=\left\{\begin{array}{cl}
n \text { for } m=3 n \\
n+1 & \text { for } m=3 n+2
\end{array} \text { or } 3 n+1,\right.
$$

Then for almost all $\left(\phi_{1}, \ldots, \phi_{m+n_{1}}\right) \in \mathbb{R}^{m+n_{1}}$ there is a solution for the first $m+n_{1}$ equations.
As a second result we show that the conjecture is valid for a set of curves of non-zero measure, for which the optimal approximation order $2 m$ is attained. To this end, we view equations $m+$ $1, m+2, \ldots, 2 m-1$ as a nonlinear system $F(\Phi, V)=\left(\frac{d}{d t}\right)^{l} \phi(X(t))_{\mid t=0}=0, \quad l=m+1, \ldots, 2 m-1$, with $V:=\left(X_{2}, \ldots, X_{m}\right), \quad X_{1}:=1, \quad \Phi:=\left(\phi_{2}, \ldots, \phi_{2 m-1}\right)$, and show that this system is solvable in a neighborhood of a particular solution $\left(\Phi^{*}, X^{*}\right)$. The exact statement is

Theorem 3 Define $X_{j}^{*}:=0, \quad j=2, \ldots, m$, and

$$
\phi_{j}^{*}:=\left\{\begin{array}{lc}
1, \quad j=m \\
0, & \text { otherwise }
\end{array}\right.
$$

Then $\left(\Phi^{*}, X^{*}\right)$ is a solution of $F(\Phi, V)=0$, where $X^{*}:=\left(X_{2}^{*}, \ldots, X_{m}^{*}\right)$ and $\Phi^{*}:=\left(\phi_{2}^{*}, \ldots, \phi_{2 m-1}^{*}\right)$. Moreover, there exists a neighborhood of Φ^{*} such that the non-linear system is uniquely solvable \bullet

6 Rababah: Space Curves

A. Rababah, High accuracy Hermite approximation for space curves in \Re^{d}. Journal of Mathematical Analysis and Applications 325, Iss. 2, (2007) 920-931.
In fact, without loss of generality we may assume that $\left(f_{1}(0), \ldots, f_{d}(0)\right)=(0, \ldots, 0), \quad\left(f_{1}^{\prime}(0), \ldots, f_{d}^{\prime}(0)\right)=$ $(1,0, \ldots, 0)$, so that for small t we can parameterize \mathcal{C} in the form

$$
\mathcal{C}: t \mapsto X_{1}(t) \mapsto\left(X_{1}(t), \phi_{1}\left(X_{1}(t)\right), \phi_{2}\left(X_{1}(t)\right), \ldots, \phi_{d-1}\left(X_{1}(t)\right)\right) \in
$$

Since $f_{1}^{\prime}(t)>0$ on a neighborhood U of 0 , and $t \mapsto x=f_{1}(t)$ defines a diffeomorphism on a neighborhood of the origin of the x-axis. Thus,
we can choose x as a local parameter for \mathcal{C}, and get the equivalent representation

$$
\mathcal{C}: x \mapsto\left(x, \phi_{1}(x), \phi_{2}(x), \ldots, \phi_{d-1}(x)\right) \in \mathbb{R}^{d}
$$

where $\phi_{i}=f_{i+1} \circ f_{1}^{-1}, \quad i=1,2, \ldots, d-1$. Similarly, since $X_{1}(0)=0$ and $X_{1}^{\prime}(0)>0$, thus the analogous is true for $t \mapsto x=X_{1}(t)$, and there is a second reparametrization $t=X_{1}^{-1}(x)$ for the parameter t on \mathcal{P}, and thus the curve \mathcal{C} can be represented in the form

$$
\mathcal{C}: t \mapsto X_{1}(t) \mapsto\left(X_{1}(t), \phi_{1}\left(X_{1}(t)\right), \phi_{2}\left(X_{1}(t)\right), \ldots, \phi_{d-1}\left(X_{1}(t)\right)\right) \in
$$

Thus, \mathcal{P} approximates \mathcal{C} with order $\alpha=\alpha_{1}+\alpha_{2}$; $\alpha_{1}, \alpha_{2} \in \mathbb{N}$, iff the parameterizations $X_{i}(t), \quad i=$ $1, \ldots, d$ are chosen such that

$$
\phi_{i}\left(X_{1}(t)\right)-X_{i+1}(t)=\mathcal{O}\left(t^{\alpha}\right), \quad i=1, \ldots, d-1
$$

i.e. iff for $i=1, \ldots, d-1$, we have

$$
\begin{aligned}
& \left(\frac{d}{d t}\right)^{j}\left\{\phi_{i}\left(X_{1}(t)\right)-X_{i+1}(t)\right\}_{\mid t=0}=0 ; \quad j=1, \ldots, \alpha_{1}-1 \\
& \left(\frac{d}{d t}\right)^{j}\left\{\phi_{i}\left(X_{1}(t)\right)-X_{i+1}(t)\right\}_{\mid t=1}=0 ; \quad j=0,1, \ldots, \alpha_{2}-1
\end{aligned}
$$

and

$$
X_{1}(1)=1, \quad X_{1}(0)=\cdots=X_{d}(0)=0
$$

and derivatives of $X_{i}, \quad i=1, \ldots, d$ are bounded on $[0,1]$.
We choose here $X_{i}(t)=\sum_{j=0}^{m} a_{i, j} t^{j}, \quad i=1, \ldots, d$. So, the $j^{\text {th }}$ derivative of $X_{i}(t)$ at $t=1$ is given by the derivatives of $X_{i}(t)$ at $t=0$ as follows

$$
X_{i}^{(j)}(1)=\sum_{k=j}^{m} \frac{X_{i}^{(k)}(0)}{(k-j)!}, \quad j=1,2, \ldots, m, \quad i=1, \ldots, d
$$

where $X_{i}^{(j)}(t)$ is the $j^{\text {th }}$ derivative of $X_{i}(t)$.
The polynomial approximation \mathcal{P} is determined by $d m-1$ free parameters
$\left\{a_{1, j}\right\}_{j=2}^{m},\left\{a_{2, j}\right\}_{j=1}^{m}, \ldots,\left\{a_{d, j}\right\}_{j=1}^{m}$ and the number of equations is $(\alpha-1)(d-1)$. Comparing the number of parameters with the number of equations leads to the following conjecture for α.

Conjecture: A smooth regular curve in \mathbb{R}^{d} can be approximated piecewise at two points by a parameterized polynomial curve of degree $\leq m$ with order $\alpha=(m+1)+\lfloor(m-1) /(d-1)\rfloor$

The significance of the improvement of the approximation order is relatively low for higher dimen-
sions. Table 2 shows a few values of d, m and the optimal order of approximation α from the conjecture.

	$m=3$	4	5	6	7	
$d=2$	6	8	10	12	14	$2 m$
3	5	6	8	9	11	$m+1+\left[\frac{m-1}{2}\right]$
4	4	6	7	8	10	$m+1+\left[\frac{m-1}{3}\right]$

Table 2: Order of approximation by polynomial curves of degree m in \mathbb{R}^{d} based on the conjecture.

7 Main results

In the following Theorem 1 , we solve $m+\lfloor(m+$ 1) $/(2 d-1)$ 」 equations improving the classical Hermite approximation order by $\lfloor(m+1) /(2 d-1)\rfloor$.

Theorem 4 For $i=1, \ldots, d-1$, let $\phi_{i}^{(j)}:=$ $\phi_{i}^{(j)}(0), \quad j=0, \ldots, m$ and $\phi_{i}^{(m+j)}:=\phi_{i}^{(j)}(1), \quad j=$ $1, \cdots, n_{1}, \quad n_{1}:=\lfloor(m+1) /(2 d-1)\rfloor$. Then under appropriate assumptions on
$\left(\phi_{1}^{(1)}, \ldots, \phi_{1}^{\left(m+n_{1}\right)}, \phi_{2}^{(1)}, \ldots, \phi_{2}^{\left(m+n_{1}\right)}, \ldots, \phi_{d-1}^{(1)}, \ldots, \phi_{d-1}^{\left(m+n_{1}\right)}\right) \in \mathbb{R}^{(d-}$
there exist polynomial approximations
$t \rightarrow\left(X_{1}(t), X_{2}(t), \ldots, X_{d}(t)\right)$ of degree $\leq m$ approximating the curve $t \rightarrow\left(f_{1}(t), f_{2}(t), \ldots, f_{d}(t)\right) \in$ \mathbb{R}^{d} piecewise with order $(m+1)+n_{1}$
As a second result we show that the conjecture is valid for a set of curves of non-zero measure, for which the optimal approximation order $m+1+$ $n_{2}, \quad n_{2}:=\lfloor(m-1) /(d-1)\rfloor$ is attained. To this end, we solve the following system, which is equivalent to (1) for $\alpha=m+1+n_{2}$.

For $i=1,3, \ldots, o d(d)$,
$\left(\frac{d}{d t}\right)^{j}\left\{\phi_{i}\left(X_{1}(t)\right)-X_{i+1}(t)\right\}_{\mid t=0}=0 ; \quad j=1, \ldots, m-1$,
$\left(\frac{d}{d t}\right)^{j}\left\{\phi_{i}\left(X_{1}(t)\right)-X_{i+1}(t)\right\}_{\mid t=1}=0 ; \quad j=0,1, \ldots, n_{2}$,
and for $i=2,4, \ldots, e v(d)$,
$\left(\frac{d}{d t}\right)^{j}\left\{\phi_{i}\left(X_{1}(t)\right)-X_{i+1}(t)\right\}_{\mid t=0}=0 ; \quad j=1, \ldots, n_{2}$,
$\left(\frac{d}{d t}\right)^{j}\left\{\phi_{i}\left(X_{1}(t)\right)-X_{i+1}(t)\right\}_{\mid t=1}=0 ; \quad j=0,1, \ldots, m-1$,
where $\operatorname{od}(d):=\left\{\begin{array}{ll}d, & \text { if } d \text { is odd } \\ d-1, & \text { else }\end{array}\right.$, and $\operatorname{ev}(d):=$ $\left\{\begin{array}{ll}d, & \text { if } d \text { is even } \\ d-1, & \text { else }\end{array}\right.$.
We set $V_{1}:=\left(X_{1}^{\left(n_{2}\right)}(0), \ldots, X_{1}^{(1)}(0)\right), \quad V_{2}:=$ $\left(X_{1}^{\left(n_{2}\right)}(1), \ldots, X_{1}^{(1)}(1)\right), \quad$ and then combine these systems in one system such that the first n_{2} equations for V_{1} are from the first system (i.e. $\phi_{1}\left(X_{1}(t)\right)-$ $\left.X_{2}(t)=0\right)$ and the second n_{2} equations for V_{2} are from the second system (i.e. $\phi_{2}\left(X_{1}(t)\right)-X_{3}(t)=$ $0)$ and so on, into a system of the form $F\left(\Phi_{1}, \Phi_{2}, \ldots, \Phi_{d-1}, V\right)$, where V consists of the elements of V_{1}, V_{2} i.e.

$$
V:=\left(X_{1}^{\left(n_{2}\right)}(0), \ldots, X_{1}^{(1)}(0), X_{1}^{\left(n_{2}\right)}(1), \ldots, X_{1}^{(1)}(1)\right)
$$

and
$\Phi_{i}:=\left\{\begin{array}{l}\left(\phi_{i}^{(1)}(0), \ldots, \phi_{i}^{(m)}(0), \phi_{i}(1), \phi_{i}^{(1)}(1), \ldots, \phi_{i}^{\left(n_{2}\right)}(1)\right), \mathrm{i}=1,3, \ldots, \\ \left(\phi_{i}^{(1)}(0), \ldots, \phi_{i}^{\left(n_{2}\right)}(0), \phi_{i}(1), \phi_{i}^{(1)}(1), \ldots, \phi_{i}^{(m)}(1)\right), \mathrm{i}=2,4, \ldots,\end{array}\right.$
We show that this system is solvable in a neighborhood of a particular solution $\left(\Phi_{1}^{*}, \Phi_{2}^{*}, \ldots, \Phi_{d-1}^{*}, X^{*}\right)$.

The exact statement is

Theorem 5 Define $X_{1}^{(j) *}(0)=X_{1}^{(j) *}(1):=0, \quad j=$ $1, \ldots, n_{2}$, $X^{*}=\left(X_{1}^{\left(n_{2}\right) *}(0), \ldots, X_{1}^{(1) *}(0), X_{1}^{\left(n_{2}\right) *}(1), \ldots, X_{1}^{(1) *}(1)\right)$, and
$\Phi_{i}^{*}:=\left\{\begin{array}{l}\phi_{i}^{(1) *}(1) \neq 0, \text { other elements }=0, i=1,3, \ldots, \operatorname{od}(d) \\ \phi_{i}^{(1) *}(0) \neq 0, \text { other elements }=0, i=2,4, \ldots, \text { ev }(d)\end{array}\right.$.
Then $\left(\Phi_{1}^{*}, \Phi_{2}^{*}, \ldots, \Phi_{d-1}^{*}, X^{*}\right)$ is a solution of $F\left(\Phi_{1}, \Phi_{2}, \ldots, \Phi_{d-1}, V\right)=0$. Moreover, there exists a neighborhood of $\Phi_{1}^{*}, \Phi_{2}^{*}, \ldots, \Phi_{d-1}^{*}$ such that the non-linear system is uniquely solvable \bullet

References

[1] W. Boehm, G. Farin and J. Kahmann, A survey of curve and surface methods in CAGD, Comput. Aided Geom. Design 1 (1984), 1-60.
[2] C. de Boor, K. Höllig and M. Sabin, High accuracy geometric Hermite interpolation, Comput. Aided Geom. Design 4 (1988), 269-278.
[3] W.L.F. Degen, High accurate rational approximation of parametric curves, Comput. Aided Geom. Design 10 (1993), 293-313.
[4] T. Dokken, M. Dæhlen, T. Lyche and K. Mørken, Good approximation of circles by curvature-continuous Bézier curves, Comput. Aided Geom. Design 7 (1990), 33-41.
[5] G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, Boston (1988).
[6] J. Gregory, Geometric Continuity, in Mathematical Methods in CAGD, T. Lyche, and L. Schumacker (eds.), Academic Press (1989), 353-371.
[7] K. Höllig, Algorithms for Rational Spline Curves, Conference on Applied Mathematics and Computing (1988), ARO Report 88-1.
[8] K. Höllig, and J. Koch, Geometric Hermite interpolation, Comput. Aided Geom. Design 12 (1995), 567-580.
[9] J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design, A K Peters, Wellesley (1993).
[10] A. Rababah, Taylor theorem for planar curves, Proc. Amer. Math. Soc. Vol 119 No. 3 (1993), 803-810.
[11] A. Rababah, High order approximation method for curves, Comput. Aided Geom. Design 12 (1995), 89-102.
[12] A. Rababah, High accuracy Hermite approximation for space curves in \Re^{d}. Journal of Mathematical Analysis and Applications 325, Iss. 2, (2007) 920-931.
[13] K. Scherer, Parametric polynomial curves of local approximation order 8, Proc. of conf. in
curves and surfaces, Saint-Malo, L. Schumaker (eds.), (2000), 1-6.

