
On the Ilie–Corless
Polynomial Complexity Proof

Solving ODEs or DAEs by computing the Taylor series
is numerically stable

by John Pryce
with Ned Nedialkov and Wayne Enright

Given at University of Gent, Dept of Mathematics and Computer Science

28 August 2007

This work was supported in part by grants from

Leverhulme Trust

and

UK Engineering and Physical Sciences Research Council

Aim of this work

This is about methods for ODEs and DAEs based on Taylor series expansion

to some order p at each step — “order p Taylor”

Ilie–Corless have an asymptotic complexity proof. Suppose:

• ODE/DAE is (piecewise) analytic;

• Problem is an IVP, and solution y(t) exists on I = [0, T], say.

Then the time-complexity of computing y is polynomial in the number of

digits of accuracy

They use defect-based error control

My aim is to point out a gap in the proof and how I believe it can

be filled

Some definitions

Differential Algebraic Equation (DAE): System of equations for

xj(t), j = 1, . . . , n, of perhaps fully implicit form

fi(t, the xj and derivatives of them) = 0, 1 ≤ i ≤ n.

that is SA-friendly in the sense that Pryce’s Structural Analysis (SA) ap-

proach succeeds on it.

SA-friendly includes explicit ODEs and many standard DAE classes e.g.

semi-explicit index 1 or Hessenberg or index 3 mechanical systems.

Polynomial Time: Over a given finite interval I, one can construct a func-

tion that approximates the true solution correct to N (binary) digits, uni-

formly on I, in time bounded by some power of N

History

• ∼2003. Rob Corless (U. W Ontario): this complexity result for ODEs.

• ∼2005. Silvana Ilie gives me her extension to semi-explicit index 1 DAE.

• 3/07. Enright, Nedialkov, Pryce. DAETS code — defect control ap-

proach? I start extending Ilie proof to general DAE case.

• 4,5/07. I outline proof at AD-Hatfield: comments by Uwe Naumann.

• 5/07. Jacques Carette points out roundoff analysis gap: “but I don’t

do roundoff”.

• 5/07. I get Ilie’s proof for general DAE. But still has gap!

• 6/07. Andreas Griewank: “I think this is still an unsolved problem”.

• 6,7/07. I reckon I can plug gap.

Polynomial complexity requires unbounded order

Methods of fixed (or variable but bounded) order won’t do, e.g. suppose

we use a 4th order Runge–Kutta method. Then

Work W ∝ 1/(Average step size H)

Global Error E ∝ H4

No. of digits accurate N = − log2(E)

whence

W ∝ 2N/4

i.e. exponential complexity!

Variable order is more powerful

Corless–Ilie use elegant defect-equidistribution argument: implicitly assumes

of steps →∞ as accuracy →∞. My argument seems simpler, as follows:

By assumptions, solution is analytic vector function on I : 0 ≤ t ≤ T . So

extends to analytic function in complex t-plane, whence Radius of Conver-

gence function

ρ(t) = (Distance from t to nearest singularity)

is continuous and > 0 on [0, T], so bounded above 0

So for any (small!) θ > 0 a “ρ(t) oracle” can give me a priori a mesh

0 = t0 < t1 < . . . < tm = T such that each step is < θ×(local radius of

convergence) whence on each step s = 1, . . . , m

(pth TS term) < C θp (p →∞), where C = Cs depends on s

Resulting complexity . . . ?

Vary Taylor Series order p. On each step

local error = (sum of dropped TS terms) = roughly ∝ θp

which accumulates over our fixed mesh to give

Global error is roughly ∝ θp, (p →∞)

So p-order TS gives N ≈ p (binary) digits of accuracy

Cost of p-order TS on a fixed function f , using AD, is ≤ C L p2 arithmetic

operations where L is length of f ’s code list and C a modest constant

One arithmetic op in N-digit arithmetic is at most O(N2) time

So with p = N get about N binary digits of accuracy in

O(p2N2) = O(N4) time

Polynomial complexity! but not so fast . . .

Why there’s a real difficulty

The question: Can the effects of roundoff grow very fast as p →∞?

Rough model: For given step h within radius of convergence let

T (p) (→ 0) = truncation error of Taylor(p) with exact arithmetic

R(p) (→∞?) = s.t. total roundoff error of Taylor(p) is ∼ R(p)u

where u is roundoff unit: u = 2−N where N is #bits of precision

 0 10 20 30 40 50

T(
p)

p

 0 10 20 30 40 50
R(

p)

p

Then total error at order p with N-bit arith is ≈ ε(p, N) = (T (p)+R(p)2−N)

Result: If R(p) grows horribly — e.g. as p! — work needed to get

M = − log2(ε(p, N)) bits accurate

(even just on one step) cannot be polynomial in M

Possible sources: complex code list and/or cancellation in summing

I aim to show this cannot happen

Tackling this

Still technical snags for general DAE so will outline for explicit ODE case
x′ = f(x).
Method in outline:

1. Convert f to basic code list involving only + − × ÷

2. Remove − and ÷, now only + and ×

3. Regard result as a DAE (always SA-friendly), apply Pryce method to it

4. Now System Jacobian J encapsulates much of bad roundoff behaviour

5. Scale independent variable so TCs are same as TS terms, i.e. h = 1

6. Regard TS term recurrences as infinite block-triangular system

7. Inverse of its block-triangular Jacobian gives bound on roundoff

8. I prove a technical result that bounds this inverse

Simple example

ODE is Code list As DAE
x′1 = x2 + x1/x2 v1 = x1/x2 0 = V1 = −x1 + v1x2
x′2 = x1x2 − x1 v2 = x2 + v1 0 = V2 = −v2 + x2 + v1

v3 = x1x2 0 = V3 = −v3 + x1x2
v4 = v3 − x1 0 = V4 = −v3 + v4 + x1
x′1 = v2 0 = F1 = x′1 − v2
x′2 = v4 0 = F2 = x′2 − v4

DAE’s Signature Tableau

v1 v2 v3 v4 x1 x2 ci

V1 0∗ − − − 0 0 0
V2 0 0∗ − − − 0 0
V3 − − 0∗ − 0 0 0
V4 − − 0 0∗ 0 − 0
F1 − 0 − − 1∗ − 0
F2 − − − 0 − 1∗ 0
dj 0 0 0 0 1 1

(− means −∞)

J = System Jacobian

v1 v2 v3 v4 x1 x2

V1 x2,0

V2 1 −1
V3 −1
V4 1
F1 −1 1
F2 −1 1

(blank means zero)

Simple example, cont.

Denote Taylor coefficients of v1 by (v1,0 , v1,1 , v1,2 , . . .) and so on

By Pryce method, solution scheme is specified by offsets thus:

Stage k = −1: Take x1,0 , x2,0 as initial values

Stages k = 0,1, . . .: Solve for the highlit items in

0 = V1,k = −x1,k + (v1,k x2,0 + · · ·+ v1,0 x2,k)
0 = V2,k = −v2,k + x2,k + v1,k

0 = V3,k = −v3,k + (x1,k x2,0 + · · ·+ x1,0 x2,k)
0 = V4,k = −v3,k + v4,k + x1,k

0 = F1,k = (k + 1)x1,k+1 − v2,k

0 = F2,k = (k + 1)x2,k+1 − v4,k

for

v1,k

v2,k

v3,k

v4,k

x1,k+1
x2,k+1

= xk, say

— items in black known from previous stages

The block-triangular system

These equations for the Taylor coefficients have the form

Fk

(
. . . , xk−1, xk

)
= JDk xk + G

(
. . . , xk−1

)
= 0 (k = 0,1,2, . . .)

where J is System Jacobian and Dk =

1

1
1

1
k+1

k+1

These form an infinite block triangular system

0 =

F0

(
x−1,x0

)
F1

(
x−1,x0,x1

)
F2

(
x−1,x0,x1,x2

)
. . .

 = F(x), where x =

x−1
x0
x1
. . .

Key to roundoff analysis is its “big Jacobian”

∂F

∂x
=

(
∂Fi

∂xj

)
i≥0, j≥−1

Big Jac ∂F/∂x
x1,0 x2,0 v1,0 v2,0 v3,0 v4,0 x1,1 x2,1 v1,1 v2,1 v3,1 v4,1 x1,2 x2,2 v1,2 v2,2 v3,2 v4,2 x1,3 x2,3

−1 v1,0
1

x2,0 x1,0
1

x2,0x2,0
1 −1

−1
1

−1 1
−1 1

0 · · ·

−1 v1,1

x2,1 x1,1

x2,1x2,1 −1 v1,0
1

x2,0 x1,0
1

x2,0x2,0
1 −1

−1
1

−1 2
−1 2

0

−1 v1,2

x2,2 x1,2

x2,2x2,2 −1 v1,1

x2,1 x1,1

x2,1x2,1 −1 v1,0
1

x2,0 x1,0
1

x2,0x2,0
1 −1

−1
1

−1 3
−1 3

...

This typifies the pattern for a general ODE

Big Jac cont.

Omitting left column, which shows sensitivity to initial values, “big Jac” is

∂F

∂x
= A =

JD0 0 · · ·
A1,0 JD1 0 · · ·
A2,0 A2,1 JD2 0
A3,0 A3,1 A3,1 JD3

...

where J is nonsingular, assuming initial value x2,0 of x2 is 6= 0. So are Dk.

Crucial point (see pattern of entries in “big Jac”):

The Aij, with exact computation, decrease geometrically off the diagonal

— if step size h satisfies 0 < h < θ × (radius of convergence) then

‖Aj+p,j‖ ≤ α θp (i = 0,1, . . . ; p = 1,2, . . .)

for some α ≥ 0. Clearly θ > 0 can be as small as we like.

Roundoff analysis

Model roundoff by saying the actual computed values are x̄k, that satisfy

Fk

(
x̄k, x̄k−1, . . .

)
= JDk x̄k + G

(
x̄k−1, . . .

)
= δδk (k = 0,1,2, . . .)

where δδk comes from roundoff in computing G and solving the linear system

with JDk.

By MVT argument, errors ξξk = x̄k − xk satisfy the block triangular system

Āξξ =

JD0 0 · · ·
Ā1,0 JD1 0 · · ·
Ā2,0 Ā2,1 JD2 0
Ā3,0 Ā3,1 Ā3,1 JD3

...

ξξ0
ξξ1
ξξ2
ξξ3
. . .

 =

δδ0
δδ1
δδ2
δδ3
. . .

 = δδ

where the matrix is an average of ∂F/∂x values between xk and x̄k = xk+ξξk

Key bound

Theorem 1 The inverse of (exact computation) A has the form

A−1 =

(JD0)
−1 0 · · ·

B1,0 (JD1)
−1 0 · · ·

B2,0 B2,1 (JD2)
−1 0

B3,0 B3,1 B3,1 (JD3)
−1

...

where the Bij decrease geometrically, with a different constant. Namely

‖Bj+p,j‖ ≤ β φp (i = 0,1, . . . ; p = 1,2, . . .)

where

φ =
(
1 + α‖J−1‖

)
θ.

In difficult cases ‖J−1‖ may be large, and α may be astronomically large.
(Solving y′ = −y on 0 to 1000 in one step gives α ≈ e2000 I think.)

But this represents a fixed overhead of log2

(
1 + α‖J−1‖

)
extra bits of pre-

cision, so no difficulty in theory as required accuracy →∞.

Bounding the effect of roundoff errors

In bounding Ā−1 the snag is the feedback between ξξ, δδ and Ā

When one tries to apply Theorem 1 to Ā, the bounds on Bj+p,j are gradually

degraded by roundoff

The smaller is the roundoff unit u, the larger p can become before this

happens

The key point is to show the needed u for a given p is sufficiently large that

the “real difficulty” in Slide 8 is overcome

Bounding the effect of roundoff errors, cont

The worst case in the kth block of δδ comes from convolutions from a

“multiply” operation like

ck = a0bk + ak−1b1 + · · ·+ a0bk

If everything up to here had been done exactly, roundoff error in doing the

RHS in floating point would be bounded by

2
(
|a0| · |bk|+ |ak−1| · |b1|+ · · ·+ |a0| · |bk|

)
u

≤ 2
(
α · αθk + αθ · αθk−1 + · · ·+ αθk · α

)
u

= 2α2 (k + 1) θk u

Bounding the effect of roundoff errors, cont

Assume (inductively on k) roundoff has contaminated the RHS values by

at most 0.4× the bounds on their true values, then this bound is increased

by a factor

≤ (1 + 0.4)2 < 2

so the error in the actual computed value

c̄k = ā0b̄k + āk−1b̄1 + · · ·+ ā0b̄k

is at most twice the above bound.

Doing the solve with (JDk) multiplies the bound by a factor involving the

condition number κ(J) = ‖J−1‖.‖J‖. Overall this gives

‖ξξk‖ ≤ C kθk u

with a possibly huge C depending only on the problem, provided k is small

enough.

Bounding the effect of roundoff errors, cont

The ξξk feed back to make ‖Āj+p,j‖ at most twice the exact-computation

value, provided j + p is small enough, whence the inverse of actual Ā has

the form

Ā−1 =

(JD0)
−1 0 · · ·

B̄1,0 (JD1)
−1 0 · · ·

B̄2,0 B̄2,1 (JD2)
−1 0

B̄3,0 B̄3,1 B̄3,1 (JD3)
−1

...

where

‖B̄j+p,j‖ ≤ β̄ φ̄ p (i = 0,1, . . . ; p = 1,2, . . .)

for small enough j + p, with

φ̄ =
(
1 + 2α‖J−1‖

)
θ.

Bounding the effect of roundoff errors, cont

These bounds apply to a single step from t to t + h where θ is essentially
h/(local radius of convergence ρ(t))

But all values involved are continuously functions of t, on interval [0, T].

So a compactness argument shows there is a finite mesh (ti), with associ-
ated θi and corresponding φ̄i on ith subinterval, such that

φ̄i <
1

2
for all i

and that “small enough k” means

(problem-dependent const)×
(

φ̄i

θi

)k

× u < 1

which with order p = (largest k) and N = − log2 u bits of precision means
one can take

N = C1 × p + C2 for all p

where C1, C2 depend purely on the problem

Bounding the effect of roundoff errors, cont

The condition φ̄i < 1
2 is used to ensure that the computed Taylor terms x̄k,

even with roundoff contamination, decay at least like 2−k, which bounds

the roundoff in the final process of summing them.

Hence Taylor order p, with (C1p + C2)-bit floating point, delivers about p

correct bits in the solution, in the absolute error sense . . .

. . . and does so in time bounded by O(p4).

Summary

Taylor coefficient computation is numerically stable, for sufficiently small

stepsize, in an asymptotic complexity sense

The gap in the Ilie–Corless proof is plugged, at least for ODEs

DAEs to follow

