Rigorous Classification of Manifold Tangles and Bounds for Entropy

Johannes Grote, Martin Berz, Kyoko Makino, Sheldon Newhouse

Dept. of Physics and Astronomy and Dept. of Mathematics, Michigan State University, East Lansing, MI 48824, USA

Taylor Model Methods V, Toronto, ON May 20, 2008

TM-enclosure of invariant manifolds
Local polynomial approximation
Heuristic verification with remainder bounds
Global manifolds by iteration

Computer-assisted picture verification for entropy estimates
Choice of rectangles
Verified mapping

Automatic determination of symbolic dynamics
Construction of rectangles Setup of incidence matrix

In the further discussion, we consider the Henon map

$$
\mathcal{H}(x, y)=\mathcal{H}_{a, b}(x, y)=\binom{1+y-a \cdot x^{2}}{b \cdot x}
$$

- it has a hyperbolic fixed point at $\approx(0.63135,0.18940)$
- it has a hyperbolic fixed point at $\approx(0.33885,-0.25511)$
- the determinant of the Jacobian is $-b$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {TM-enclosure of invariant manifolds }}\right.$

Strategy:

- find nonverified polynomial approximation of local manifolds near hyperbolic fixed point, using DA
- heuristically outfit polynomial with remainder bounds to obtain a TM-enclosure of the local manifold
- obtain enclosures of significant parts of the global manifolds as iterated images/preimages of the local manifold enclosures
Various techniques exist to obtain local polynomial parametrizations of manifold.

1. Hubbard's method (for planar systems)

- consider a hyperbolic fixed point x_{0}
- let v_{u}, v_{s} be the eigenvectors to the un/stable eigenvalues λ_{u} and λ_{s} at x_{0}
- consider test functions

$$
\begin{array}{r}
\gamma_{n}^{u}(t):=\mathcal{H}^{n}\left(x_{0}+\frac{t}{\lambda_{u}^{n}}\right) \cdot v_{u} \\
\gamma_{n}^{s}(t):=\mathcal{H}^{-n}\left(x_{0}+t \cdot \lambda_{s}^{n} \cdot v_{s}\right.
\end{array}
$$

- Thm.(Hubbard): the functions γ_{n}^{u} and γ_{n}^{s} converge uniformly on compact sets to the true unstable manifolds W^{u} and W^{s} around x_{0}

2. Complete normal form transformation

Under certain nonresonance assumptions, perform a NFT of \mathcal{H} around x_{0}, s.t. in new coordinates \mathcal{H} is fully linearized.

- find the NFT ψ s.t. $\psi^{-1} \circ \mathcal{H} \circ \psi(x)=\left(\begin{array}{cc}\lambda_{u} & 0 \\ 0 & \lambda_{s}\end{array}\right) \cdot\binom{x}{y}$
- in this picture, $W_{N F T}^{u}=\mathbb{R} \times 0$ and $W_{N F T}^{s}=0 \times \mathbb{R}$
- obtain $W^{u}=\psi\left(W_{N F T}^{u}\right)$ and $W^{s}=\psi\left(W_{N F T}^{s}\right)$ in original coordinates

Invariant Manifold Enclosure Theorem

Let $P=\left(P_{1}, P_{2}\right)$ be a two-dimensional bijective polynomial on U which satisfies $P(0,0)=(0,0)$. Let $(\tilde{P}, \tilde{I}):=\mathcal{H}(P, I)$ evaluated in Taylor model arithmetic, where I is the trivial interval $[0,0]^{2}$. Let

$$
\begin{aligned}
R & =P(U), \tilde{R}=\tilde{P}(U)+\tilde{I}, \text { and } \\
B_{u} & =P([-1,1] \times[1,1]), B_{I}=P([-1,1] \times[-1,-1])
\end{aligned}
$$

denote the ranges of P and $\tilde{P}+\tilde{I}$ and the 'upper' and 'lower' boundaries of the range R, respectively. Assume now that

$$
\begin{equation*}
\left(B_{u} \cup B_{l}\right) \cap \tilde{R}=\emptyset \tag{1}
\end{equation*}
$$

Then the unstable manifold does not leave R through B_{u} or B_{l}.

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$L_{\text {TM-enclosure of invariant manifolds }}$

- Heuristic verification with remainder bounds

TM-enclosure of local manifold

-Heuristic verification with remainder bounds

Local manifolds for the standard Hénon map

General idea: TM-enclosure of local manifold will iteratively yield TM-enclosure of global manifolds, if images/preimages are computed in TM-arithmetic.
In practice, there are problems:

- blow-up of remainder bounds through strong length-growth of curves
- blow-up of remainder bound because manifolds take 'sharp turns' \Longrightarrow challenging polynomial approximation
- blow-up of remainder bounds through strong expansion (Lipschitz constant of maps)
Solution step-size control/dynamic domain decomposition \Longrightarrow 'chopping' of TM-tubes

Rigorous Classification of Manifold Tangles and Bounds for Entropy
LTM-enclosure of invariant manifolds
Global manifolds by iteration

Rigorous Classification of Manifold Tangles and Bounds for Entropy
LTM-enclosure of invariant manifolds
Global manifolds by iteration

Rigorous Classification of Manifold Tangles and Bounds for Entropy
L TM-enclosure of invariant manifolds

Global manifolds by iteration

Rigorous Classification of Manifold Tangles and Bounds for Entropy
L TM-enclosure of invariant manifolds
Global manifolds by iteration

Rigorous Classification of Manifold Tangles and Bounds for Entropy
L TM-enclosure of invariant manifolds
Global manifolds by iteration

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$L_{\text {TM-enclosure of invariant manifolds }}$
Global manifolds by iteration

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {TM-enclosure of invariant manifolds }}\right.$
Global manifolds by iteration

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$L_{\text {TM-enclosure of invariant manifolds }}$
Global manifolds by iteration

TM-enclosure of invariant manifolds

-Global manifolds by iteration

TM-enclosure of invariant manifolds

Global manifolds by iteration

$L_{\text {TM-enclosure of invariant manifolds }}$
-Global manifolds by iteration

Rigorous Classification of Manifold Tangles and Bounds for Entropy

- TM-enclosure of invariant manifolds
-Global manifolds by iteration

Topological entropy

Def.: Let (X, d) be a compact metric space and $f: X \longrightarrow X$ a continuous self-map. Then

$$
h_{\text {top }}(f):=\lim _{\epsilon \longrightarrow 0} \lim \sup _{n \longrightarrow \infty} \frac{1}{n} \log r(\epsilon, n)
$$

- dynamical invariant
- if >0, chaotic dynamics
- exponential length growth of curves
- We wish to compute lower bounds of the topological entropy $h_{\mathcal{H}}$ of the Henon map $\mathcal{H}=\mathcal{H}_{a, b}$
- find symbolic dynamics by considering regions (curvilinear rectangles) R_{j} that overlap each other under iteration
- compute incidence matrix A for rectangles that Markov-cross: $A_{i j}:=1 i f f \mathcal{H}_{a, b}\left(R_{i}\right) \cap R_{j}$ Markov, $A_{i, j}:=0$ else
- compute lower bound for $h_{\mathcal{H}}$ as the log of the largest real eigenvalue of A

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$

Markov crossings

$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
Construction of rectangles

Homoclinic point enclosure

$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$

-Construction of rectangles

$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
-Construction of rectangles

Rigorous Classification of Manifold Tangles and Bounds for Entropy
L Automatic determination of symbolic dynamics

- Construction of rectangles

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
-Construction of rectangles

Some subtle intricacies connected to the homoclinic point search:

- the accuracy of the GO is limited. We can resolve boxes of size 10^{-5} in the parameter space, hence we get box enclosures of the HPs in phase space of size much bigger than the remainder bounds. We want box enclosures of the HPs not significantly bigger than the remainder bounds
- we will not only pick up transverse HPs, but alse homoclinic tangencies or near-tangencies
- we cannot guarantee that there is one and only one transverse HP in the box

Rigorous Classification of Manifold Tangles and Bounds for Entropy
LAutomatic determination of symbolic dynamics

- Construction of rectangles

Verification of existence of homoclinic point

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
-Construction of rectangles

Crossing orientation

We have found the sets of homoclinic points. Additionally, we can find

- their order along both stable and unstable manifold
- their 'orientation' (tangent vectors to manifolds at the homoclinic points)
- how they map into each other (image-preimage-pairs of HPs): consider $U M \cap S M=\left\{p_{1}, \ldots, p_{n}\right\}$, and $\mathcal{H}(U M) \cap S M=\left\{q_{1}, \ldots, q_{k}\right\}$. Then $\left\{p_{1}, \ldots, p_{n}\right\} \subset\left\{q_{1}, \ldots, q_{k}\right\}$ and $\forall n \exists k(n)$ s.t. $\mathcal{H}\left(p_{n}\right)=q_{k(n)}$
This info will enable us to automatically construct curvilinear rectangles with boundaries in the un/stable mfds. and homoclinic points as cornerpoints.

Rigorous Classification of Manifold Tangles and Bounds for Entropy
L Automatic determination of symbolic dynamics

- Construction of rectangles

Untangled attractor

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
$L_{\text {Construction of rectangles }}$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
$\left\llcorner_{\text {Construction of rectangles }}\right.$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
$\left\llcorner_{\text {Construction of rectangles }}\right.$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
$L_{\text {Construction of rectangles }}$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
$\left\llcorner_{\text {Construction of rectangles }}\right.$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
$\left\llcorner_{\text {Construction of rectangles }}\right.$

Determination of Markov crossings

Lower entropy bounds

- 161 HPs, 66 symbols, 94 crossings $\Longrightarrow h_{\text {top }} \geq 0.4309$
- 267 HPs, 130 symbols, 205 crossings $\Longrightarrow h_{\text {top }} \geq 0.4402$
- 427 HPs, 229 symbols, 366 crossings $\Longrightarrow h_{\text {top }} \geq 0.4499$
- 707 HPs, 392 symbols, 621 crossings $\Longrightarrow h_{\text {top }} \geq 0.4536$

Summary

- accurate polynomial approximations of local invariant manifolds can be heuristically and sharply verified with Taylor models
- significant pieces of the global manifold structure can be obtained through verified iteration schemes
- all homo-/heteroclinic intersections can be computed with comparable accuracy via verified global optimization
- HPs are ordered and have 'orientation'
- mapping properties in the set of HPs can be obtained, leads to construction of symbolic dynamics with hundreds of symbols, entropy estimates etc.

Outlook

- improvement in speed and user convenience
- arbitrary precision Taylor model arithmetic \Longrightarrow higher resolution of $\mathrm{HPs} \Longrightarrow$ much larger number of HPs and finer dynamics
- application to new systems: Different parameters for Hénon (area-preserving case), forced oscillations, invariant manifolds on Poincaré sections etc.
- suggestions are welcome

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
-Setup of incidence matrix

S. Newhouse choice of rectangles

$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$

-Setup of incidence matrix

Entropy result (S. Newhouse)

The 13 rectangles and mappings yield the incidence matrix:

$$
A=\left(\begin{array}{ccccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & . & . & . & . & 1 & 1 & . \\
. & . & . & . & . & . & . & 1 & . & . & . & . & 1 \\
. & . & . & . & . & . & . & . & 1 & . & . & . & . \\
. & . & . & . & . & . & . & . & . & 1 & . & . & . \\
1 & 1 & 2 & . & . & . & . & . & . & . & . & . & . \\
1 & 1 & . & . & . & . & . & . & . & . & . & . & . \\
2 & . & . & . & . & . & . & . & . & . & . & . & . \\
2 & 2 & 2 & . & . & . & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . & 1 & 1 & . & . & . \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & . & . & . & . & . \\
2 & 2 & 2 & 2 & 2 & . & . & . & . & . & . & . & . \\
2 & 2 & 2 & . & . & . & . & . & . & . & . & . & . \\
2 & 2 & 2 & 2 & 2 & . & . & . & . & . & . & . & .
\end{array}\right)
$$

Theorem: The standard Henon map has the top. entropy

$$
h_{\text {top }}(\mathcal{H}) \geq 0.46469
$$

Rigorous Classification of Manifold Tangles and Bounds for Entropy

$L_{\text {Automatic determination of symbolic dynamics }}$
Setup of incidence matrix
$\mathcal{H}^{-0}\left(S_{1}\right)$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
Setup of incidence matrix
$\mathcal{H}^{-1}\left(S_{1}\right)$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
Setup of incidence matrix
$\mathcal{H}^{-2}\left(S_{1}\right)$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
Setup of incidence matrix
$\mathcal{H}^{-3}\left(S_{1}\right)$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
-Setup of incidence matrix
$\mathcal{H}^{-4}\left(S_{1}\right)$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
-Setup of incidence matrix
$\mathcal{H}^{-5}\left(S_{1}\right)$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$
-Setup of incidence matrix
$\mathcal{H}^{-6}\left(S_{1}\right)$

- Automatic determination of symbolic dynamics
-Setup of incidence matrix
$\mathcal{H}^{-7}\left(S_{1}\right)$

Automatic determination of symbolic dynamics
-Setup of incidence matrix
$\mathcal{H}^{-8}\left(S_{1}\right)$

L Automatic determination of symbolic dynamics
-Setup of incidence matrix

$\mathcal{H}^{-9}\left(S_{1}\right)$

L Automatic determination of symbolic dynamics
-Setup of incidence matrix

$\mathcal{H}^{-10}\left(S_{1}\right)$

Rigorous Classification of Manifold Tangles and Bounds for Entropy

L Automatic determination of symbolic dynamics
-Setup of incidence matrix

$\mathcal{H}^{-11}\left(S_{1}\right)$

L Automatic determination of symbolic dynamics
Setup of incidence matrix

Examples for Markov crossings

Rectangle boundaries in $\mathcal{H}^{-n}\left(S_{1}\right)$

The first preimages of S_{1} where the rectangle boundaries occur:

Rectangle	n_{l}	n_{r}	Rectangle	n_{l}	n_{r}
R_{1}	0	8	R_{8}	5	4
R_{2}	8	6	R_{9}	4	6
R_{3}	6	8	R_{10}	6	3
R_{4}	8	4	R_{11}	5	6
R_{5}	4	11	R_{12}	6	6
R_{6}	11	5	R_{13}	6	5
R_{7}	5	5			

Rigorous Classification of Manifold Tangles and Bounds for Entropy
Automatic determination of symbolic dynamics
-Verified mapping

$\mathcal{H}^{2}\left(R_{1}\right) \longrightarrow 1,2,3,4,5,6,11,12$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
Automatic determination of symbolic dynamics
-Verified mapping

$\mathcal{H}^{2}\left(R_{2}\right) \longrightarrow 13,8$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
Automatic determination of symbolic dynamics
-Verified mapping

$\mathcal{H}^{2}\left(R_{3}\right)$
9

Rigorous Classification of Manifold Tangles and Bounds for Entropy
Automatic determination of symbolic dynamics
-Verified mapping

$\mathcal{H}^{2}\left(R_{4}\right) \longrightarrow 10$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
Automatic determination of symbolic dynamics
-Verified mapping

$\mathcal{H}^{5}\left(R_{5}\right) \longrightarrow 1,2,3$ (twice)

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$

- Verified mapping

Close-up of $\mathcal{H}^{5}\left(R_{5}\right) \cap R_{3}$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
-Automatic determination of symbolic dynamics
-Verified mapping

$\mathcal{H}^{5}\left(R_{6}\right) \longrightarrow 1,2$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
-Automatic determination of symbolic dynamics

- Verified mapping

$\mathcal{H}^{6}\left(R_{7}\right) \longrightarrow 1$ (twice)

Rigorous Classification of Manifold Tangles and Bounds for Entropy
Automatic determination of symbolic dynamics
-Verified mapping

$\mathcal{H}^{5}\left(R_{8}\right) \longrightarrow 1,2,3$ (all twice)

Rigorous Classification of Manifold Tangles and Bounds for Entropy
$\left\llcorner_{\text {Automatic determination of symbolic dynamics }}\right.$

- Verified mapping

Close-up of $\mathcal{H}^{5}\left(R_{8}\right) \cap R_{3}$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
Automatic determination of symbolic dynamics
-Verified mapping

$\mathcal{H}^{2}\left(R_{9}\right) \longrightarrow 9,10$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
Automatic determination of symbolic dynamics
-Verified mapping

$\mathcal{H}^{2}\left(R_{10}\right) \longrightarrow 1,2,3,4,5,6,7,8$

Rigorous Classification of Manifold Tangles and Bounds for Entropy
Automatic determination of symbolic dynamics
-Verified mapping

$\mathcal{H}^{6}\left(R_{11}\right) \longrightarrow 1,2,3,4,5$ (all twice)

Rigorous Classification of Manifold Tangles and Bounds for Entropy
Automatic determination of symbolic dynamics
-Verified mapping

$\mathcal{H}^{7}\left(R_{12}\right) \longrightarrow 1,2,3$ (all twice)

Rigorous Classification of Manifold Tangles and Bounds for Entropy
Automatic determination of symbolic dynamics
-Verified mapping

$\mathcal{H}^{6}\left(R_{13}\right) \longrightarrow 1,2,3,4,5$ (all twice)

