POLITECNICO DI MILANO

Rigorous Global Optimization of Impulsive Planet-to-Planet Transfers R. Armellin, P. Di Lizia, *Politecnico di Milano*

K. Makino, M. Berz *Michigan State University*

> 5th International Workshop on Taylor Model Methods Toronto, May 20 – 23, 2008

Motivation

POLITECNICO DI MILANO

Space activities are expensive:

Ariane 5 launch cost: $200 \text{ M}\$ \div$ Allowed Spacecraft Mass:10000 kg =Cost per kilogram:20000 \$/kg

Propellant represents the main contribution to s/c mass:

• Propellant is on average 40% of spacecraft mass

we want to reduce the required propellant

• The goal of the trajectory design is to find the best solution in terms of propellant consumption while still achieving the mission goals

Outline

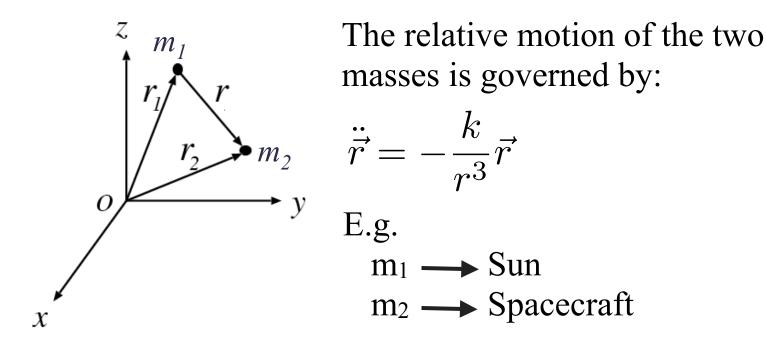
POLITECNICO DI MILANO

- Dynamical Model
- Patched-Conics Approximation
- Two-Impulse Transfers
 - Ephemerides Evaluation
 - Lambert's Problem Solution
- Differential Algebra Based Global Optimization
- Rigorous Global Optimization with COSY-GO

Dynamical Model: 2-Body Problem

POLITECNICO DI MILANO

The 2-Body Problem considers two point masses in mutual orbit about each other



Analytical solutions exist for the 2-Body Problem: Conic Arcs

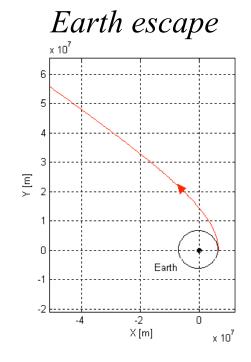
- $\vec{r} = \vec{r}(\theta) \longrightarrow$ explicit
- $t = t(\theta) \longrightarrow$ implicit (Kepler's equation)

Roberto Armellin

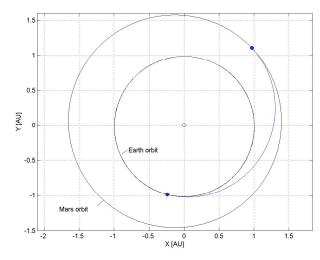
Patched-Conics Approximation

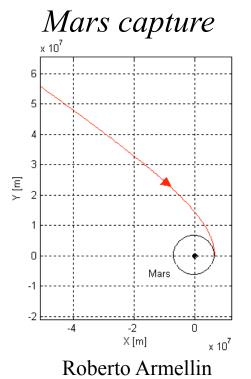
POLITECNICO DI MILANO

- The whole interplanetary transfer is divided in several arcs
- Each arc is the solution of a 2-Body Problem considering the spacecraft and only one other planet at a time
- E.g.: 2-impulse Earth-Mars transfer \longrightarrow 3 conic arcs



Heliocentric phase

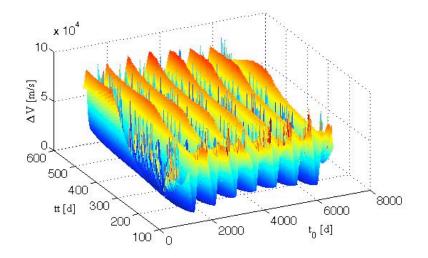


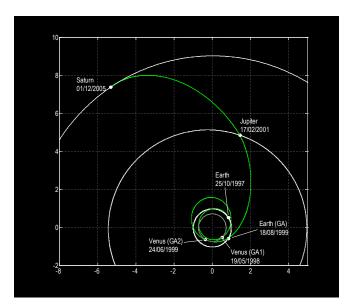


2-Impulse Planet-to-Planet Transfer

POLITECNICO DI MILANO

- 2-impulse Earth-Mars transfer has been selected as first benchmark problem
- Applied for preliminary design of Earth-Mars (any planet to planet transfer) interplanetary transfers
- Objective function characterized by several comparable local minima
- Future benchmark problems
 - Multiple Gravity Assist interplanetary transfers
 E.g.: Cassini-Huygens
 - (11 conic arcs)





Roberto Armellin

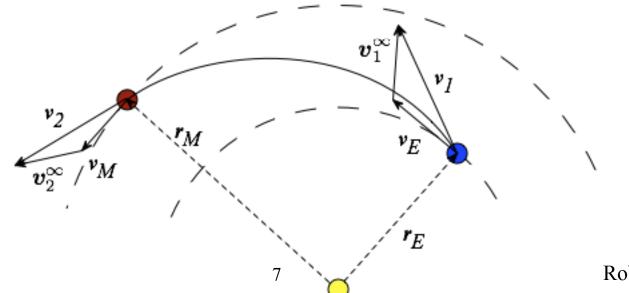
Optimization Problem

OLITECNICO DI MILANO

- The optimization variables are the time of departure t_0 and the time of flight t_{tof}
- The positions of the starting and arrival planets are computed through the ephemerides evaluation:

 $(\mathbf{r}_{E_{i}}, \mathbf{v}_{E}) = \operatorname{eph}(t_{0}, \operatorname{Earth}) \text{ and } (\mathbf{r}_{M_{i}}, \mathbf{v}_{M}) = \operatorname{eph}(t_{0} + t_{tof}, \operatorname{Mars})$

The starting velocity v_1 and the final one v_2 are computed by solving the Lambert's problem



Roberto Armellin

Optimization Problem

The parking velocity and desired final velocities are

$$v_E^c = \sqrt{\mu_E/r_E^c} \qquad v_M^c = \sqrt{\mu_M/r_M^c}$$

The pericenter velocities of the escape and arrival hyperbola

$$v_{1}^{p} = \sqrt{2\mu_{E}/r_{E}^{c} + v_{1}^{\infty 2}} \quad v_{2}^{p} = \sqrt{2\mu_{M}/r_{M}^{c} + v_{2}^{\infty 2}}$$

$$v_{1}^{\uparrow} \qquad \flat \quad \text{Objective function}$$

$$\Delta V = \Delta V_{1} + \Delta V_{2}$$

$$\flat \quad \text{Constraint:} \quad \Delta V_{1} < \Delta V_{1,max}$$

$$\overset{\text{Hyperbolic}}{\underset{\text{escape}}{\overset{}}} \quad \overset{\Delta V_{2}}{\underset{\text{w}_{M}}{\overset{}}} \quad \overset{v_{2}^{p}}{\underset{\text{arrival}}{\overset{}}} \quad \overset{v_{2}^{\infty}}{\underset{\text{Roberto Armellin}}{\overset{}}}$$

POLITECNICO DI MILANO

Ephemerides Evaluation

POLITECNICO DI MILANO

- Polynomial interpolations of accurate planetary ephemerides (JPL-Horizon) are used for the preliminary phase of the space trajectory design
- Given an epoch and a celestial body, its orbital parameters $(a, e, i, \Omega, \omega, M)$ can be analytically evaluated
- The nonlinear equation $M = E e \sin E$ (Kepler's Eq) is solved for the eccentric anomaly E
- The relation $\tan \frac{\theta}{2} = \sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2}$ delivers θ
- The position and the velocity (*r*, *v*) of the celestial body in inertial frame reference frame are computed
 - We have to solve an implicit equation: Kepler's equation

Lambert's Problem (1/2)

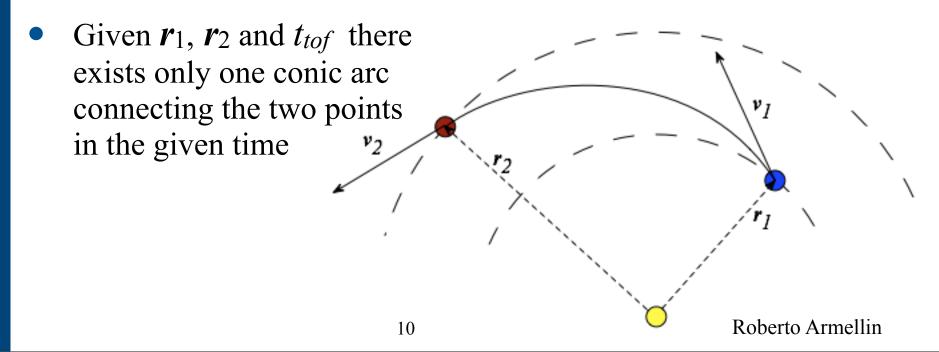
POLITECNICO DI MILANO

Given:

- initial position r_1
- final position r_2
- time of flight *t*tof

Find the initial velocity, v_1 , the spacecraft must have to reach r_2 in t_{tof}

• The solution of the BVP exploits the analytical solution of the 2-body problem



Lambert's Problem (1/2)

POLITECNICO DI MILANO

- Several algorithms have been developed for the identification and characterization of the resulting conic arc
- We used an algorithm developed by Battin (1960)
- A nonlinear equation must be solved (Lagrange's equation for the time of flight):

$$f(x) = \log(A(x)) - \log(t_{tof}) = 0$$

in which $A(x) = a(x)^{3/2} ((\alpha(x) - \sin(\alpha(x))) - (\beta(x))),$

$$\beta(x) = 2 \arcsin\left(\frac{s-c}{2a(x)}\right)$$
, and $a(x) = \frac{s}{2(1-x^2)}$

• The value of *s* and *c* depend on r_1 and r_2 , so the nonlinear equation depends both on t_0 and t_{tof}

DA Solution of Parametric Implicit eqs

POLITECNICO DI MILANO

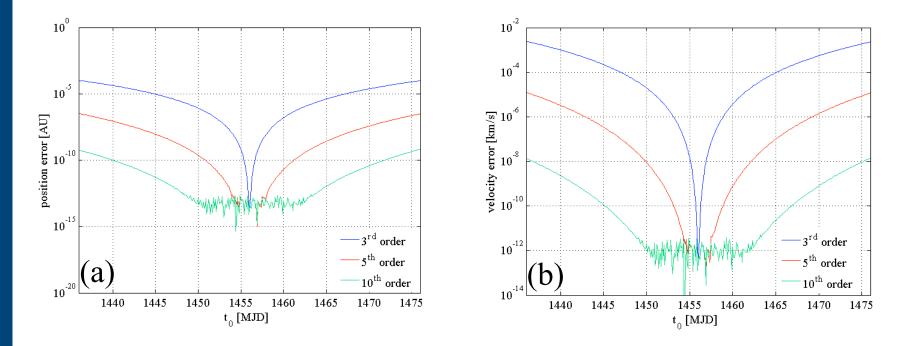
Search the solution of f(x, p) = 0 for p belonging to $p \in [p_l, p_u]$

- Use classical methods (e.g., Newton) to compute x^0 solution of $f(x, p^0) = 0$
- Initialize $[x] = x^0 + \Delta x$ and $[p] = p^0 + \Delta p$ as DA variables and expand $\Delta f = \mathcal{M}(\Delta x, \Delta p)$
- Build the following map and invert it:
- $\begin{pmatrix} \Delta f \\ \Delta p \end{pmatrix} = \begin{pmatrix} [\mathcal{M}] \\ [\mathcal{I}_p] \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta p \end{pmatrix} \longrightarrow \begin{pmatrix} \Delta x \\ \Delta p \end{pmatrix} = \begin{pmatrix} [\mathcal{M}] \\ [\mathcal{I}_p] \end{pmatrix}^{-1} \begin{pmatrix} \Delta f \\ \Delta p \end{pmatrix}$ Force $\Delta f = 0$ so obtaining the Taylor expansion of the solution w.r.t. the parameter: $\Delta x = \Delta x (\Delta p)$

Example: Mars Ephemerides

POLITECNICO DI MILANO

Epoch interval: 40 days



Errors on position, (a), and velocity, (b), between the DA and the point-wise evaluation of Mars ephemerides Errors drastically decrease when the order of the Taylor series increases

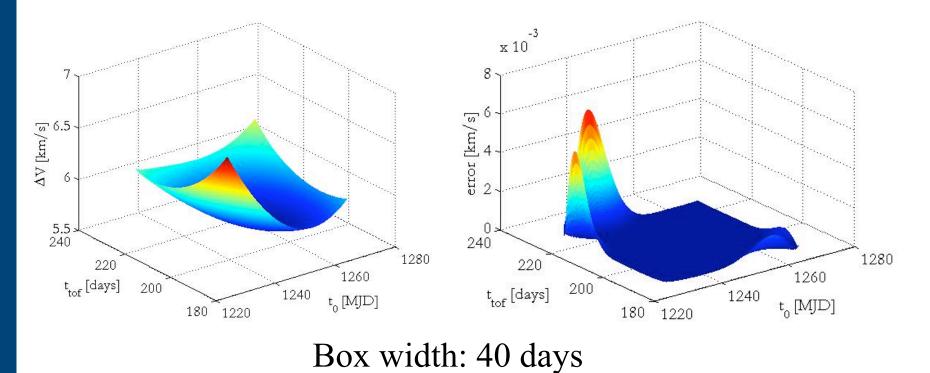
Example: Objective Function

POLITECNICO DI MILANO

The DA evaluation of the planetary ephemerides and the Lambert's problem solution enables the Taylor expansion of the objective function

Taylor representation of the objective function

Taylor representation error w.r.t. point-wise evaluation

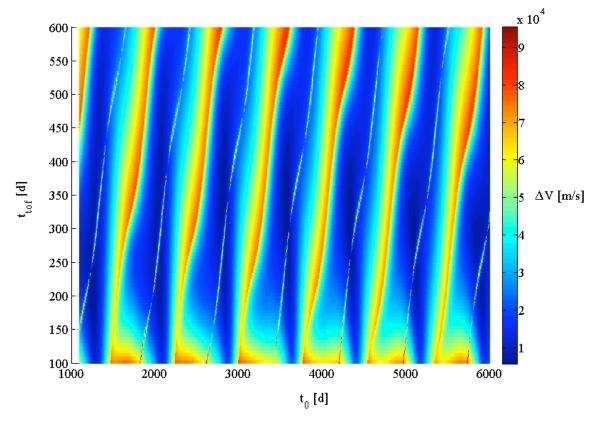


Earth-Mars Direct Transfer

POLITECNICO DI MILANO

Search space: $[1000, 6000] \times [100, 600]$ Maximum departure impulse: $\Delta V_1 < 5$ km/s Platform: Pentium IV 3.06 GHz laptop

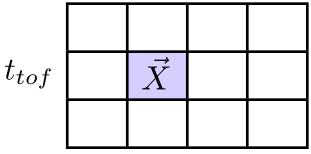
Objective function overview



DA Based Global Optimizer (1/2)

POLITECNICO DI MILANO

- DA based global optimization algorithm:
 - Subdivide the search space in subintervals
 - Suitably initialize the value of ΔV_{opt}



t_0

For each subinterval \vec{X} :

- Initialize t_0 and t_{tof} as DA variables and compute a Taylor expansion of the objective function ΔV and the constraint ΔV_1 on \vec{X}
- Bound the value of ΔV_1 on \vec{X} IF $\min \Delta V_1 > \Delta V_{1,max} \longrightarrow \text{discard } \vec{X}$
- Bound the value of ΔV on \vec{X} IF $\min \Delta V > \Delta V_{opt} \longrightarrow \text{discard } \vec{X}$

DA Based Global Optimizer (2/2)

POLITECNICO DI MILANO

- Build and invert the map of the objective function gradient: $\begin{pmatrix} \nabla_{t_0} \Delta V \\ \nabla_{t_{tof}} \Delta V \end{pmatrix} = \mathcal{M} \begin{pmatrix} t_0 \\ t_{tof} \end{pmatrix} \twoheadrightarrow \begin{pmatrix} t_0 \\ t_{tof} \end{pmatrix} = \mathcal{M}^{-1} \begin{pmatrix} \nabla_{t_0} \Delta V \\ \nabla_{t_{tof}} \Delta V \end{pmatrix}$
- Localize the zero-gradient point $\vec{x}^* = (t_0^*, t_{tof}^*)$ IF $\vec{x}^* \notin \vec{X} \longrightarrow$ discard \vec{X}

Evaluate
$$\Delta V^* = \Delta V(\vec{x}^*)$$

IF $\Delta V^* < \Delta V_{opt} \longrightarrow$ update ΔV_{opt} , and store \vec{x}^* and \vec{X}

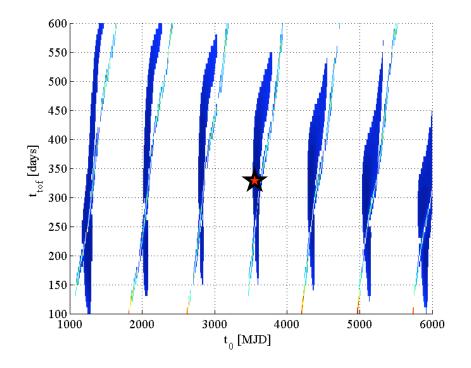
If necessary, a more accurate identification of the actual optimum \vec{x}^* can be finally achieved using a higher order DA computation on the last stored subinterval \vec{X}

Earth-Mars Direct Transfer

Search space: $[1000, 6000] \times [100, 600]$ Maximum departure impulse: $\Delta V_1 < 5$ km/s Platform: Pentium IV 3.06 GHz laptop

Solution 1:

- 10-day boxes + 5th order
- Pruning + Global Opt: 59.98 s
- $\Delta V_{opt} = 5.6973$ km/s
- x* = [3573.188, 324.047]



Earth-Mars Direct Transfer

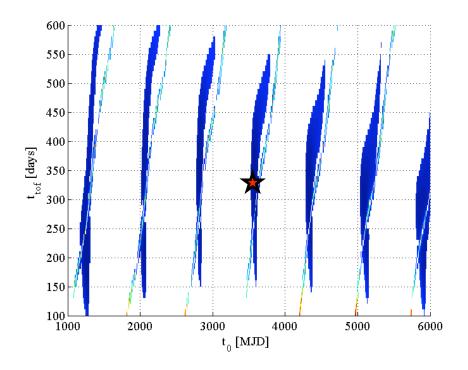
Search space: $[1000, 6000] \times [100, 600]$ Maximum departure impulse: $\Delta V_1 < 5$ km/s Platform: Pentium IV 3.06 GHz laptop

Solution 1:

- 10-day boxes + 5th order
- Pruning + Global Opt: 59.98 s
- $\Delta V_{opt} = 5.6973$ km/s
- x* = [3573.188, 324.047]

Solution 2:

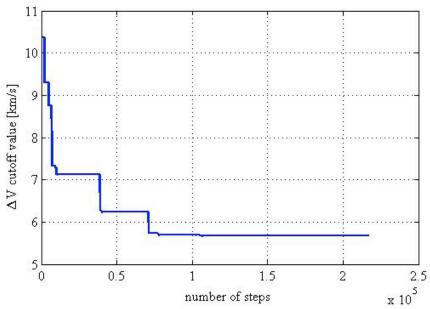
- 100-day boxes + 5th order
- Pruning + Global Opt: 0.55 s
- $\Delta V_{opt} = 5.6974$ km/s
- x* = [3573.530, 323.371]



Verified GO of Earth-Mars Transfer

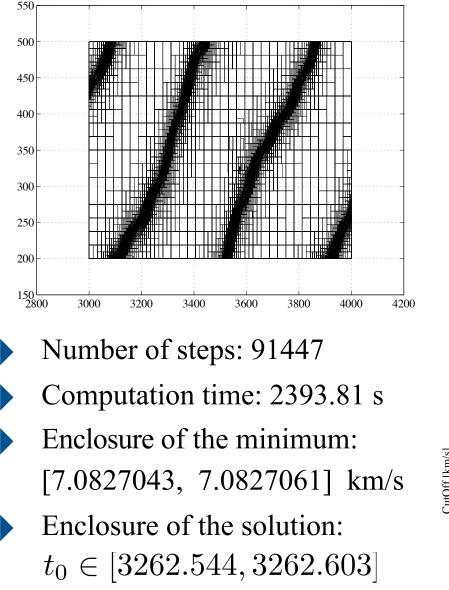
OLITECNICO DI MILANO

- Implicit equations can be solved in a verified way enabling the Taylor Model evaluation of the objective function
- COSY-GO is applied for the global optimization of an impulsive Earth-Mars transfer
- Number of steps: 216911
 Computation time: 4954.39 s
 Enclosure of the minimum: [5.6974155, 5.6974159] km/s
 Enclosure of the solution: t₀ ∈ [3573.176, 3573.212] t_{tof} ∈ [324.034, 324.088]



Planet-toPlanet Transfer

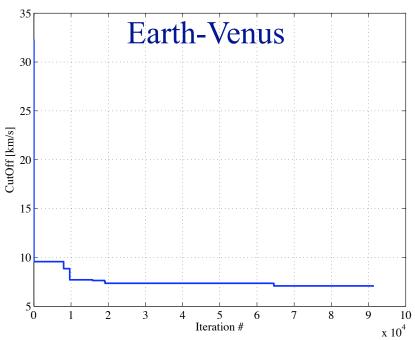
POLITECNICO DI MILANO



 $t_{tof} \in [163.281, 163.369]$

21

- Most of the computational time is spent in splitting box containing discontinuities
- Boxes containing discontinuities with size lower than a given threshold are rejected
- The solution is mathematically not rigorous



Conclusions and Future Work

POLITECNICO DI MILANO

- DA and TM global optimizers are effective tools for the global optimization of planet-to-planet transfers
- Efficient management of regions with singularities is needed for TM global optimization with COSY-GO
- Validated management of nonlinear constraints will be required to apply COSY-GO to MGA transfers
- DA is a promising technique for search space pruning of high dimensional problems such Multiple Gravity Assist (MGA) interplanetary transfers

POLITECNICO DI MILANO

Rigorous Global Optimization of Impulsive Planet-to-Planet Transfers R. Armellin, P. Di Lizia, *Politecnico di Milano*

K. Makino, M. Berz *Michigan State University*

> 5th International Workshop on Taylor Model Methods Toronto, May 20 – 23, 2008

Verified Implicit Eq Solution - 1D

POLITECNICO DI MILANO

Suppose to have the (n + 1) differentiable function *f* over the domain D = [-1, 1] and its *n*-th order Taylor model P(x) + I so that

 $f(x) \in P(x) + I$ for all $x \in D$

- Consider the enclosure R of P(x) + I over D and suppose P'(x) > d > 0on D with P(0) = 0
- Find the Taylor Model C(y) + J on R so that any solution of the problem f(x) = y lies in C(y) + J

Algorithm:

First compute C(y), the *n*-th order polynomial inversion of P(x), so that

$$P(C(y)) =_n y$$

Using Taylor model computation, obtain $P(C(y)) \in y + \tilde{J}$ where \tilde{J} includes the terms of order exceeding *n* in P(C(y)), and thus scales with at least order n + 1

Verified Implicit Eq Solution - 1D

POLITECNICO DI MILANO

Use the consequences of small correction Δx to C(y) to find the rigorous reminder J for C(y) so that all the solutions of f(x) = y lie in C(y) + J. According to the mean value theorem: $f(C(y) + \Delta x) - y \in P(C(y) + \Delta x) - y + I$ $= P(C(y)) + \Delta x \cdot P'(\xi) - y + I$ $\subset y + \tilde{J} + \Delta x \cdot P'(\xi) - y + I$ $= \Delta x \cdot P'(\xi) + I + \tilde{J}$ for suitable $\xi \in [C(y), C(y) + \Delta x]$ Since $\neg y$ is bounded below by d the set $\neg \neg z = t(y) = -\tilde{z}$

Since P' is bounded below by d, the set $\Delta x \cdot P'(\xi) + I + \tilde{J}$ will never contain the zero except for the interval

$$J = -\frac{I + \tilde{J}}{d}$$
 which is the desired interval

Verified Implicit Eq Solution - vD

POLITECNICO DI MILANO

Let P(x) + I be a *n*-th order Taylor model of the (n + 1) times differentiable function f over the domain $D = [-1, 1]^v$ so that:

$$f(x) \in P(x) + I$$
 for all $x \in D$

- Indicate with L(x) the linear part of P(x)
- Instead of the original problem and in analogy with the 1D case, consider the problem of finding a verified enclosure of the inverse of L⁻¹ of where L is analytically inverted
- The Taylor model enclosure $\bar{P}(x) + J$ of $L^{-1} \circ f$ over D is: $\bar{P} + J = L^{-1} \circ (P + I)$

Verified Implicit Eq Solution - vD

POLITECNICO DI MILANO

It is worth observing that: $\bar{P}_1 = x_1 + h.o.t.$ \longrightarrow we can bound $\frac{\partial \bar{P}_1}{\partial x_1}$ from below $\bar{P}_2 = x_2 + h.o.t.$ \longrightarrow we can bound $\frac{\partial \bar{P}_2}{\partial x_2}$ from below etc.

Consequently we can proceed as in the 1D case on $L^{-1} \circ f$

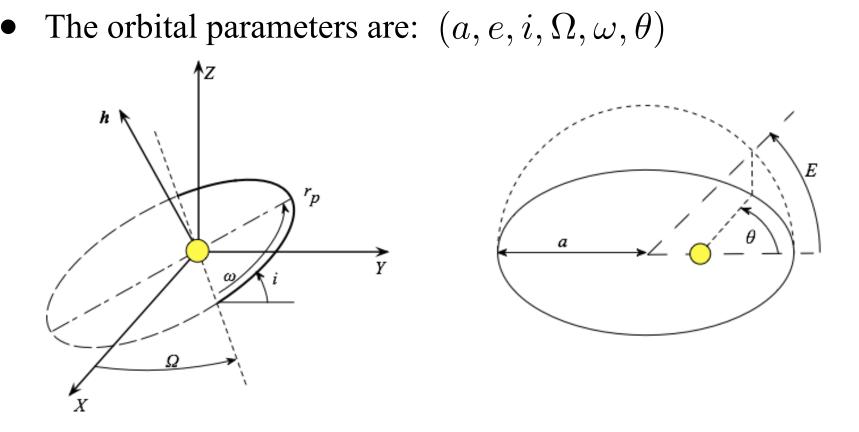
- When the solution has been obtained for $L^{-1} \circ f$ right-compose with L^{-1}
- Application to the solution of f(x, p) = 0:

 $\begin{cases} y = f(x, p) \\ p = p \end{cases} \implies$

Once a validated inversion of the system is achieved, just set y = 0

Orbital parameters

POLITECNICO DI MILANO



• The position and the velocity (*r*, *v*) in cartesian coordinates are obtained from the orbital parameters by simple algebraic relations