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Motivation

‣ Space activities are expensive:

2

‣ The goal of the trajectory design is to find the best 
solution in terms of propellant consumption while still 
achieving the mission goals

we want to reduce the required propellant

Ariane 5 launch cost:               200 M$ ÷
Allowed Spacecraft Mass:   10000 kg   =
Cost per kilogram:               20000 $/kg

‣ Propellant represents the main contribution to s/c mass:

• Propellant is on average 40% of spacecraft mass 
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Outline

‣ Dynamical Model 

‣ Patched-Conics Approximation 

‣ Two-Impulse Transfers
• Ephemerides Evaluation

• Lambert´s Problem Solution

‣ Differential Algebra Based Global Optimization 

‣ Rigorous Global Optimization with COSY-GO
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‣ The 2-Body Problem considers two point masses in 
mutual orbit about each other

E.g.
m1         Sun
m2         Spacecraft

Dynamical Model: 2-Body Problem

4

m1

m2

The relative motion of the two 
masses is governed by:

!̈r = − k

r3
!r

Analytical solutions exist for the 2-Body Problem:  Conic Arcs 
•                                explicit
•                                implicit   (Kepler´s equation)

!r = !r(θ)
t = t(θ)
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Patched-Conics Approximation

‣ The whole interplanetary transfer is divided in several 
arcs

‣ Each arc is the solution of a 2-Body Problem considering 
the spacecraft and only one other planet at a time
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E.g.: 2-impulse Earth-Mars transfer          3 conic arcs

Earth escape Heliocentric phase Mars capture
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2-Impulse Planet-to-Planet Transfer

‣ 2-impulse Earth-Mars transfer 
has been selected as first 
benchmark problem
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• Applied for preliminary 
design of Earth-Mars (any 
planet to planet transfer) 
interplanetary transfers

• Objective function 
characterized by several 
comparable local minima

‣ Future benchmark problems

• Multiple Gravity Assist 
interplanetary transfers 
E.g.: Cassini-Huygens                 
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Optimization Problem

‣ The optimization variables are the time of departure t0 and 
the time of flight ttof        

‣ The positions of the starting and arrival planets are computed 
through the ephemerides evaluation:

(rE, vE) = eph(t0, Earth) and (rM, vM) = eph(t0 +ttof, Mars)

‣ The starting velocity v1 and the final one v2 are computed by 
solving the Lambert´s problem

7
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Optimization Problem

‣ The parking velocity and desired final velocities are 

‣ The pericenter velocities of the escape and arrival hyperbola

8

vc
E =

√
µE/rc

E vc
M =

√
µM/rc

M

vp
2 =

√
2µM/rc

M + v∞2
2vp

1 =
√

2µE/rc
E + v∞1

2

‣ Objective function 

‣ Constraint: ∆V1 < ∆V1,max

∆V = ∆V1 + ∆V2
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Ephemerides Evaluation

‣ Polynomial interpolations of accurate planetary 
ephemerides (JPL-Horizon) are used for the preliminary 
phase of the space trajectory design

‣ Given an epoch and a celestial body, its orbital parameters                           
                            can be analytically evaluated                       

‣ The nonlinear equation                                (Kepler’s Eq) 
is solved for the eccentric anomaly E

‣ The relation                                       delivers θ

‣ The position and the velocity (r, v) of the celestial body in 
inertial frame reference frame are computed

9

(a, e, i,Ω,ω,M)

M = E − e sinE

tan
θ

2
=

√
1 + e

1− e
tan

E

2

We have to solve an implicit equation: Kepler´s equation
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Lambert´s Problem (1/2)

Given:
‣ initial position r1
‣ final position r2‣ time of flight ttof 

10

Find the initial velocity, v1, 
the spacecraft must have to 
reach r2 in ttof

• The solution of the BVP exploits the analytical solution of 
the 2-body problem

• Given r1, r2 and ttof  there 
exists only one conic arc 
connecting the two points 
in the given time
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Lambert´s Problem (1/2)

‣ Several algorithms have been developed for the identification 
and characterization of the resulting conic arc
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‣ A nonlinear equation must be solved (Lagrange´s equation for 
the time of flight): 
                                                   
 
in which                                                                                    ,
                                                               
                                            , and

‣ The value of s and c depend on r1 and r2, so the nonlinear 
equation depends both on t0 and ttof

a(x) =
s

2(1− x2)

f(x) = log(A(x))− log(ttof ) = 0

A(x) = a(x)3/2((α(x)− sin(α(x)))− (β(x)))

β(x) = 2 arcsin
(

s− c

2a(x)

)

‣ We used an algorithm developed by Battin (1960)
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DA Solution of Parametric Implicit eqs

‣ Search the solution of                       for p belonging to

‣ Use classical methods (e.g., Newton) to compute  x0    
solution of   

‣ Initialize                           and                            as DA 
variables and expand                                     

‣ Build the following map and invert it:

‣ Force  ∆f = 0  so obtaining the Taylor expansion of of the 
solution w.r.t. the parameter:

12

f(x, p) = 0
p ∈ [pl, pu]

∆x = ∆x(∆p)

f(x, p0) = 0
[x] = x0 + ∆x [p] = p0 + ∆p

∆f =M(∆x,∆p)

(
∆f
∆p

)
=

(
[M]
[Ip]

) (
∆x
∆p

) (
∆x
∆p

)
=

(
[M]
[Ip]

)−1 (
∆f
∆p

)
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Example: Mars Ephemerides  

Errors on position, (a), and velocity, (b), between the  
DA and the point-wise evaluation of Mars ephemerides
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(a) (b)

Epoch interval: 40 days

Errors drastically decrease when the order of the Taylor 
series increases
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Example: Objective Function

14

‣ The DA evaluation of the planetary ephemerides and 
the Lambert´s problem solution enables the Taylor 
expansion of the objective function 
Taylor representation               

of the objective function
Taylor representation error 
w.r.t. point-wise evaluation

Box width: 40 days
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Earth-Mars Direct Transfer

1516

[1000, 6000]× [100, 600]Search space: 
Maximum departure impulse:  ∆V1 < 5 km/s
Platform: Pentium IV 3.06 GHz laptop

Objective function overview
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‣ Bound the value of          on 

IF                                                              discard

For each subinterval      :

‣ Initialize  t0  and  ttof   as DA variables and compute a Taylor expansion 
of the objective function ∆V and the constraint ∆V1  on

DA Based Global Optimizer (1/2)

DA based global optimization algorithm:

16

‣ Subdivide the search space in subintervals

‣ Suitably initialize the value of 

t0

ttof

‣ Bound the value of            on 

IF                                                              discard

∆V

∆Vopt

min∆V > ∆Vopt

!X

!X

!X

!X
!X

!X

!X

∆V1

min∆V1 > ∆V1,max
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‣ Evaluate

IF                                          update               , and store       and

DA Based Global Optimizer (2/2)
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‣ Build and invert the map of the objective function gradient:

‣ Localize the zero-gradient point 

IF                                          discard

!x∗ = (t∗0, t
∗
tof )

!x∗ /∈ !X !X

∆V ∗ = ∆V (!x∗)

∆V ∗ < ∆Vopt ∆Vopt !x∗ !X

‣ If necessary, a more accurate identification of the actual optimum      
can be finally achieved using a higher order DA computation on the last 
stored subinterval

!x∗

!X

(
∇t0∆V
∇ttof ∆V

)
=M

(
t0

ttof

) (
t0

ttof

)
=M−1

(
∇t0∆V
∇ttof ∆V

)
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Earth-Mars Direct Transfer
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[1000, 6000]× [100, 600]Search space: 
Maximum departure impulse:  ∆V1 < 5 km/s
Platform: Pentium IV 3.06 GHz laptop

Solution 1:
• 10-day boxes + 5th order
• Pruning + Global Opt: 59.98 s
•            = 5.6973 km/s
• x* = [3573.188, 324.047]
∆Vopt
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Earth-Mars Direct Transfer
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[1000, 6000]× [100, 600]Search space: 
Maximum departure impulse:  ∆V1 < 5 km/s
Platform: Pentium IV 3.06 GHz laptop

Solution 1:
• 10-day boxes + 5th order
• Pruning + Global Opt: 59.98 s
•             = 5.6973 km/s
• x* = [3573.188, 324.047]

Solution 2:
• 100-day boxes + 5th order
• Pruning + Global Opt: 0.55 s
•             = 5.6974 km/s
• x* = [3573.530, 323.371]

∆Vopt

∆Vopt
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Verified GO of Earth-Mars Transfer
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‣ Number of steps:  216911

‣ Computation time: 4954.39 s

‣ Enclosure of the minimum:
[5.6974155,  5.6974159]  km/s

‣ Enclosure of the solution:
t0 ∈ [3573.176, 3573.212]
ttof ∈ [324.034, 324.088]

‣ Implicit equations can be solved in a verified way enabling the 
Taylor Model evaluation of the objective function            

‣ COSY-GO is applied for the global optimization of an 
impulsive Earth-Mars transfer            
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Planet-toPlanet Transfer
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‣ Number of steps: 91447

‣ Computation time: 2393.81 s

‣ Enclosure of the minimum:
[7.0827043,  7.0827061]  km/s

‣ Enclosure of the solution:

0 1 2 3 4 5 6 7 8 9 10
x 104
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t0 ∈ [3262.544, 3262.603]
ttof ∈ [163.281, 163.369]

‣ Most of the computational time 
is spent in splitting box 
containing discontinuities

‣ Boxes containing discontinuities 
with size lower than a given 
threshold are rejected  

‣ The solution is mathematically 
not rigorous 
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Conclusions and Future Work

‣ DA and TM global optimizers are effective tools for the 
global optimization of planet-to-planet transfers

‣ Efficient management of regions with singularities is needed 
for TM global optimization with COSY-GO

‣ Validated management of nonlinear constraints will be 
required to apply COSY-GO to MGA transfers

‣ DA is a promising technique for search space pruning of 
high dimensional problems such Multiple Gravity Assist 
(MGA) interplanetary transfers

22
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Verified Implicit Eq Solution - 1D

‣ Suppose to have the (n +1) differentiable function f over the domain  
D = [-1, 1] and its n-th order Taylor model  P(x) + I  so that 

                                                 for all

‣ Consider the enclosure R of P(x) + I over D and suppose P´(x) >d >0 
on D with P(0) = 0

‣ Find the Taylor Model C(y) + J on R so that any solution of the problem  
f(x) = y lies in C(y) + J

24

f(x) ∈ P (x) + I x ∈ D

Algorithm:

‣ First compute C(y), the n-th order polynomial inversion of P(x), so that

‣ Using Taylor model computation, obtain                              where 
includes the terms of order exceeding n in P(C(y)), and thus scales with at 
least order n +1

P (C(y)) =n y

P (C(y)) ∈ y + J̃ J̃
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‣ Use the consequences of small correction ∆x to C(y) to find 
the rigorous reminder J for C(y) so that all the solutions of      
f (x) = y lie in C(y) +J. According to the mean value theorem:

for suitable ξ ∈ [C(y), C(y) + ∆x]

‣ Since      is bounded below by d, the set                                  
will never contain the zero except for the interval

 

which is the desired interval

Verified Implicit Eq Solution - 1D

25

f(C(y) + ∆x)− y ∈ P (C(y) + ∆x)− y + I

= P (C(y)) + ∆x · P ′(ξ)− y + I

⊂ y + J̃ + ∆x · P ′(ξ)− y + I

= ∆x · P ′(ξ) + I + J̃

P ′

J = −I + J̃

d

∆x · P ′(ξ) + I + J̃
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Verified Implicit Eq Solution - vD

‣ Let  P(x) + I  be a n-th order Taylor model of the (n +1) times 
differentiable function  f  over the domain                         so that:

26

D = [−1, 1]v

• Indicate with L(x) the linear part of P(x)

• Instead of the original problem and in analogy with the 1D 
case, consider the problem of finding a verified enclosure of 
the inverse of                where  L  is analytically inverted

f (x) ∈ P(x) + I     for all     x ∈ D

L−1◦ f

• The Taylor model enclosure                    of                 over D is:

P̄ + J = L−1 ◦ (P + I)

P̄(x) + J L−1◦ f
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Verified Implicit Eq Solution - vD

‣ It is worth observing that:

27

P̄1 = x1 + h.o.t. we can bound            from below 

P̄2 = x2 + h.o.t. we can bound            from below 

etc. 

∂P̄1

∂x1

∂P̄2

∂x2

Consequently we can proceed as in the 1D case on 

‣ When the solution has been obtained for               right-compose 
with

L−1◦ f

L−1◦ f
L−1

‣ Application to the solution of  f (x, p) = 0:

  y  =  f (x, p)
  p = p

Once a validated inversion of the 
system is achieved, just set y = 0{
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Orbital parameters

28

• The orbital parameters are: (a, e, i,Ω,ω, θ)

• The position and the velocity (r, v) in cartesian 
coordinates are obtained from the orbital parameters by 
simple algebraic relations


