Representing abstract semigroups as semigroups of projections of C^{*}-algebras

Pere Ara, Francesc Perera, Friedrich Wehrung

The Fields Institute
November 2007

Some motivation

Part of the invariant used in classification is K_{0}, constructed out of the monoid (i.e. semigroup with 0) $V(\cdot)$.

For A,

$$
V(A)=\left\{[p] \mid p \text { a projn in } M_{\infty}(A)\right\},
$$

where [] is usual MvN equivalence.
In general, $V(A)$ is a conical monoid:

$$
x+y=0 \text { if and only if } x=y=0 .
$$

Restricting to the real rank zero class, it further enjoys the following property:

Definition. A monoid M is termed a refinement monoid if

$$
x_{1}+x_{2}=y_{1}+y_{2} \text { in } M \Rightarrow \exists z_{i j} \text { with }
$$

	x_{1}	x_{2}
y_{1}	z_{11}	z_{12}
y_{2}	z_{21}	z_{22}

So we can ask:
Question 1: Which conical, refinement monoids M appear as $V(A)$ for A with real rank zero?

Digression. Machinery developed by G. Bergman in the mid 70 's allows to find, given any conical monoid with order unit, a (generally noncommutative) ring R such that $V(R) \cong M$.
(Here, $V(R)$ is the monoid of iso classes of fg projective, say, right modules.)

Even in the purely algebraic case, it is of interest to determine which conical refinement monoids are representable as $V(R)$ where R is a von Neumann regular ring.
[Wehrung, 1998] Size matters! \exists a conical refinement monoid of size \aleph_{2} not representable as $V(R)$ for any regular ring R.

So can ask instead:
Question 2: Which conical, countable refinement monoids are representable as $V(A)$ for a real rank zero A ?

Graph algebras

Setup. Take $E=\left(E^{0}, E^{1}, r, s\right)$ a graph (or quiver), with source and range maps

$$
\begin{aligned}
& s: E^{1} \rightarrow E^{0}, e \mapsto s(e) \\
& r: E^{1} \rightarrow E^{0}, e \mapsto r(e) .
\end{aligned}
$$

Assume E is countable and row-finite (i.e. every vertex emits finitely many edges, i.e. $\left|s^{-1}(v)\right|<$ $\infty)$.

The graph C^{*}-algebra $C^{*}(E)$ is the C^{*}-algebra generated by a universal Cuntz-Krieger family: a set of p / w orthogonal projns

$$
\left\{p_{v} \mid v \in E^{0}\right\}
$$

and partial isometries

$$
\left\{s_{e} \mid e \in E^{1}\right\}
$$

with

1) $s_{e}^{*} s_{e}=p_{r(e)}$
2) $p_{v}=\sum_{e \in s^{-1}(v)} s_{e} s_{e}^{*}$.

Graph monoids

Definition. Given a row-finite graph E, define the graph monoid

$$
M(E)=\left\langle a_{v}, v \in E^{0} \mid a_{v}=\sum_{e \in s^{-1}(v)} a_{r(e)}\right\rangle
$$

For example, if E

then

$$
M(E)=\langle a, b \mid a=a+b\rangle
$$

Write $\mathbb{N}_{0}=\{0,1,2, \ldots\}$ and $\mathbb{N}=\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, \ldots\right\}$. Then we can identify

$$
M(E) \rightarrow \mathbb{N}_{0} \sqcup \mathbb{N}, a \mapsto 1^{\prime}, b \mapsto 1
$$

In fact, $M(E)$ is the projn monoid of the Toeplitz algebra.

Basic structural results

Theorem. [Ara-Moreno-Pardo, 07] For a rowfinite graph E, the natural monoid homomorphism

$$
\gamma_{E}: M(E) \rightarrow V\left(C^{*}(E)\right), a_{v} \mapsto\left[p_{v}\right]
$$

is an isomorphism.

Moreover:

Theorem. [Ara-Moreno-Pardo, 07] For a rowfinite graph E, the monoid $M(E)$ is always a refinement monoid, and is also separative.
$[a+c=b+c$ with $c \leq n a$ and $c \leq m b$ implies $a=b$.]

So graph algebras provide us with refinement monoids, although not all $C^{*}(E)$ have real rank zero:

Theorem. [Jeong-Park, 02] $C^{*}(E)$ has real rank zero iff E satisfies condition (K): every vertex on a cycle has at least two cycles based on it.

Changing the question

We can reformulate the question

Question 3: Which countable, conical, refinement monoids are isomorphic to $M(E)$ for a rowfinite graph E ?

We shall also restrict attention to fg monoids.

Some negative situations:

1) Consider the graph E

so $M(E)=\langle p, a, b \mid p=p+a+b\rangle$.

This is not partially ordered $\because p \leq p+a \leq p+a+$ $b=p$, yet $p \neq p+a$.

Its antysimmetrization is

$$
M_{0}=\langle p, a, b \mid p=p+a=p+b\rangle
$$

still fg, refinement, conical. But

Theorem 1. (Ara-P-Wehrung, 07) M_{0} is not a graph monoid.
2) Let $\mathbb{Z}^{\infty}=\mathbb{N}_{0} \cup\{\infty\}$ with addition $x+\infty=\infty$ for all x.

Consider the graph E :

We see that $M(E)=\langle a, b, 1 \mid a=a+1, b=2 b+a\rangle$

Note $2(a+b)=a+a+2 b=a+b$ and
$a+b+1=(a+1)+b=a+b$.

So can define

$$
\epsilon: \mathbb{Z}^{\infty} \rightarrow M(E), 1 \mapsto 1, \infty \mapsto a+b
$$

and

$$
\rho: M(E) \rightarrow \mathbb{Z}^{\infty}, 1 \rightarrow 1, a, b \mapsto \infty
$$

So $\rho \epsilon=$ id but $\epsilon \rho \neq$ id.

Hence \mathbb{Z}^{∞} is a retract of $M(E)$ with E finite.

Let us see the following:

Theorem 2. (Ara-P-Wehrung, 07). \mathbb{Z}^{∞} is not a graph monoid of any finite graph.

Proof. Spse otherwise, hence \exists a finite graph E and

$$
\varphi: M(E) \rightarrow \mathbb{Z}^{\infty} \text { an isomorphism. }
$$

Put

$$
\begin{aligned}
U & =\left\{v \in E^{0} \mid \varphi(v)<\infty\right\} \\
V & =\left\{x_{1}, \ldots, x_{m}\right\} \\
V & =\left\{v \in E^{0} \mid \varphi(v)=\infty\right\}
\end{aligned}=\left\{y_{1}, \ldots, y_{n}\right\} . ~ \$
$$

Put

$$
\begin{aligned}
\alpha_{i, i^{\prime}} & =\left|\left\{e \in E^{1} \mid e: x_{i} \rightarrow x_{i^{\prime}}\right\}\right| \\
\beta_{j, j^{\prime}} & =\left|\left\{e \in E^{1} \mid e: y_{j} \rightarrow y_{j^{\prime}}\right\}\right| \\
\gamma_{i, j} & =\left|\left\{e \in E^{1} \mid e: y_{j} \rightarrow x_{i}\right\}\right|
\end{aligned}
$$

Note: No need to consider $x_{i} \rightarrow y_{j}$ as would get $x_{i}=y_{j}+a$ so $\infty>\varphi\left(x_{i}\right)=\varphi\left(y_{j}\right)+\varphi(a)=\infty$.

Hence, get a presentation of $M(E)$:

$$
\begin{gathered}
x_{i}=\sum_{i^{\prime}=1}^{m} \alpha_{i, i^{\prime}} x_{i^{\prime}} \\
y_{j}=\sum_{i=1}^{m} \gamma_{i, j} x_{i}+\sum_{j^{\prime}=1}^{n} \beta_{j, j^{\prime}} y_{j^{\prime}}
\end{gathered}
$$

i.e. in obvious matrix notation:
(\dagger) $X_{0}=A X_{0}, Y_{0}=B Y_{0}+C X_{0}$.

Need a
Lemma. For any abelian group G, the only column vectors X, Y in G that satisfy (\dagger) are $X=$ $Y=0$.

Proof of Lemma. (\dagger) gives a presentation of $M(E)$, hence of \mathbb{Z}^{∞} inside G, where the \times 's are integers and the y's are infinite. Thus:

$$
y_{j}+x_{i}=y_{j}=2 y_{j} \Rightarrow x_{i}=y_{j}=0 \forall i, j .
$$

\square
Now put $G=\mathbb{Q}$ and $X=0$.
Lemma \Rightarrow the only $Y \in M_{n, 1}(\mathbb{Q})$ that satisfies $Y=B Y$ is $Y=0$.
$\therefore I-B$ is invertible.
But now, in (\dagger) we have $X_{0}=A X_{0}$ with $X_{0} \neq 0$ and if we put $Y:=(I-B)^{-1} C X_{0}$ we verify that $B(I-B)^{-1}=(I-B)^{-1}-I$ and $Y=B Y+C X_{0}$ Hence (X_{0}, Y) satisfies (\dagger), a contradiction as $X_{0} \neq 0$.

Main result (I)- turning the negative into positive

Definition. An element $p \in M$ is prime if

$$
0 \neq p \text { and } p \leq a_{1}+a_{1} \Rightarrow p \leq a_{1} \text { or } p \leq a_{2} .
$$

M is primely generated if every element is a sum of primes.
E.g. \mathbb{Z}^{∞}. The prime elements here are $1, \infty$ and is clearly primely generated.

Theorem. [Brookfield 01] Every fg refinement monoid M is primely generated. And every element in M is either regular ($2 x \leq x$) or free ($n x \leq m x \Rightarrow n \leq m$).

For any prime p, denote

$$
L_{\text {free }}(M, p)=
$$

$\{q$ free prime $\mid q<p$, and $\nexists r$ prime $q<r<p\}$

Main result (II)

Theorem 2. [Ara-P-Wehrung] Let M be a fg refinement monoid which is partially ordered. Then the following are equivalent:
(i) M is a graph monoid.
(ii) For every free prime, $\left|L_{\text {free }}(M, p)\right| \leq 1$.

Corollary. \mathbb{Z}^{∞} is a graph monoid!
Some ingredients in the proof.
Definition. An ideal of M is an subset I such that $x+y \in I$ iff $x, y \in I$.

An ideal I defines a congruence:

$$
x \sim y \Longleftrightarrow x+z=y+t \text { for } z, t \in I
$$

Denote $M / I=M / \sim$.

Lemma. [Ara-Moreno-Pardo] The class of graph monoids is closed under ideals and quotients.

$$
(\mathrm{i}) \Rightarrow \text { (ii) }
$$

Spse $\exists p$ free such that $\left|L_{\text {free }}(M, p)\right| \geq 2$.
$\therefore \exists a, b$ free primes such that $a<p, b<p$ and nothing lies in between.

Write $a+a^{\prime}=p$. Note p prime and $a<p$ imply $p \leq a^{\prime}$. Thus

$$
p \leq a+p \leq a+a^{\prime}+p=p \Rightarrow a+p=p
$$

Likewise, $p=b+p, \therefore M$ contains a copy of
$M_{0}=\langle a, b, p \mid p=p+a=p+b\rangle$ (not a graph monoid).
Put $N=\{x \in M \mid x \leq n p$ for some $n\}$, an ideal of M, and

$$
I=\{x \in N \mid a \not \leq x, b \not \leq x\},
$$

an ideal of N.
Note $M_{0} \subseteq N$, hence $\exists \epsilon: M_{0} \rightarrow N / I$.
Lemma. ϵ is an isomorphism.
$\therefore N / I$ is not a graph monoid, hence neither is M.

(ii) \Rightarrow (i)

Start with \mathbb{Z}^{∞}. What is its graph presentation?

The presentation (\ddagger) for $M(E)$ is:

$$
\begin{gathered}
b_{0}=2 b_{0}+b_{1}+b_{2}+a \\
b_{1}=b_{0}+2 b_{1}+b_{2} \\
b_{2}=b_{2}+b_{1}+b_{3}+b_{4} \\
b_{3}=2 b_{3}+2 b_{1}+b_{4} \\
b_{4}=b_{4}+b_{2}+b_{5}+b_{6} \\
b_{5}=2 b_{5}+2 b_{2}+b_{6} \\
b_{6}=b_{6}+b_{3}+b_{7}+b_{8}
\end{gathered}
$$

Define $\varphi: M(E) \rightarrow \mathbb{Z}^{\infty}$ by $a \mapsto 1$ and $b_{i} \mapsto \infty$ for all i, clearly surjective.

To prove 1-1, enough to show $a+b_{0}=b_{0}=b_{n}=$ $2 b_{0}$ for all n.

Known. Such an $M(E) \hookrightarrow \Pi G \cup\{\infty\}$ where the G 's are abelian groups with usual addition.

Thus enough to prove:

Claim. For any abelian group G, if a, b_{n} in $G \cup\{\infty\}$ satisfy (\ddagger), then $a+b_{0}=b_{0}=b_{n}=2 b_{0}$.

To ease notation write $x \sim y$ if $x \leq n y$ and $y \leq m x$. From (\ddagger) get:

$$
\begin{aligned}
& b_{1} \leq b_{0} \& b_{0} \leq b_{1} \Rightarrow b_{0} \sim b_{1} \\
& b_{2} \leq b_{1} \& b_{1} \leq b_{2} \Rightarrow b_{1} \sim b_{2}
\end{aligned}
$$

\ldots...so $b_{i} \sim b_{j}$ for all i, j.
\therefore one $b_{i}=\infty$ iff all are and the rels hold trivially.

May thus assume all b_{i} 's are in G.

1st equation:
$b_{0}=2 b_{0}+b_{1}+b_{2}+a \Rightarrow a \in G$ and $b_{0}+b_{1}+b_{2}+a=0$
2nd equation:
$b_{1}=b_{0}+2 b_{1}+b_{2} \Rightarrow b_{0}+b_{1}+b_{2}=0$ hence $a=0$ 3rd and 4th eqns imply:

$$
\begin{gathered}
0=b_{1}+b_{3}+b_{4} \\
0=b_{3}+2 b_{1}+b_{4}, \text { so also } b_{1}=0
\end{gathered}
$$

5th and 6th eqns imply similarly that $b_{2}=0$, hence $b_{0}+b_{1}+b_{2}=0$ ensures $b_{0}=0$.

Continuing in this way, find that $a=b_{n}=0$ for all n, hence rels also hold in a trivial way.

Two more questions

The construction for \mathbb{Z}^{∞} gives a graph with condition (K), hence is representable with a graph C^{*}-algebra with real rank zero. The result however motivates.

Question 3. If M satisfies the conditions of the thm, when can we find a graph E with condition (K) such that $M(E) \cong M$?

Question 4. Even if E does not satisfy (K), is it possible to represent $M(E)$ as $V(A)$ for A with real rank zero?

Take E as:

so $M(E)=\langle a, b \mid a=a+b\rangle$. Spse A has real rank zero and $V(A)=M(E)$.

Let $I_{0}=\{x \in M(E) \mid x \leq n b$ some $n\}$, an ideal, and $I_{0}=V(I) \cong \mathbb{N}_{0}$ for an ideal of A; so I is simple and so elementary.

This implies $K_{1}(I)=0$.

Also $V(A / I)=V(A) / V(I) \cong \mathbb{N}_{\mathrm{O}}$, so that similarly as before $K_{1}(A / I)=0$. That implies:

$$
0 \rightarrow K_{0}(I) \rightarrow K_{0}(A) \rightarrow K_{0}(A / I) \rightarrow 0
$$

is exact, which is impossible as all three groups are \mathbb{Z}.

