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Some motivation

Part of the invariant used in classification is K0,
constructed out of the monoid (i.e. semigroup
with 0) V (·).

For A,

V (A) = {[p] | p a projn in M∞(A)} ,

where [ ] is usual MvN equivalence.

In general, V (A) is a conical monoid:

x + y = 0 if and only if x = y = 0 .

Restricting to the real rank zero class, it further
enjoys the following property:

Definition. A monoid M is termed a refinement
monoid if

x1 + x2 = y1 + y2 in M ⇒ ∃zij with

x1 x2
y1 z11 z12
y2 z21 z22



So we can ask:

Question 1: Which conical, refinement monoids
M appear as V (A) for A with real rank zero?

Digression. Machinery developed by G. Bergman
in the mid 70’s allows to find, given any con-
ical monoid with order unit, a (generally non-
commutative) ring R such that V (R) ∼= M .

(Here, V (R) is the monoid of iso classes of fg
projective, say, right modules.)

Even in the purely algebraic case, it is of interest
to determine which conical refinement monoids
are representable as V (R) where R is a von Neu-
mann regular ring.

[Wehrung, 1998] Size matters! ∃ a conical re-
finement monoid of size ℵ2 not representable as
V (R) for any regular ring R.

So can ask instead:

Question 2: Which conical, countable refine-
ment monoids are representable as V (A) for a
real rank zero A?



Graph algebras

Setup. Take E = (E0, E1, r, s) a graph (or quiver),
with source and range maps

s : E1 → E0 , e 7→ s(e)

r : E1 → E0 , e 7→ r(e) .

Assume E is countable and row-finite (i.e. every
vertex emits finitely many edges, i.e. |s−1(v)| <
∞).

The graph C∗-algebra C∗(E) is the C∗-algebra
generated by a universal Cuntz-Krieger family: a
set of p/w orthogonal projns

{pv | v ∈ E0}
and partial isometries

{se | e ∈ E1}
with

1) s∗ese = pr(e)

2) pv =
∑

e∈s−1(v) ses∗e.



Graph monoids

Definition. Given a row-finite graph E, define

the graph monoid

M(E) = 〈av, v ∈ E0 | av =
∑

e∈s−1(v)

ar(e)〉

For example, if E

a
��

��

b

then

M(E) = 〈a, b | a = a + b〉 .

Write N0 = {0,1,2, ...} and N = {1′,2′,3′, ...}. Then

we can identify

M(E) → N0 t N , a 7→ 1′, b 7→ 1 .

In fact, M(E) is the projn monoid of the Toeplitz

algebra.



Basic structural results

Theorem. [Ara-Moreno-Pardo, 07] For a row-

finite graph E, the natural monoid homomorphism

γE : M(E) → V (C∗(E)) , av 7→ [pv]

is an isomorphism.

Moreover:

Theorem. [Ara-Moreno-Pardo, 07] For a row-

finite graph E, the monoid M(E) is always a re-

finement monoid, and is also separative.

[a + c = b + c with c ≤ na and c ≤ mb implies

a = b.]

So graph algebras provide us with refinement mo-

noids, although not all C∗(E) have real rank zero:

Theorem. [Jeong-Park, 02] C∗(E) has real rank

zero iff E satisfies condition (K): every vertex on

a cycle has at least two cycles based on it.



Changing the question

We can reformulate the question

Question 3: Which countable, conical, refine-

ment monoids are isomorphic to M(E) for a row-

finite graph E?

We shall also restrict attention to fg monoids.

Some negative situations:

1) Consider the graph E
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a b

so M(E) = 〈p, a, b | p = p + a + b〉.

This is not partially ordered ∵ p ≤ p + a ≤ p + a +

b = p, yet p 6= p + a.



Its antysimmetrization is

M0 = 〈p, a, b | p = p + a = p + b〉 ,

still fg, refinement, conical. But

Theorem 1. (Ara-P-Wehrung, 07) M0 is not a

graph monoid.

2) Let Z∞ = N0 ∪ {∞} with addition x +∞ = ∞
for all x.

Consider the graph E:

a
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boo
xx }}
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We see that M(E) = 〈a, b,1 | a = a+1 , b = 2b+a〉

Note 2(a + b) = a + a + 2b = a + b and

a + b + 1 = (a + 1) + b = a + b.

So can define

ε : Z∞ → M(E) , 1 7→ 1 , ∞ 7→ a + b ,



and

ρ : M(E) → Z∞ , 1 → 1 , a, b 7→ ∞ .

So ρε = id but ερ 6= id.

Hence Z∞ is a retract of M(E) with E finite.



Let us see the following:

Theorem 2. (Ara-P-Wehrung, 07). Z∞ is not a

graph monoid of any finite graph.

Proof. Spse otherwise, hence ∃ a finite graph E

and

ϕ : M(E) → Z∞ an isomorphism.

Put

U = {v ∈ E0 | ϕ(v) < ∞} = {x1, . . . , xm}

V = {v ∈ E0 | ϕ(v) = ∞} = {y1, . . . , yn} .



Put

αi,i′ = |{e ∈ E1 | e : xi → xi′}|

βj,j′ = |{e ∈ E1 | e : yj → yj′}|

γi,j = |{e ∈ E1 | e : yj → xi}|

Note: No need to consider xi → yj as would get

xi = yj + a so ∞ > ϕ(xi) = ϕ(yj) + ϕ(a) = ∞.

Hence, get a presentation of M(E):

xi =
m∑

i′=1

αi,i′xi′

yj =
m∑

i=1

γi,jxi +
n∑

j′=1

βj,j′yj′

i.e. in obvious matrix notation:

(†) X0 = AX0 , Y0 = BY0 + CX0 .



Need a

Lemma. For any abelian group G, the only col-
umn vectors X, Y in G that satisfy (†) are X =
Y = 0.

Proof of Lemma. (†) gives a presentation of
M(E), hence of Z∞ inside G, where the x’s are
integers and the y’s are infinite. Thus:

yj + xi = yj = 2yj ⇒ xi = yj = 0∀i, j .

2

Now put G = Q and X = 0.

Lemma ⇒ the only Y ∈ Mn,1(Q) that satisfies
Y = BY is Y = 0.

∴ I −B is invertible.

But now, in (†) we have X0 = AX0 with X0 6= 0
and if we put Y := (I −B)−1CX0 we verify that

B(I −B)−1 = (I −B)−1 − I and Y = BY + CX0

Hence (X0, Y ) satisfies (†), a contradiction as
X0 6= 0. 2



Main result (I)– turning the negative into

positive

Definition. An element p ∈ M is prime if

0 6= p and p ≤ a1 + a1 ⇒ p ≤ a1 or p ≤ a2.

M is primely generated if every element is a sum

of primes.

E.g. Z∞. The prime elements here are 1, ∞ and

is clearly primely generated.

Theorem. [Brookfield 01] Every fg refinement

monoid M is primely generated. And every el-

ement in M is either regular (2x ≤ x) or free

(nx ≤ mx ⇒ n ≤ m).

For any prime p, denote

Lfree(M, p) =

{q free prime | q < p, and @r prime q < r < p}



Main result (II)

Theorem 2. [Ara-P-Wehrung] Let M be a fg re-

finement monoid which is partially ordered. Then

the following are equivalent:

(i) M is a graph monoid.

(ii) For every free prime, |Lfree(M, p)| ≤ 1.

Corollary. Z∞ is a graph monoid !

Some ingredients in the proof.

Definition. An ideal of M is an subset I such

that x + y ∈ I iff x, y ∈ I.

An ideal I defines a congruence:

x ∼ y ⇐⇒ x + z = y + t for z, t ∈ I

Denote M/I = M/ ∼.

Lemma. [Ara-Moreno-Pardo] The class of graph

monoids is closed under ideals and quotients.



(i) ⇒ (ii)

Spse ∃ p free such that |Lfree(M, p)| ≥ 2.

∴ ∃a, b free primes such that a < p, b < p and
nothing lies in between.

Write a + a′ = p. Note p prime and a < p imply
p ≤ a′. Thus

p ≤ a + p ≤ a + a′ + p = p ⇒ a + p = p

Likewise, p = b + p, ∴ M contains a copy of

M0 = 〈a, b, p | p = p+a = p+b〉 (not a graph monoid).

Put N = {x ∈ M | x ≤ np for some n}, an ideal of
M , and

I = {x ∈ N | a � x, b � x} ,

an ideal of N .

Note M0 ⊆ N , hence ∃ ε : M0 → N/I.

Lemma. ε is an isomorphism.

∴ N/I is not a graph monoid, hence neither is M .



(ii) ⇒ (i)

Start with Z∞. What is its graph presentation?

a b0oo
�� ��

//
::

b1oo
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// b2oo
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//
::

b3
�� ��

//
dd]]

b4
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//
dd ::

b5
�� ��

//
bb]]

b6
��

//
bb

· · ·

The presentation (‡) for M(E) is:

b0 = 2b0 + b1 + b2 + a

b1 = b0 + 2b1 + b2

b2 = b2 + b1 + b3 + b4

b3 = 2b3 + 2b1 + b4

b4 = b4 + b2 + b5 + b6

b5 = 2b5 + 2b2 + b6

b6 = b6 + b3 + b7 + b8

Define ϕ : M(E) → Z∞ by a 7→ 1 and bi 7→ ∞ for
all i, clearly surjective.

To prove 1-1, enough to show a+ b0 = b0 = bn =
2b0 for all n.



Known. Such an M(E) ↪→
∏

G ∪ {∞} where the

G’s are abelian groups with usual addition.

Thus enough to prove:

Claim. For any abelian group G, if a, bn in G∪{∞}
satisfy (‡), then a + b0 = b0 = bn = 2b0.

To ease notation write x ∼ y if x ≤ ny and y ≤ mx.

From (‡) get:

b1 ≤ b0 & b0 ≤ b1 ⇒ b0 ∼ b1

b2 ≤ b1 & b1 ≤ b2 ⇒ b1 ∼ b2

...so bi ∼ bj for all i, j.

∴ one bi = ∞ iff all are and the rels hold trivially.



May thus assume all bi’s are in G.

1st equation:

b0 = 2b0+b1+b2+a ⇒ a ∈ G and b0+b1+b2+a = 0

2nd equation:

b1 = b0 +2b1 + b2 ⇒ b0 + b1 + b2 = 0 hence a = 0

3rd and 4th eqns imply:

0 = b1 + b3 + b4

0 = b3 + 2b1 + b4 , so also b1 = 0

5th and 6th eqns imply similarly that b2 = 0,

hence b0 + b1 + b2 = 0 ensures b0 = 0.

Continuing in this way, find that a = bn = 0 for

all n, hence rels also hold in a trivial way. 2



Two more questions

The construction for Z∞ gives a graph with con-

dition (K), hence is representable with a graph

C∗-algebra with real rank zero. The result how-

ever motivates.

Question 3. If M satisfies the conditions of the

thm, when can we find a graph E with condition

(K) such that M(E) ∼= M?

Question 4. Even if E does not satisfy (K), is

it possible to represent M(E) as V (A) for A with

real rank zero?



Take E as:

a
��
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b

so M(E) = 〈a, b | a = a+ b〉. Spse A has real rank

zero and V (A) = M(E).

Let I0 = {x ∈ M(E) | x ≤ nb some n}, an ideal,

and I0 = V (I) ∼= N0 for an ideal of A; so I is

simple and so elementary.

This implies K1(I) = 0.

Also V (A/I) = V (A)/V (I) ∼= N0, so that similarly

as before K1(A/I) = 0. That implies:

0 → K0(I) → K0(A) → K0(A/I) → 0

is exact, which is impossible as all three groups

are Z.


