Applications of the Elliott program

Huaxin Lin

November, 2007 at the Fields

Huaxin Lin ()

1 / 40

3

★ 3 > < 3 >

The Elliott program

Let A and B be two unital separable amenable (simple) C^* -algebras.

A B < A B </p>

The Elliott program

Let A and B be two unital separable amenable (simple) C^* -algebras. If

 $EII(A) \cong EII(B),$

A B A A B A

3

The Elliott program

Let A and B be two unital separable amenable (simple) C^* -algebras. If $Ell(A) \cong Ell(B)$,

then

 $A \cong B$.

通 ト イヨ ト イヨト

3

イロト イポト イヨト イヨト

3

3 / 40

e.g. minimal Cantor systems, (Giordano, Putnam and Skau.)

3

通 ト イヨ ト イヨト

e.g. minimal Cantor systems, (Giordano, Putnam and Skau.)

3

通 ト イヨ ト イヨト

e.g. minimal Cantor systems, (Giordano, Putnam and Skau.)

Recent work of Eilers (et al) (substitutions).

- 20

e.g. minimal Cantor systems, (Giordano, Putnam and Skau.)

Recent work of Eilers (et al) (substitutions).

Theorem

(A. Kishimoto) There exists a unital simple AF C*-algebra and a strongly continuous one-parameter automorphism group α of A such that α is not approximately inner.

通 と く ヨ と く ヨ と

e.g. minimal Cantor systems, (Giordano, Putnam and Skau.)

Recent work of Eilers (et al) (substitutions).

Theorem

(A. Kishimoto) There exists a unital simple AF C*-algebra and a strongly continuous one-parameter automorphism group α of A such that α is not approximately inner.

This gives a counter-example of Powers and Sakai conjecture for AF-algebras

e.g. minimal Cantor systems, (Giordano, Putnam and Skau.)

Recent work of Eilers (et al) (substitutions).

Theorem

(A. Kishimoto) There exists a unital simple AF C*-algebra and a strongly continuous one-parameter automorphism group α of A such that α is not approximately inner.

This gives a counter-example of Powers and Sakai conjecture for AF-algebras One of keys to the proof: $(\bigotimes_{\mathbb{Z}} A) \rtimes_{\sigma} \mathbb{Z}$ has tracial rank zero, where σ is the two-sided shift. So classification theory can be applied. \star The toroidal $\mathbb{Z}/4\mathbb{Z}$ orbifold $A_{ heta} \rtimes \mathbb{Z}/4\mathbb{Z}$

イロト イポト イヨト イヨト

-2

 \star The toroidal $\mathbb{Z}/4\mathbb{Z}$ orbifold $A_{\theta} \rtimes \mathbb{Z}/4\mathbb{Z}$

Theorem

(S. Walters) For irrational numbers θ in a dense G_{δ} set, the C^* -algebra $A_{\theta} \rtimes \mathbb{Z}/4\mathbb{Z}$ has tracial rank zero.

• • = • • = •

4 / 40

* The toroidal $\mathbb{Z}/4\mathbb{Z}$ orbifold $A_{\theta} \rtimes \mathbb{Z}/4\mathbb{Z}$

Theorem

(S. Walters) For irrational numbers θ in a dense G_{δ} set, the C^* -algebra $A_{\theta} \rtimes \mathbb{Z}/4\mathbb{Z}$ has tracial rank zero.

Since $K_1(A_\theta \rtimes \mathbb{Z}/4\mathbb{Z}) = \{0\}$ and $K_0(A_\theta \rtimes \mathbb{Z}/4\mathbb{Z})$ is torsion free, applying classification program, one has the following:

通 と く ヨ と く ヨ と

 \star The toroidal $\mathbb{Z}/4\mathbb{Z}$ orbifold $A_{\theta} \rtimes \mathbb{Z}/4\mathbb{Z}$

Theorem

(S. Walters) For irrational numbers θ in a dense G_{δ} set, the C^* -algebra $A_{\theta} \rtimes \mathbb{Z}/4\mathbb{Z}$ has tracial rank zero.

Since $K_1(A_\theta \rtimes \mathbb{Z}/4\mathbb{Z}) = \{0\}$ and $K_0(A_\theta \rtimes \mathbb{Z}/4\mathbb{Z})$ is torsion free, applying classification program, one has the following:

Corollary

(S. Walters) For irrational numbers θ in a dense G_{δ} set, the C^* -algebra $A_{\theta} \rtimes \mathbb{Z}/4\mathbb{Z}$ is AF.

 $\operatorname{Ell}(A) \xrightarrow{\kappa} \operatorname{Ell}(B),$

通 ト イヨ ト イヨト

3

$$\operatorname{Ell}(A) \xrightarrow{\kappa} \operatorname{Ell}(B),$$

then there exists a map $\phi : A \rightarrow B$ such that

F

 $\operatorname{Ell}(\phi) = \kappa.$

A B A A B A

$$\operatorname{Ell}(A) \xrightarrow{\kappa} \operatorname{Ell}(B),$$

then there exists a map $\phi : A \rightarrow B$ such that

F

 $\operatorname{Ell}(\phi) = \kappa.$

(Uniqueness Theorem) Let $\phi, \psi : A \rightarrow B$ be two unital monomorphisms.

通 ト イヨ ト イヨ ト 三 ヨ

$$\operatorname{Ell}(A) \xrightarrow{\kappa} \operatorname{Ell}(B),$$

then there exists a map $\phi : A \rightarrow B$ such that

F

 $\operatorname{Ell}(\phi) = \kappa.$

(Uniqueness Theorem) Let $\phi, \psi : A \rightarrow B$ be two unital monomorphisms. If

 $\mathsf{EII}(\phi) = \mathsf{EII}(\psi),$

通 ト イヨ ト イヨ ト 三 ヨ

5 / 40

$$\operatorname{Ell}(A) \xrightarrow{\kappa} \operatorname{Ell}(B),$$

then there exists a map $\phi : A \rightarrow B$ such that

 $\operatorname{Ell}(\phi) = \kappa.$

(Uniqueness Theorem) Let $\phi, \psi : A \rightarrow B$ be two unital monomorphisms. If

 $\mathsf{EII}(\phi) = \mathsf{EII}(\psi),$

then there exists a unitary $u \in B$ such that

ad $u \circ \phi \approx \psi$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- 2

(Gong and L–2000) Let X be a compact metric space and let A be a unital simple C*-algebra with real rank zero, stable rank one, weakly unperforated $K_0(A)$ and with a unique tracial state τ .

通 と く ヨ と く ヨ と

(Gong and L–2000) Let X be a compact metric space and let A be a unital simple C*-algebra with real rank zero, stable rank one, weakly unperforated $K_0(A)$ and with a unique tracial state τ . Suppose that $\phi, \psi : C(X) \rightarrow A$ are two unital monomorphisms.

通 ト イヨ ト イヨト

6 / 40

(Gong and L-2000) Let X be a compact metric space and let A be a unital simple C*-algebra with real rank zero, stable rank one, weakly unperforated $K_0(A)$ and with a unique tracial state τ . Suppose that $\phi, \psi : C(X) \to A$ are two unital monomorphisms. Then there exists a sequence of unitaries $\{u_n\} \subset A$ such that

$$\lim_{n\to\infty} \mathrm{ad}\; u_n\circ\phi(f)=\psi(f)\;\;\text{for all }f\in C(X)$$

if and only if

通 ト イヨ ト イヨト

(Gong and L-2000) Let X be a compact metric space and let A be a unital simple C*-algebra with real rank zero, stable rank one, weakly unperforated $K_0(A)$ and with a unique tracial state τ . Suppose that $\phi, \psi : C(X) \to A$ are two unital monomorphisms. Then there exists a sequence of unitaries $\{u_n\} \subset A$ such that

$$\lim_{n\to\infty} \mathrm{ad}\, u_n\circ\phi(f)=\psi(f) \ \text{for all } f\in C(X)$$

if and only if

$$[\phi] = [\psi]$$
 in $KL(C(X), A)$ and $\tau \circ \phi = \tau \circ \psi$.

通 ト イヨ ト イヨト

6 / 40

(L—) Let C be a unital AH-algebra and let A be a unital simple C^{*}-algebra with tracial rank zero. Suppose that $\phi, \psi : C \to A$ are two unital monomorphisms.

通 ト イヨト イヨト

(L—) Let C be a unital AH-algebra and let A be a unital simple C^* -algebra with tracial rank zero. Suppose that $\phi, \psi : C \to A$ are two unital monomorphisms. Then there exists a sequence of unitaries $\{u_n\} \subset A$ such that

$$\lim_{n\to\infty} \mathrm{ad}\; u_n\circ\phi(c)=\psi(c)\;\;\textit{for all }\;c\in C$$

if and only if

通 ト イヨ ト イヨト

(L—) Let C be a unital AH-algebra and let A be a unital simple C*-algebra with tracial rank zero. Suppose that $\phi, \psi : C \to A$ are two unital monomorphisms. Then there exists a sequence of unitaries $\{u_n\} \subset A$ such that

$$\lim_{n\to\infty} \mathrm{ad}\; u_n\circ\phi(c)=\psi(c)\;\;\text{for all }\;c\in C$$

if and only if

 $[\phi] = [\psi]$ in KL(C, A) and $\tau \circ \phi = \tau \circ \psi$

for all $\tau \in T(A)$.

通 ト イヨ ト イヨ ト

* A Kishimoto problem:

Let A be a unital simple AT-algebra of real rank zero and let α be an approximately inner automorphism (or α^m be approximately inner for some $m \ge 1$). Suppose also that α has some Rokhlin property.

* A Kishimoto problem:

Let A be a unital simple AT-algebra of real rank zero and let α be an approximately inner automorphism (or α^m be approximately inner for some $m \ge 1$). Suppose also that α has some Rokhlin property.

Is $A \rtimes_{\alpha} \mathbb{Z}$ simple $A\mathbb{T}$ -algebra ?

(N. C. Phillips) Let A be a unital simple C*-algebra and let $\alpha \in Aut(A)$. Then α has the tracial Rokhlin property if the following holds:

A B A A B A

(N. C. Phillips) Let A be a unital simple C*-algebra and let $\alpha \in Aut(A)$. Then α has the tracial Rokhlin property if the following holds: For any $\epsilon > 0$, any finite subset \mathcal{F} , any $n \in \mathbb{N}$ and any non-zero element $a \in A_+$,

- A TE N - A TE N

(N. C. Phillips) Let A be a unital simple C*-algebra and let $\alpha \in Aut(A)$. Then α has the tracial Rokhlin property if the following holds: For any $\epsilon > 0$, any finite subset \mathcal{F} , any $n \in \mathbb{N}$ and any non-zero element $a \in A_+$, there are mutually orthogonal projections $e_1, e_2, ..., e_n \in A$ such that

K 4 E K 4 E K

(N. C. Phillips) Let A be a unital simple C*-algebra and let $\alpha \in Aut(A)$. Then α has the tracial Rokhlin property if the following holds: For any $\epsilon > 0$, any finite subset \mathcal{F} , any $n \in \mathbb{N}$ and any non-zero element $a \in A_+$, there are mutually orthogonal projections $e_1, e_2, ..., e_n \in A$ such that

•
$$\|\alpha(e_i) - e_{i+1}\| < \epsilon, \ i = 1, 2, ..., n-1,$$

通 と く ヨ と く ヨ と

(N. C. Phillips) Let A be a unital simple C*-algebra and let $\alpha \in Aut(A)$. Then α has the tracial Rokhlin property if the following holds: For any $\epsilon > 0$, any finite subset \mathcal{F} , any $n \in \mathbb{N}$ and any non-zero element $a \in A_+$, there are mutually orthogonal projections $e_1, e_2, ..., e_n \in A$ such that

•
$$\|\alpha(e_i) - e_{i+1}\| < \epsilon, \ i = 1, 2, ..., n-1,$$

• $\|e_j a - a e_j\| < \epsilon$ for all $1 \le j \le n$ and for all $a \in \mathcal{F}$,

周 とう きょう うちょう しょう

(N. C. Phillips) Let A be a unital simple C*-algebra and let $\alpha \in Aut(A)$. Then α has the tracial Rokhlin property if the following holds: For any $\epsilon > 0$, any finite subset \mathcal{F} , any $n \in \mathbb{N}$ and any non-zero element $a \in A_+$, there are mutually orthogonal projections $e_1, e_2, ..., e_n \in A$ such that

•
$$\|\alpha(e_i) - e_{i+1}\| < \epsilon$$
, $i = 1, 2, ..., n - 1$,
• $\|e_j a - ae_j\| < \epsilon$ for all $1 \le j \le n$ and for all $a \in \mathcal{F}$,

• with
$$e = \sum_{i=1}^{n} e_i, 1 - e \sim q$$
 for some projection $q \in aAa$.

K 4 E K 4 E K

(Osaka-Phillips 2007) Let A be a unital simple C*-algebra with tracial rank zero and let $\alpha \in Aut(A)$. Suppose that A has a unique tracial state τ . Then TFAE:

通 ト イヨ ト イヨト
(Osaka-Phillips 2007) Let A be a unital simple C*-algebra with tracial rank zero and let $\alpha \in Aut(A)$. Suppose that A has a unique tracial state τ . Then TFAE:

• α has the tracial Rokhlin property;

A 12 N A 12 N

(Osaka-Phillips 2007) Let A be a unital simple C*-algebra with tracial rank zero and let $\alpha \in Aut(A)$. Suppose that A has a unique tracial state τ . Then TFAE:

- α has the tracial Rokhlin property;
- α^{m} is not weakly inner in the GNS representation π_{τ} for any $m \neq 0$;

- T

A B A A B A

(Osaka-Phillips 2007) Let A be a unital simple C*-algebra with tracial rank zero and let $\alpha \in Aut(A)$. Suppose that A has a unique tracial state τ . Then TFAE:

- α has the tracial Rokhlin property;
- α^{m} is not weakly inner in the GNS representation π_{τ} for any $m \neq 0$;
- $A \rtimes_{\alpha} \mathbb{Z}$ has real rank zero;

A B M A B M

(Osaka-Phillips 2007) Let A be a unital simple C*-algebra with tracial rank zero and let $\alpha \in Aut(A)$. Suppose that A has a unique tracial state τ . Then TFAE:

- α has the tracial Rokhlin property;
- α^{m} is not weakly inner in the GNS representation π_{τ} for any $m \neq 0$;
- $A \rtimes_{\alpha} \mathbb{Z}$ has real rank zero;
- $A \rtimes_{\alpha} \mathbb{Z}$ has a unique tracial state.

A B A A B A

Let A be a unital simple C*-algebra and let $\alpha \in Aut(A)$. Then α has the cyclic tracial Rokhlin property if the following holds: For any $\epsilon > 0$, any finite subset \mathcal{F} , any $n \in \mathbb{N}$ and any non-zero element $a \in A_+$, there are mutually orthogonal projections $e_1, e_2, ..., e_n \in A$ (with $e_{n+1} = e_0$) such that

- A TE N - A TE N

Let A be a unital simple C*-algebra and let $\alpha \in Aut(A)$. Then α has the cyclic tracial Rokhlin property if the following holds: For any $\epsilon > 0$, any finite subset \mathcal{F} , any $n \in \mathbb{N}$ and any non-zero element $a \in A_+$, there are mutually orthogonal projections $e_1, e_2, ..., e_n \in A$ (with $e_{n+1} = e_0$) such that

•
$$\|\alpha(e_i) - e_{i+1}\| < \epsilon, i = 1, 2, ..., n,$$

A B F A B F

Huaxin Lin ()

Let A be a unital simple C^{*}-algebra and let $\alpha \in Aut(A)$. Then α has the cyclic tracial Rokhlin property if the following holds: For any $\epsilon > 0$, any finite subset \mathcal{F} , any $n \in \mathbb{N}$ and any non-zero element $a \in A_+$, there are mutually orthogonal projections $e_1, e_2, ..., e_n \in A$ (with $e_{n+1} = e_0$) such that

•
$$\|\alpha(e_i) - e_{i+1}\| < \epsilon, \ i = 1, 2, ..., n,$$

•
$$\|e_j a - a e_j\| < \epsilon$$
 for all $1 \le j \le n$ and for all $a \in \mathcal{F}_j$

• • = • • = •

Let A be a unital simple C*-algebra and let $\alpha \in Aut(A)$. Then α has the cyclic tracial Rokhlin property if the following holds: For any $\epsilon > 0$, any finite subset \mathcal{F} , any $n \in \mathbb{N}$ and any non-zero element $a \in A_+$, there are mutually orthogonal projections $e_1, e_2, ..., e_n \in A$ (with $e_{n+1} = e_0$) such that

•
$$\|\alpha(e_i) - e_{i+1}\| < \epsilon, i = 1, 2, ..., n,$$

•
$$\|e_j a - a e_j\| < \epsilon$$
 for all $1 \le j \le n$ and for all $a \in \mathcal{F}$,

• with
$$e = \sum_{i=1}^{n} e_i$$
, $1 - e \sim q$ for some projection $q \in \overline{aAa}$.

- A TE N - A TE N

Let A be a unital simple C*-algebra and let $\alpha \in Aut(A)$. Then α has the cyclic tracial Rokhlin property if the following holds: For any $\epsilon > 0$, any finite subset \mathcal{F} , any $n \in \mathbb{N}$ and any non-zero element $a \in A_+$, there are mutually orthogonal projections $e_1, e_2, ..., e_n \in A$ (with $e_{n+1} = e_0$) such that

•
$$\|\alpha(e_i) - e_{i+1}\| < \epsilon$$
, $i = 1, 2, ..., n$,
• $\|e_j a - ae_j\| < \epsilon$ for all $1 \le j \le n$ and for all $a \in \mathcal{F}$,
• with $e = \sum_{i=1}^n e_i$, $1 - e \sim q$ for some projection $q \in \overline{AAa}$.

Let A be a C^* -algebra and let T(A) be the tracial state space. Denote by $\rho_A : K_0(A) \to Aff(T(A))$ be the positive homomorphism defined by

$$\rho_A([p]) = \tau \otimes Tr(p) \text{ for all } p \in M_\infty(A).$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

(L-Osaka, and L-2006) Let A be a unital separable simple C*-algebra with tracial rank zero and let $\alpha \in Aut(A)$ be an automorphism such that $\alpha_{*0}^m|_G = id|_G$, where $G \subset K_0(A)$ is a subgroup for which $\rho_A(G)$ is dense in $\rho_A(K_0(A))$ for some m and α has cyclic tracial Rokhlin property,

- 本間 と えき と えき とうき

(L-Osaka, and L-2006) Let A be a unital separable simple C*-algebra with tracial rank zero and let $\alpha \in Aut(A)$ be an automorphism such that $\alpha_{*0}^m|_G = id|_G$, where $G \subset K_0(A)$ is a subgroup for which $\rho_A(G)$ is dense in $\rho_A(K_0(A))$ for some m and α has cyclic tracial Rokhlin property, then $A \rtimes_{\alpha} \mathbb{Z}$ has tracial rank zero.

イロト イポト イヨト イヨト 三日

(L-Osaka, and L-2006) Let A be a unital separable simple C*-algebra with tracial rank zero and let $\alpha \in Aut(A)$ be an automorphism such that $\alpha_{*0}^m|_G = id|_G$, where $G \subset K_0(A)$ is a subgroup for which $\rho_A(G)$ is dense in $\rho_A(K_0(A))$ for some m and α has cyclic tracial Rokhlin property, then $A \rtimes_{\alpha} \mathbb{Z}$ has tracial rank zero.

Using the previous uniqueness theorem, one proves

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

(L-Osaka, and L-2006) Let A be a unital separable simple C*-algebra with tracial rank zero and let $\alpha \in Aut(A)$ be an automorphism such that $\alpha_{*0}^m|_G = id|_G$, where $G \subset K_0(A)$ is a subgroup for which $\rho_A(G)$ is dense in $\rho_A(K_0(A))$ for some m and α has cyclic tracial Rokhlin property, then $A \rtimes_{\alpha} \mathbb{Z}$ has tracial rank zero.

Using the previous uniqueness theorem, one proves

Theorem

(L-2006) Let A be a unital separable simple C*-algebra with tracial rank zero and let $\alpha \in Aut(A)$ be an automorphism such that $\alpha_{*0}^m|_G = id|_G$, where $G \subset K_0(A)$ is a subgroup for which $\rho_A(G)$ is dense in $\rho_A(K_0(A))$ for some m.

3

(人間) システン イラン

(L-Osaka, and L-2006) Let A be a unital separable simple C*-algebra with tracial rank zero and let $\alpha \in Aut(A)$ be an automorphism such that $\alpha_{*0}^m|_G = id|_G$, where $G \subset K_0(A)$ is a subgroup for which $\rho_A(G)$ is dense in $\rho_A(K_0(A))$ for some m and α has cyclic tracial Rokhlin property, then $A \rtimes_{\alpha} \mathbb{Z}$ has tracial rank zero.

Using the previous uniqueness theorem, one proves

Theorem

(L-2006) Let A be a unital separable simple C*-algebra with tracial rank zero and let $\alpha \in Aut(A)$ be an automorphism such that $\alpha_{*0}^m|_G = id|_G$, where $G \subset K_0(A)$ is a subgroup for which $\rho_A(G)$ is dense in $\rho_A(K_0(A))$ for some m. Suppose that α has tracial Rokhlin property.

12 / 40

(L-Osaka, and L-2006) Let A be a unital separable simple C*-algebra with tracial rank zero and let $\alpha \in Aut(A)$ be an automorphism such that $\alpha_{*0}^m|_G = id|_G$, where $G \subset K_0(A)$ is a subgroup for which $\rho_A(G)$ is dense in $\rho_A(K_0(A))$ for some m and α has cyclic tracial Rokhlin property, then $A \rtimes_{\alpha} \mathbb{Z}$ has tracial rank zero.

Using the previous uniqueness theorem, one proves

Theorem

(L-2006) Let A be a unital separable simple C*-algebra with tracial rank zero and let $\alpha \in Aut(A)$ be an automorphism such that $\alpha_{*0}^m|_G = id|_G$, where $G \subset K_0(A)$ is a subgroup for which $\rho_A(G)$ is dense in $\rho_A(K_0(A))$ for some m. Suppose that α has tracial Rokhlin property. Then α has cyclic tracial Rokhlin property.

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Let A be a unital simple AH-algebra with real rank zero and with slow dimension growth and let α be an automorphism on A.

Let A be a unital simple AH-algebra with real rank zero and with slow dimension growth and let α be an automorphism on A. Suppose that α has tracial Rokhlin property

Let A be a unital simple AH-algebra with real rank zero and with slow dimension growth and let α be an automorphism on A. Suppose that α has tracial Rokhlin property and suppose that that $\alpha_{*0}^m|_G = id_G$ for some subgroup $G \subset K_0(A)$ for which $\rho_A(G)$ is dense in $\rho_A(K_0(A))$.

Let A be a unital simple AH-algebra with real rank zero and with slow dimension growth and let α be an automorphism on A. Suppose that α has tracial Rokhlin property and suppose that that $\alpha_{*0}^m|_G = id_G$ for some subgroup $G \subset K_0(A)$ for which $\rho_A(G)$ is dense in $\rho_A(K_0(A))$. Then A is again a unital simple AH-algebra (with real rank zero and slow dimension growth).

Let A a unital simple AH-algebra with real rank zero and with slow dimension growth and let α be an automorphism on A with tracial Rokhlin property.

< 回 ト < 三 ト < 三 ト

Let A a unital simple AH-algebra with real rank zero and with slow dimension growth and let α be an automorphism on A with tracial Rokhlin property. Suppose that α^m is approximately inner for some integer m.

通 ト イヨ ト イヨト

Let A a unital simple AH-algebra with real rank zero and with slow dimension growth and let α be an automorphism on A with tracial Rokhlin property. Suppose that α^m is approximately inner for some integer m. Then $A \rtimes_{\alpha} \mathbb{Z}$ is again a unital simple AH-algebra (with real rank zero and slow dimension growth).

Let A a unital simple AH-algebra with real rank zero and with slow dimension growth and let α be an automorphism on A with tracial Rokhlin property. Suppose that α^m is approximately inner for some integer m. Then $A \rtimes_{\alpha} \mathbb{Z}$ is again a unital simple AH-algebra (with real rank zero and slow dimension growth).

AF-embedding

Let X be a compact metric space and α be a homeomorphism on X.

A B M A B M

Let A a unital simple AH-algebra with real rank zero and with slow dimension growth and let α be an automorphism on A with tracial Rokhlin property. Suppose that α^m is approximately inner for some integer m. Then $A \rtimes_{\alpha} \mathbb{Z}$ is again a unital simple AH-algebra (with real rank zero and slow dimension growth).

AF-embedding

Let X be a compact metric space and α be a homeomorphism on X. It was proved by Pimsner that $C(X) \rtimes_{\alpha} \mathbb{Z}$ is quasidiagonal if and only if

通 ト イヨ ト イヨト

Let A a unital simple AH-algebra with real rank zero and with slow dimension growth and let α be an automorphism on A with tracial Rokhlin property. Suppose that α^m is approximately inner for some integer m. Then $A \rtimes_{\alpha} \mathbb{Z}$ is again a unital simple AH-algebra (with real rank zero and slow dimension growth).

AF-embedding

Let X be a compact metric space and α be a homeomorphism on X. It was proved by Pimsner that $C(X) \rtimes_{\alpha} \mathbb{Z}$ is quasidiagonal if and only if α is pseudo-non-wondering,

通 ト イヨ ト イヨト

Let A a unital simple AH-algebra with real rank zero and with slow dimension growth and let α be an automorphism on A with tracial Rokhlin property. Suppose that α^m is approximately inner for some integer m. Then $A \rtimes_{\alpha} \mathbb{Z}$ is again a unital simple AH-algebra (with real rank zero and slow dimension growth).

AF-embedding

Let X be a compact metric space and α be a homeomorphism on X. It was proved by Pimsner that $C(X) \rtimes_{\alpha} \mathbb{Z}$ is quasidiagonal if and only if α is pseudo-non-wondering, and if and only if $C(X) \rtimes_{\alpha} \mathbb{Z}$ can be embedded into an AF-algebra.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

イロト 不得下 イヨト イヨト 三日

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let X be a compact metric space and let $\Gamma : \mathbb{Z}^2 \to Aut(C(X))$ be a homomorphism. When can $C(X) \rtimes_{\Gamma} \mathbb{Z}^2$ be embedded into an AF-algebra?

通 ト イヨ ト イヨ ト

Let X be a compact metric space and let $\Gamma : \mathbb{Z}^2 \to Aut(C(X))$ be a homomorphism. When can $C(X) \rtimes_{\Gamma} \mathbb{Z}^2$ be embedded into an AF-algebra?

Theorem

(N. Brown –1998) Let A be a unital AF algebra and let $\alpha \in Aut(A)$. Then TFAE:

・ 同 ト ・ ヨ ト ・ ヨ ト

Let X be a compact metric space and let $\Gamma : \mathbb{Z}^2 \to Aut(C(X))$ be a homomorphism. When can $C(X) \rtimes_{\Gamma} \mathbb{Z}^2$ be embedded into an AF-algebra?

Theorem

(N. Brown –1998) Let A be a unital AF algebra and let $\alpha \in Aut(A)$. Then TFAE:

(1) $A \rtimes_{\alpha} \mathbb{Z}$ can be embedded into an AF-algebra;

(人間) トイヨト (日) - 三日

Let X be a compact metric space and let $\Gamma : \mathbb{Z}^2 \to Aut(C(X))$ be a homomorphism. When can $C(X) \rtimes_{\Gamma} \mathbb{Z}^2$ be embedded into an AF-algebra?

Theorem

(N. Brown –1998) Let A be a unital AF algebra and let $\alpha \in Aut(A)$. Then TFAE:

(1) $A \rtimes_{\alpha} \mathbb{Z}$ can be embedded into an AF-algebra;

(2) $A \rtimes_{\alpha} \mathbb{Z}$ is quasidiagonal;

(人間) とうり くうり うう

Let X be a compact metric space and let $\Gamma : \mathbb{Z}^2 \to Aut(C(X))$ be a homomorphism. When can $C(X) \rtimes_{\Gamma} \mathbb{Z}^2$ be embedded into an AF-algebra?

Theorem

(N. Brown –1998) Let A be a unital AF algebra and let $\alpha \in Aut(A)$. Then TFAE:

(1) $A \rtimes_{\alpha} \mathbb{Z}$ can be embedded into an AF-algebra;

(2) $A \rtimes_{\alpha} \mathbb{Z}$ is quasidiagonal;

(人間) とうり くうり うう

Let X be a compact metric space and let $\Gamma : \mathbb{Z}^2 \to Aut(C(X))$ be a homomorphism. When can $C(X) \rtimes_{\Gamma} \mathbb{Z}^2$ be embedded into an AF-algebra?

Theorem

(N. Brown –1998) Let A be a unital AF algebra and let $\alpha \in Aut(A)$. Then TFAE:

- (1) $A \rtimes_{\alpha} \mathbb{Z}$ can be embedded into an AF-algebra;
- (2) $A \rtimes_{\alpha} \mathbb{Z}$ is quasidiagonal;
- (3) $A \rtimes_{\alpha} \mathbb{Z}$ is stably finite and

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let X be a compact metric space and let $\Gamma : \mathbb{Z}^2 \to Aut(C(X))$ be a homomorphism. When can $C(X) \rtimes_{\Gamma} \mathbb{Z}^2$ be embedded into an AF-algebra?

Theorem

(N. Brown –1998) Let A be a unital AF algebra and let $\alpha \in Aut(A)$. Then TFAE:

(1) $A \rtimes_{\alpha} \mathbb{Z}$ can be embedded into an AF-algebra;

- (2) $A \rtimes_{\alpha} \mathbb{Z}$ is quasidiagonal;
- (3) $A \rtimes_{\alpha} \mathbb{Z}$ is stably finite and

(4) if
$$x \in K_0(A)$$
, $\alpha_*(x) \leq x$, then $\alpha_*(x) = x$.

(人間) システン ステン・テ

(N. Brown) Let A be a UHF-algebra and $\alpha : \mathbb{Z}^n \to Aut(A)$ be a homomorphism. Then there is an AF-algebra B and a monomorphism $\phi : A \rtimes_{\alpha} \mathbb{Z}^n \to B$.
Theorem

(N. Brown) Let A be a UHF-algebra and $\alpha : \mathbb{Z}^n \to Aut(A)$ be a homomorphism. Then there is an AF-algebra B and a monomorphism $\phi : A \rtimes_{\alpha} \mathbb{Z}^n \to B$.

Theorem

(H. Matui) Let A be a unital simple AT-algebra of real rank zero and let $\alpha \in Aut(A)$. Then there is always a unital simple AF-algebra B and a unital monomorphism $\phi : A \rtimes_{\alpha} \mathbb{Z} \to B$.

(本間) (本語) (本語) (語)

(人間) システン イラン

-2

When can $C \times_{\alpha} \mathbb{Z}$ be embedded into a unital simple AF-algebra?

・ 同 ト ・ ヨ ト ・ ヨ ト

- 20

When can $C \times_{\alpha} \mathbb{Z}$ be embedded into a unital simple AF-algebra?

When can C be embedded into a unital simple AF-algebra?

通 ト イヨ ト イヨト

When can $C \times_{\alpha} \mathbb{Z}$ be embedded into a unital simple AF-algebra?

When can C be embedded into a unital simple AF-algebra?

Suppose that there is a unital monomorphism $\phi : C \to B$ for some unital simple AF-algebra B.

周 と く き と く き と … き

When can $C \times_{\alpha} \mathbb{Z}$ be embedded into a unital simple AF-algebra?

When can C be embedded into a unital simple AF-algebra?

Suppose that there is a unital monomorphism $\phi : C \to B$ for some unital simple AF-algebra B. Let $\tau \in T(B)$. Then $\tau \circ \phi$ is a faithful tracial state of C.

周 とう きょう うちょう しょう

When can $C \times_{\alpha} \mathbb{Z}$ be embedded into a unital simple AF-algebra?

When can C be embedded into a unital simple AF-algebra?

Suppose that there is a unital monomorphism $\phi : C \to B$ for some unital simple AF-algebra B. Let $\tau \in T(B)$. Then $\tau \circ \phi$ is a faithful tracial state of C.

Proposition

Let C be a unital AH-algebra.

通 ト イヨ ト イヨ ト

When can $C \times_{\alpha} \mathbb{Z}$ be embedded into a unital simple AF-algebra?

When can C be embedded into a unital simple AF-algebra?

Suppose that there is a unital monomorphism $\phi : C \to B$ for some unital simple AF-algebra B. Let $\tau \in T(B)$. Then $\tau \circ \phi$ is a faithful tracial state of C.

Proposition

Let C be a unital AH-algebra. Then C can be embedded into a unital simple AF-algebra if and only if C admits a faithful tracial state.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem

(L-2007) Let C be a unital AH-algebra and let $\alpha \in Aut(C)$. Then $C \rtimes_{\alpha} \mathbb{Z}$ can be embedded into a unital simple AF-algebra if and only if C admits a faithful α -invariant tracial state.

Denote by \mathcal{U} the universal UHF-algebra $\mathcal{U} = \bigotimes_{n \ge 1} M_n$. Let $\{e_{i,j}^{(n)}\}$ be the canonical matrix units for M_n . Let $u_n \in M_n$ be the unitary matrix such that $\operatorname{ad} u_n(e_{i,i}^{(n)}) = e_{i+1,i+1}^{(n)}$ (modulo n). Let $\sigma = \bigotimes_{n \ge 1} \operatorname{ad} u_n \in Aut(\mathcal{U})$ be the shift.

A B A A B A

Let A be a unital separable C*-algebra and let B be a unital C*-algebra. Suppose that $h: A \to B$ is a unital monomorphism. We say h satisfies property (H) for a positive number L, if the following holds: For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset A$, if there is a continuous path of unitaries $\{v_t : t \in [0, 1]\}$ in B with v(1) = 1 such that

$$\|v_t \operatorname{ad} w \circ h(a) - \operatorname{ad} w \circ h(a)v_t\| < \delta \text{ for all } a \in \mathcal{G} \text{ and } t \in [0, 1],$$

where $w \in B$ is a unitary, there is a continuous path of unitaries $\{u_t : t \in [0,1]\}$ such that

$$u_0 = v_0, \ v_1 = 1 \ \text{and} \ \|u_t \operatorname{ad} w \circ h(a) - \operatorname{ad} w \circ h(a)u_t\| < \epsilon$$

for all $a \in \mathcal{F}$ and all $t \in [0, 1]$. Moreover,

$$\|u_t - u_{t'}\| \le L|t - t'|$$
 for all $t, t' \in [0, 1]$.

The following is a version of a lemma of H. Matui:

Lemma

Let A be a unital separable C*-algebra, let B be a unital simple separable C*-algebra of tracial rank zero, let $\phi : A \to B$ be a unital embedding, let $\alpha \in Aut(A)$ and let $\beta_0 \in Aut(B)$ be automorphisms. Suppose that $\phi \circ \alpha$ has the property (H) for a positive number L > 0and suppose that there is a continuous path $\{v(t) : t \in [0, \infty)\}$ of unitaries in $B \otimes U$ satisfying the following:

$$\lim_{t\to\infty} \|\phi\circ\alpha(a) - \operatorname{ad} v(t)\circ\beta\circ\phi(a)\| = 0$$

for all $a \in A$, where $\beta = \beta_0 \otimes \sigma$ and \mathcal{U} and σ are defined before. Then there are unitaries $w, V_n \in B \otimes \mathcal{U}$ (n = 1, 2, ...,) such that

ad
$$\phi' \circ \alpha = ad \mathbf{w} \circ \beta \circ \phi'$$
,

where $\phi'(a) = \lim_{n \to \infty} \operatorname{ad} (V_1 V_2 \cdots V_n) \circ \phi$.

Let *C* and *B* be two unital *C*^{*}-algebras. Suppose that $\phi, \psi : C \to B$ be two unital monomorphisms. We say that ϕ and ψ are asymptotically unitarily equivalent if there is a continuous path of unitaries $\{u_t : t \in [0, \infty)\} \subset B$ such that

$$\lim_{t\to\infty} \operatorname{ad} u_t \circ \psi(c) = \phi(c) \text{ for all } c \in C.$$

通 ト イヨ ト イヨト

Let *C* and *B* be two unital *C*^{*}-algebras. Suppose that $\phi, \psi : C \to B$ be two unital monomorphisms. We say that ϕ and ψ are asymptotically unitarily equivalent if there is a continuous path of unitaries $\{u_t : t \in [0, \infty)\} \subset B$ such that

$$\lim_{t\to\infty} \operatorname{ad} u_t \circ \psi(c) = \phi(c) \text{ for all } c \in C.$$

When are ϕ and ψ asymptotically unitarily equivalent?

通 ト イヨ ト イヨト

Let *C* and *B* be two unital *C*^{*}-algebras. Suppose that $\phi, \psi : C \to B$ be two unital monomorphisms. We say that ϕ and ψ are asymptotically unitarily equivalent if there is a continuous path of unitaries $\{u_t : t \in [0, \infty)\} \subset B$ such that

$$\lim_{t\to\infty} \operatorname{ad} u_t \circ \psi(c) = \phi(c) \text{ for all } c \in C.$$

When are ϕ and ψ asymptotically unitarily equivalent?

Definition

Mapping torus. Let C and A be unital C^* -algebras and let $\phi_1, \phi_2 : C \to A$ be two unital monomorphisms. Set

$$M_{\phi_1,\phi_2} = \{f \in C([0,1],A) : f(0) = \phi_1(c), f(1) = \phi_2(c) \text{ for some } c \in C\}.$$

$$0 \rightarrow SA \rightarrow M_{\phi_1,\phi_2} \rightarrow C \rightarrow 0.$$

< 🗇 🕨

4

$$0 \rightarrow SA \rightarrow M_{\phi_1,\phi_2} \rightarrow C \rightarrow 0.$$

Suppose that there exists a continuous path $\{u(t)\}$ so that $\lim_{t\to\infty} \operatorname{ad} u(t) \circ \phi_1(c) = \phi_2(c)$ for all $c \in C$.

$$0 \rightarrow SA \rightarrow M_{\phi_1,\phi_2} \rightarrow C \rightarrow 0.$$

Suppose that there exists a continuous path $\{u(t)\}$ so that $\lim_{t\to\infty} \operatorname{ad} u(t) \circ \phi_1(c) = \phi_2(c)$ for all $c \in C$. Define $\theta : C \to M_{\phi_1,\phi_2}$ by

$$\theta(c)(t) = u(t)^* \phi_1(c)u(t)$$
 for all $t \in [0,1)$

$$0 \to SA \to M_{\phi_1,\phi_2} \to C \to 0.$$

Suppose that there exists a continuous path $\{u(t)\}$ so that $\lim_{t\to\infty} \operatorname{ad} u(t) \circ \phi_1(c) = \phi_2(c)$ for all $c \in C$. Define $\theta : C \to M_{\phi_1,\phi_2}$ by

$$\theta(c)(t) = u(t)^* \phi_1(c)u(t)$$
 for all $t \in [0,1)$

and

$$\theta(c)(1) = \phi_2(c).$$

イロト 不得 トイヨト イヨト 二日

23 / 40

$$\tau \circ \phi_1 = \tau \circ \phi_2.$$

イロト 不得 トイヨト イヨト 二日

$$\tau \circ \phi_1 = \tau \circ \phi_2.$$

Let $u \in M_{\phi_1,\phi_2}$ be a unitary such that $t \mapsto u(t)$ is piecewise C^1 .

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$$\tau \circ \phi_1 = \tau \circ \phi_2.$$

Let $u \in M_{\phi_1,\phi_2}$ be a unitary such that $t \mapsto u(t)$ is piecewise C^1 . For $\tau \in T(A)$, we define

$$\rho_{\tau}(u) = \frac{1}{2\pi} \int_0^1 \tau(\frac{du(t)}{dt}u(t)^*) dt.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$$\tau \circ \phi_1 = \tau \circ \phi_2.$$

Let $u \in M_{\phi_1,\phi_2}$ be a unitary such that $t \mapsto u(t)$ is piecewise C^1 . For $\tau \in T(A)$, we define

$$\rho_{\tau}(u) = \frac{1}{2\pi} \int_0^1 \tau(\frac{du(t)}{dt}u(t)^*) dt.$$

Since $\tau(\frac{du(t)}{dt}u(t)^*) = -\tau(u(t)\frac{du(t)^*}{dt})$, it is real. If $u, v \in M_{\phi_1,\phi_2}$, then $\rho_\tau(uv) = \rho_\tau(u) + \rho_\tau(v).$

$$\tau \circ \phi_1 = \tau \circ \phi_2.$$

Let $u \in M_{\phi_1,\phi_2}$ be a unitary such that $t \mapsto u(t)$ is piecewise C^1 . For $\tau \in T(A)$, we define

$$\rho_{\tau}(u)=\frac{1}{2\pi}\int_0^1\tau(\frac{du(t)}{dt}u(t)^*)dt.$$

Since $\tau(\frac{du(t)}{dt}u(t)^*) = -\tau(u(t)\frac{du(t)^*}{dt})$, it is real. If $u, v \in M_{\phi_1,\phi_2}$, then $\rho_\tau(uv) = \rho_\tau(u) + \rho_\tau(v).$

Suppose that $h = h^*$ and $h \in M_{\phi_1,\phi_2}$ and h is C^1 . Suppose $u = e^{2\pi i h}$.

通 と く き と く き と … き

$$\tau \circ \phi_1 = \tau \circ \phi_2.$$

Let $u \in M_{\phi_1,\phi_2}$ be a unitary such that $t \mapsto u(t)$ is piecewise C^1 . For $\tau \in T(A)$, we define

$$\rho_{\tau}(u) = \frac{1}{2\pi} \int_0^1 \tau(\frac{du(t)}{dt}u(t)^*) dt.$$

Since $\tau(\frac{du(t)}{dt}u(t)^*) = -\tau(u(t)\frac{du(t)^*}{dt})$, it is real. If $u, v \in M_{\phi_1,\phi_2}$, then $\rho_\tau(uv) = \rho_\tau(u) + \rho_\tau(v).$

Suppose that $h = h^*$ and $h \in M_{\phi_1,\phi_2}$ and h is C^1 . Suppose $u = e^{2\pi i h}$. Then

$$ho_{ au}(u)=\int_0^1 au(rac{du(t)}{dt})dt= au(h(1))- au(h(0))=0,$$

since $\tau \circ \phi_1 = \tau \circ \phi_2$. From here one concludes that ρ is constant on each connected component of C^1 -unitary group of M_{ϕ_1,ϕ_2} .

Consequently, we obtain a homomorphism $R_{\phi_1,\phi_2}: K_1(M_{\phi_1,\phi_2}) \to Aff(T(A)).$

イロト 不得 とくまとう まし

Consequently, we obtain a homomorphism $R_{\phi_1,\phi_2}: \mathcal{K}_1(\mathcal{M}_{\phi_1,\phi_2}) \to Aff(\mathcal{T}(\mathcal{A})).$ Consider

$$0
ightarrow K_0(A)
ightarrow K_1(M_{\phi_1,\phi_2})
ightarrow K_1(C)
ightarrow 0.$$

- 本語 医 本 医 医 一 医

Consequently, we obtain a homomorphism $R_{\phi_1,\phi_2}: K_1(M_{\phi_1,\phi_2}) \to Aff(T(A)).$ Consider

$$0 \to K_0(A) \to K_1(M_{\phi_1,\phi_2}) \to K_1(C) \to 0.$$

It splits.

24 / 40

Consequently, we obtain a homomorphism $R_{\phi_1,\phi_2}: \mathcal{K}_1(\mathcal{M}_{\phi_1,\phi_2}) \to Aff(\mathcal{T}(\mathcal{A})).$ Consider

$$0 \to K_0(A) \to K_1(M_{\phi_1,\phi_2}) \to K_1(C) \to 0.$$

It splits. If $p \in A$ is a projection, $\imath_{*0}([p]) = [u]$ can be defined by

$$u(t) = e^{2\pi i t} p + (1 - p).$$

・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Thus, we obtain a homomorphism $\rho_{\tau}: \mathcal{K}_1(\mathcal{M}_{\phi_1,\phi_2}) \to \mathbb{R}$.

Consequently, we obtain a homomorphism $R_{\phi_1,\phi_2}: K_1(M_{\phi_1,\phi_2}) \to Aff(T(A)).$ Consider

$$0 \to K_0(A) \to K_1(M_{\phi_1,\phi_2}) \to K_1(C) \to 0.$$

It splits. If $p \in A$ is a projection, $\imath_{*0}([p]) = [u]$ can be defined by

$$u(t) = e^{2\pi i t} p + (1 - p).$$

We have the following commutative diagram:

$$\begin{array}{ccc} K_0(A) & \stackrel{\iota_*}{\longrightarrow} & K_1(M_{\phi_1,\phi_2}) \\ & \rho_A \searrow & \swarrow & R_{\phi_1,\phi_2} \end{array}$$

Thus, we obtain a homomorphism $\rho_{\tau}: \mathcal{K}_1(\mathcal{M}_{\phi_1,\phi_2}) \to \mathbb{R}$.

Consequently, we obtain a homomorphism $R_{\phi_1,\phi_2}: K_1(M_{\phi_1,\phi_2}) \to Aff(T(A)).$ Consider

$$0 \to K_0(A) \to K_1(M_{\phi_1,\phi_2}) \to K_1(C) \to 0.$$

It splits. If $p \in A$ is a projection, $\imath_{*0}([p]) = [u]$ can be defined by

$$u(t) = e^{2\pi i t} p + (1 - p).$$

We have the following commutative diagram:

$$\begin{array}{ccc} K_0(A) & \stackrel{\iota_*}{\longrightarrow} & K_1(M_{\phi_1,\phi_2}) \\ & \rho_A \searrow & \swarrow & R_{\phi_1,\phi_2} \\ & & Aff(T(A)), \end{array}$$

where $\rho_A([p])(\tau) = \tau(p)$ for each $\tau \in T(A)$.

通 く き と く ほ と く 唱

Thus, we obtain a homomorphism $\rho_{\tau}: \mathcal{K}_1(\mathcal{M}_{\phi_1,\phi_2}) \to \mathbb{R}$.

Consequently, we obtain a homomorphism $R_{\phi_1,\phi_2}: K_1(M_{\phi_1,\phi_2}) \to Aff(T(A)).$ Consider

$$0 \to K_0(A) \to K_1(M_{\phi_1,\phi_2}) \to K_1(C) \to 0.$$

It splits. If $p \in A$ is a projection, $\imath_{*0}([p]) = [u]$ can be defined by

$$u(t) = e^{2\pi i t} p + (1 - p).$$

We have the following commutative diagram:

$$\begin{array}{ccc} \mathcal{K}_{0}(\mathcal{A}) & \stackrel{\iota_{*}}{\longrightarrow} & \mathcal{K}_{1}(\mathcal{M}_{\phi_{1},\phi_{2}}) \\ \rho_{\mathcal{A}} \searrow & \swarrow & \mathcal{R}_{\phi_{1},\phi_{2}} \\ & & \mathcal{A}ff(\mathcal{T}(\mathcal{A})), \end{array}$$

where $\rho_A([p])(\tau) = \tau(p)$ for each $\tau \in T(A)$. Moreover, R_{ϕ_1,ϕ_2} extends ρ_A .

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

When $[\phi_1] = [\phi_2]$ in KK(C, A), there exists a θ so that the following splits

$$0 \to \underline{K}(SA) \to \underline{K}(M_{\phi_1,\phi_2}) \to \underline{K}(C) \to 0.$$

イロト 不得 トイヨト イヨト 二日

When $[\phi_1] = [\phi_2]$ in KK(C, A), there exists a θ so that the following splits

$$0 \to \underline{K}(SA) \to \underline{K}(M_{\phi_1,\phi_2}) \to \underline{K}(C) \to 0.$$

We write

$$ilde{\eta}_{\phi_1,\phi_2} = 0$$

if θ maps $K_1(C)$ into ker R_{ϕ_1,ϕ_2} , or we say a rotation map vanishes. When $K_1(C)$ is free, if

$$R_{\phi_1,\phi_2}(K_1(C)) \subset \rho_A(K_0(A)),$$

then $\tilde{\eta}_{\phi_1,\phi_2} = 0$. If $[\phi_1] = [\phi_2]$ in KK(C, A), $R_{\phi_1,\phi_2} \circ \theta(K_1(C)) \subset \rho_A(K_0(A))$ and $0 \to \ker \rho_A \to G \to R_{\phi_1,\phi_2} \circ \theta(K_1(C)) \to 0$

splits (where $G = \rho_A^{-1}(R_{\phi,\psi} \circ \theta(K_1(C)))$). then $\tilde{\eta}_{\phi_1,\phi_2} = 0$.

Proposition

Let A be a unital separable C*-algebra satisfying the Universal Coefficient Theorem and let B be a unital separable C*-algebra.

通 ト イヨ ト イヨト

3

Proposition

Let A be a unital separable C*-algebra satisfying the Universal Coefficient Theorem and let B be a unital separable C*-algebra. Suppose that $\phi_1, \phi_2 : A \to B$ are unital monomorphisms such that

$$\lim_{\to\infty} \operatorname{ad} u(t) \circ \phi_1(a) = \phi_2(a) \text{ for all } a \in A$$

for some continuous and piecewise smooth path of unitaries $\{u(t) : t \in [0, \infty)\} \subset B$.

通 と く き と く き と … き
Proposition

Let A be a unital separable C*-algebra satisfying the Universal Coefficient Theorem and let B be a unital separable C*-algebra. Suppose that $\phi_1, \phi_2 : A \to B$ are unital monomorphisms such that

$$\lim_{\to\infty} \operatorname{ad} u(t) \circ \phi_1(a) = \phi_2(a) \text{ for all } a \in A$$

for some continuous and piecewise smooth path of unitaries $\{u(t) : t \in [0, \infty)\} \subset B$. Then

$$[\phi_1] = [\phi_2], \ \tau \circ \phi_1 = \tau \circ \phi_2$$
 for all $\tau \in T(A)$
and $\tilde{\eta}_{\phi_1,\phi_2} = 0.$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

(Kishimoto and Kumjian) Let A be a unital simple AT-algebra with real rank zero and let α , $\beta \in Aut(A)$. Then α and β are asymptotically unitarily equivalent if and only if

$$[\alpha] = [\beta]$$
 in $KK(A, A)$ and $\tilde{\eta}_{\alpha,\beta} = \{0\}.$

(L-2007) Let C be a unital AH-algebra and let A be a unital separable simple C^{*}-algebra with tracial rank zero.

(人間) トイヨト イヨト

3

(L—2007) Let C be a unital AH-algebra and let A be a unital separable simple C*-algebra with tracial rank zero. Suppose that $\phi_1, \phi_2 : C \to A$ are two unital monomorphisms.

< 回 ト < 三 ト < 三 ト

(L—2007) Let C be a unital AH-algebra and let A be a unital separable simple C*-algebra with tracial rank zero. Suppose that $\phi_1, \phi_2 : C \to A$ are two unital monomorphisms. Then $\phi_1, \phi_2 : C \to A$ are asymptotically unitarily equivalent

(L—2007) Let C be a unital AH-algebra and let A be a unital separable simple C*-algebra with tracial rank zero. Suppose that $\phi_1, \phi_2 : C \to A$ are two unital monomorphisms. Then $\phi_1, \phi_2 : C \to A$ are asymptotically unitarily equivalent if and only if

$$[\phi_1] = [\phi_2]$$
 in $KK(C, A)$,

(L—2007) Let C be a unital AH-algebra and let A be a unital separable simple C*-algebra with tracial rank zero. Suppose that $\phi_1, \phi_2 : C \to A$ are two unital monomorphisms. Then $\phi_1, \phi_2 : C \to A$ are asymptotically unitarily equivalent if and only if

$$[\phi_1] = [\phi_2] \text{ in } \mathsf{KK}(\mathsf{C},\mathsf{A}),$$

$$\tau \circ \phi_1 = \tau \circ \phi_2 \text{ and }$$

(L—2007) Let C be a unital AH-algebra and let A be a unital separable simple C*-algebra with tracial rank zero. Suppose that $\phi_1, \phi_2 : C \to A$ are two unital monomorphisms. Then $\phi_1, \phi_2 : C \to A$ are asymptotically unitarily equivalent if and only if

$$\begin{array}{lll} \left[\phi_{1}\right] &=& \left[\phi_{2}\right] \mbox{ in } KK(C,A), \\ \tau \circ \phi_{1} &=& \tau \circ \phi_{2} \mbox{ and } \\ \tilde{\eta}_{\phi_{1},\phi_{2}} &=& 0. \end{array}$$

(L—2007) Let C be a unital AH-algebra and let A be a unital separable simple C*-algebra with tracial rank zero. Suppose that $\phi_1, \phi_2 : C \to A$ are two unital monomorphisms. Then $\phi_1, \phi_2 : C \to A$ are asymptotically unitarily equivalent if and only if

This is a uniqueness theorem.

(L—2007) Let C be a unital AH-algebra and let A be a unital separable simple C*-algebra with tracial rank zero. Suppose that $\phi_1, \phi_2 : C \to A$ are two unital monomorphisms. Then $\phi_1, \phi_2 : C \to A$ are asymptotically unitarily equivalent if and only if

This is a uniqueness theorem.

It is used a previously mentioned uniqueness theorem,

• • = • • = •

(L—2007) Let C be a unital AH-algebra and let A be a unital separable simple C*-algebra with tracial rank zero. Suppose that $\phi_1, \phi_2 : C \to A$ are two unital monomorphisms. Then $\phi_1, \phi_2 : C \to A$ are asymptotically unitarily equivalent if and only if

This is a uniqueness theorem.

It is used a previously mentioned uniqueness theorem, an existence theorem

(L—2007) Let C be a unital AH-algebra and let A be a unital separable simple C*-algebra with tracial rank zero. Suppose that $\phi_1, \phi_2 : C \to A$ are two unital monomorphisms. Then $\phi_1, \phi_2 : C \to A$ are asymptotically unitarily equivalent if and only if

This is a uniqueness theorem.

It is used a previously mentioned uniqueness theorem, an existence theorem as well as the Basic Homotopy Lemma.

通 と く き と く き と … き

(L-2007) Let C be a unital AH-algebra and let $\alpha \in Aut(C)$.

イロト イポト イヨト イヨト

3

(L-2007) Let C be a unital AH-algebra and let $\alpha \in Aut(C)$. Then $C \rtimes_{\alpha} \mathbb{Z}$ can be embedded into a unital simple AF-algebra

(L-2007) Let C be a unital AH-algebra and let $\alpha \in Aut(C)$. Then $C \rtimes_{\alpha} \mathbb{Z}$ can be embedded into a unital simple AF-algebraif and only if C admits a faithful α -invariant tracial state.

A B K A B K

Huaxin Lin ()

 $\mathcal{O} \land \mathcal{O}$

-2

Huaxin Lin ()

Applications of the Elliott program

Let A and C be two unital C*-algebras and let $\phi_1, \phi_2 : C \to A$ be unital homomorphisms. We say that ϕ_1 and ϕ_2 are *strongly* asymptotically unitarily equivalent if there exists a continuous path of unitaries $\{u_t : t \in [0, \infty)\} \subset A$ such that

$$u_0 = 1_A$$
 and $\lim_{t \to \infty} \operatorname{ad} u_t \circ \phi_1(c) = \phi_2(c)$ for all $c \in C$.

Let A and C be unital C^* -algebras. Define

$$H_1(K_0(C), K_1(A)) = \{ x \in K_1(A) : \exists \alpha \in Hom(K_0(C), K_1(A)) \\ \alpha([1_C]) = x \}.$$

イロト イポト イヨト イヨト

-2

Let A and C be unital C^* -algebras. Define

 $H_1(K_0(C), K_1(A)) = \{ x \in K_1(A) : \exists \alpha \in Hom(K_0(C), K_1(A)) \\ \alpha([1_C]) = x \}.$

Proposition

Let A be a unital separable C*-algebra and let B be a unital C*-algebra. Suppose that $\phi : A \to B$ is a unital homomorphism and $u \in U(B)$ is a unitary.

Let A and C be unital C^* -algebras. Define

 $H_1(K_0(C), K_1(A)) = \{ x \in K_1(A) : \exists \alpha \in Hom(K_0(C), K_1(A)) \\ \alpha([1_C]) = x \}.$

Proposition

Let A be a unital separable C*-algebra and let B be a unital C*-algebra. Suppose that $\phi : A \to B$ is a unital homomorphism and $u \in U(B)$ is a unitary. Suppose that there is a continuous path of unitaries $\{u(t) : t \in [0, \infty)\} \subset B$ such that

$$u(0) = 1_B$$
 and $\lim_{t\to\infty} \operatorname{ad} u(t) \circ \phi(a) = \operatorname{ad} u \circ \phi(a)$

for all $a \in A$.

Let A and C be unital C^* -algebras. Define

 $H_1(K_0(C), K_1(A)) = \{ x \in K_1(A) : \exists \alpha \in Hom(K_0(C), K_1(A)) \\ \alpha([1_C]) = x \}.$

Proposition

Let A be a unital separable C*-algebra and let B be a unital C*-algebra. Suppose that $\phi : A \to B$ is a unital homomorphism and $u \in U(B)$ is a unitary. Suppose that there is a continuous path of unitaries $\{u(t) : t \in [0, \infty)\} \subset B$ such that

$$u(0) = 1_B$$
 and $\lim_{t\to\infty} \operatorname{ad} u(t) \circ \phi(a) = \operatorname{ad} u \circ \phi(a)$

for all $a \in A$. Then

 $[u] \in H_1(K_0(A), K_1(B)).$

(L-2007) Let C be a unital AH-algebra and let A be a unital separable simple C^{*}-algebra.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

(L—2007) Let C be a unital AH-algebra and let A be a unital separable simple C*-algebra. Suppose that $H_1(K_0(C), K_1(A)) = K_1(A)$ and suppose that $\phi_1, \phi_2 : C \to A$ are two unital monomorphisms which are asymptotically unitarily equivalent.

< 回 ト < 三 ト < 三 ト

(L-2007) Let C be a unital AH-algebra and let A be a unital separable simple C*-algebra. Suppose that $H_1(K_0(C), K_1(A)) = K_1(A)$ and suppose that $\phi_1, \phi_2 : C \to A$ are two unital monomorphisms which are asymptotically unitarily equivalent. Then there exists a continuous path of unitaries $\{u(t) : t \in [0, \infty)\}$ such that

$$u(0) = 1_A$$
 and $\lim_{t \to \infty} \operatorname{ad} u(t) \circ \phi_1(a) = \phi_2(a)$ for all $a \in C$.

< 回 ト < 三 ト < 三 ト

Let X be a compact metric space and let B be a unital separable simple C^* -algebra with tracial rank zero.

3

Let X be a compact metric space and let B be a unital separable simple C*-algebra with tracial rank zero. Suppose that $\phi_1, \phi_2 : C(X) \rightarrow B$ are two unital monomorphisms.

Let X be a compact metric space and let B be a unital separable simple C*-algebra with tracial rank zero. Suppose that $\phi_1, \phi_2 : C(X) \to B$ are two unital monomorphisms. Then there exists a continuous path of unitaries $\{u(t) : t \in [0, \infty)\} \subset B$ such that

$$u(0)=1_B$$
 and $\lim_{t
ightarrow\infty} \mathrm{ad}\ u(t)\circ\phi_1(a)=\phi_2(a)$

for all $a \in C(X)$

Let X be a compact metric space and let B be a unital separable simple C*-algebra with tracial rank zero. Suppose that $\phi_1, \phi_2 : C(X) \to B$ are two unital monomorphisms. Then there exists a continuous path of unitaries $\{u(t) : t \in [0, \infty)\} \subset B$ such that

$$u(0)=1_B$$
 and $\lim_{t
ightarrow\infty} \mathrm{ad}\ u(t)\circ\phi_1(a)=\phi_2(a)$

for all $a \in C(X)$ if and only if

$$\begin{bmatrix} \phi_1 \end{bmatrix} = \begin{bmatrix} \phi_2 \end{bmatrix} \text{ in } \mathsf{KK}(\mathsf{C}, \mathsf{B}), \quad \tilde{\eta}_{\phi_1, \phi_2} = 0 \text{ and} \\ \tau \circ \phi_1 = \tau \circ \phi_2 \text{ for all } \tau \in \mathsf{T}(\mathsf{B}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let X be a compact metric space and let $\Gamma : \mathbb{Z}^2 \to Aut(C(X))$ be a homomorphism. When can $C(X) \rtimes_{\Gamma} \mathbb{Z}^2$ be embedded into an AF-algebra?

Let X be a compact metric space and let $\Gamma : \mathbb{Z}^2 \to Aut(C(X))$ be a homomorphism. When can $C(X) \rtimes_{\Gamma} \mathbb{Z}^2$ be embedded into an AF-algebra?

Theorem

(L—2007) Let C be a unital AH-algebra and $\Lambda : \mathbb{Z}^k \to Aut(C)$ be a homomorphism.

4 E N 4 E N

Let X be a compact metric space and let $\Gamma : \mathbb{Z}^2 \to Aut(C(X))$ be a homomorphism. When can $C(X) \rtimes_{\Gamma} \mathbb{Z}^2$ be embedded into an AF-algebra?

Theorem

(L-2007) Let C be a unital AH-algebra and $\Lambda : \mathbb{Z}^k \to Aut(C)$ be a homomorphism. Then $C \rtimes_{\Lambda} \mathbb{Z}^k$ can be embedded into a unital simple AF-algebra

4 E N 4 E N

Let X be a compact metric space and let $\Gamma : \mathbb{Z}^2 \to Aut(C(X))$ be a homomorphism. When can $C(X) \rtimes_{\Gamma} \mathbb{Z}^2$ be embedded into an AF-algebra?

Theorem

(L—2007) Let C be a unital AH-algebra and $\Lambda : \mathbb{Z}^k \to Aut(C)$ be a homomorphism. Then $C \rtimes_{\Lambda} \mathbb{Z}^k$ can be embedded into a unital simple AF-algebra if and only if C admits a faithful Λ -invariant tracial state.

There is a unital monomorphism $j : \mathcal{U} \times_{\sigma} \mathbb{Z} \to \mathcal{U}$. However, in this case, more is true. First $[\sigma] = [\operatorname{id}|_{\mathcal{U}}]$ in $KK(\mathcal{U},\mathcal{U})$ and $\tau = \tau \circ \sigma$. Since $K_1(\mathcal{U}) = \{0\}, K_1(M_{\operatorname{id}_{\mathcal{U}},\sigma}) = K_0(\mathcal{U})$. In particular, there exists a continuous path of unitaries $\{v(t) : t \in [0,\infty)\}$ of \mathcal{U} such that

$$\lim_{t\to\infty} v(t)^* a v(t) = \sigma(a) \text{ for all } a \in \mathcal{U}.$$
 (e0)

Therefore, there is a unital embedding $\phi : \mathcal{U} \rtimes_{\sigma} \mathbb{Z} \to \mathcal{U}$ such that

$$au \circ \phi = au.$$
 (e0)

Define $\psi : \mathcal{U} \rtimes_{\sigma} \mathbb{Z} \to \mathcal{U} \otimes \mathcal{U}$ by $\psi(a) = \phi(a) \otimes 1_{\mathcal{U}}$ for all $a \in \mathcal{U}$ and $\psi(u_{\sigma}) = \phi(u_{\sigma}) \otimes \phi(u_{\sigma}^*)$. Then ψ is a unital monomorphism. Denote by $s : \mathcal{U} \otimes \mathcal{U} \to \mathcal{U}$ an isomorphism with $s_{*0} = \mathrm{id}_{K_0(\mathcal{U} \otimes \mathcal{U})}$. We define $i : \mathcal{U} \rtimes_{\sigma} \mathbb{Z} \to \mathcal{U}$ by $s \circ \psi$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Let C be a unital AH-algebra, let $\alpha \in Aut(C)$ be an automorphism and let $A \cong A \otimes U$ be a unital simple AF-algebra with a unique tracial state τ and $K_0(A) = \rho_A(K_0(A))$.

Let C be a unital AH-algebra, let $\alpha \in Aut(C)$ be an automorphism and let $A \cong A \otimes U$ be a unital simple AF-algebra with a unique tracial state τ and $K_0(A) = \rho_A(K_0(A))$. Suppose that $\phi_1, \phi_2 : C \rtimes_{\alpha} \mathbb{Z} \to A$ are two unital monomorphisms such that

$$\tau \circ \phi_1 = \tau \circ \phi_2.$$
Theorem

Let C be a unital AH-algebra, let $\alpha \in Aut(C)$ be an automorphism and let $A \cong A \otimes \mathcal{U}$ be a unital simple AF-algebra with a unique tracial state τ and $K_0(A) = \rho_A(K_0(A))$. Suppose that $\phi_1, \phi_2 : C \rtimes_{\alpha} \mathbb{Z} \to A$ are two unital monomorphisms such that

$$\tau \circ \phi_1 = \tau \circ \phi_2.$$

Suppose also that $R_{\phi_1 \circ j_0, \phi_2 \circ j_0}(K_1(C)) \subset
ho_A(K_0(A)),$

where $j_0 : C \to C \rtimes_{\alpha} \mathbb{Z}$ is the embedding. T

Theorem

Let C be a unital AH-algebra, let $\alpha \in Aut(C)$ be an automorphism and let $A \cong A \otimes \mathcal{U}$ be a unital simple AF-algebra with a unique tracial state τ and $K_0(A) = \rho_A(K_0(A))$. Suppose that $\phi_1, \phi_2 : C \rtimes_{\alpha} \mathbb{Z} \to A$ are two unital monomorphisms such that

$$\tau \circ \phi_1 = \tau \circ \phi_2.$$

Suppose also that

$$R_{\phi_1\circ j_0,\phi_2\circ j_0}(K_1(\mathcal{C}))\subset
ho_A(K_0(\mathcal{A})),$$

where $i_0: C \to C \rtimes_{\alpha} \mathbb{Z}$ is the embedding. Then there exists a sequence of unitaries $\{w_n\} \subset U(A \otimes \mathcal{U})$ such that

$$\lim_{n\to\infty} \mathrm{ad}\; w_n \circ \phi_1^{(1)}(a) = \phi_2^{(1)}(a) \; \text{ for all } a \in C \rtimes_\alpha \mathbb{Z}.$$

where $\phi_i^{(1)}: C \rtimes_{\alpha} \mathbb{Z} \to A \otimes \mathcal{U}$ by $\phi_i^{(1)}(c) = \phi_i(c) \otimes 1$ for all $c \in C$ and $\phi_i^{(1)}(u_\alpha) = \phi_i(u_\alpha) \otimes i(u_\sigma), i = 1, 2.$ Huaxin Lin () November, 2007 at the Fields

Let X be a compact metric space and let $\Lambda : \mathbb{Z}^k \to Aut(C(X))$.

A 10

A B F A B F

3

Let X be a compact metric space and let $\Lambda : \mathbb{Z}^k \to Aut(C(X))$. Then $C(X) \rtimes_{\Lambda} \mathbb{Z}^k$ can be embedded into a unital simple AF-algebra

A B F A B F

Let X be a compact metric space and let $\Lambda : \mathbb{Z}^k \to Aut(C(X))$. Then $C(X) \rtimes_{\Lambda} \mathbb{Z}^k$ can be embedded into a unital simple AF-algebra if and only if X admits a Λ -invariant strictly positive Borel probability measure.

A B F A B F

Let X be a compact metric space and let $\Lambda : \mathbb{Z}^k \to Aut(C(X))$. Then $C(X) \rtimes_{\Lambda} \mathbb{Z}^k$ can be embedded into a unital simple AF-algebra if and only if X admits a Λ -invariant strictly positive Borel probability measure.

Theorem

Let C be a unital AH-algebra and let G be a finitely generated abelian group.

通 ト イヨ ト イヨト

Let X be a compact metric space and let $\Lambda : \mathbb{Z}^k \to Aut(C(X))$. Then $C(X) \rtimes_{\Lambda} \mathbb{Z}^k$ can be embedded into a unital simple AF-algebra if and only if X admits a Λ -invariant strictly positive Borel probability measure.

Theorem

Let C be a unital AH-algebra and let G be a finitely generated abelian group. Suppose that $\Lambda : G \to Aut(C)$ is a homomorphism.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let X be a compact metric space and let $\Lambda : \mathbb{Z}^k \to Aut(C(X))$. Then $C(X) \rtimes_{\Lambda} \mathbb{Z}^k$ can be embedded into a unital simple AF-algebra if and only if X admits a Λ -invariant strictly positive Borel probability measure.

Theorem

Let C be a unital AH-algebra and let G be a finitely generated abelian group. Suppose that $\Lambda : G \to Aut(C)$ is a homomorphism. Then $C \rtimes_{\Lambda} G$ can be embedded into a unital simple AF-algebra

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let X be a compact metric space and let $\Lambda : \mathbb{Z}^k \to Aut(C(X))$. Then $C(X) \rtimes_{\Lambda} \mathbb{Z}^k$ can be embedded into a unital simple AF-algebra if and only if X admits a Λ -invariant strictly positive Borel probability measure.

Theorem

Let C be a unital AH-algebra and let G be a finitely generated abelian group. Suppose that $\Lambda : G \to Aut(C)$ is a homomorphism. Then $C \rtimes_{\Lambda} G$ can be embedded into a unital simple AF-algebra if and only if C admits a faithful Λ -invariant tracial state.

(人間) とうり くうり うう

Dynamical systems

Let X be a compact metric space with finite covering dimension, let $\alpha, \beta: X \to X$ be two minimal homeomorphisms.

- A TE N - A TE N

Dynamical systems

Let X be a compact metric space with finite covering dimension, let $\alpha, \beta : X \to X$ be two minimal homeomorphisms. Put $A_{\alpha} = C(X) \rtimes_{\alpha} \mathbb{Z}$ and $C(X) \rtimes_{\alpha} \mathbb{Z}$.

$$egin{array}{rcl} \mathcal{K}_{**}(\mathcal{A}_lpha) & o & \mathcal{K}_{**}(\mathcal{A}_eta) \ \uparrow_{j_lpha} & & \uparrow_{j_eta} \ \mathcal{K}_{**}(\mathcal{C}(X)) & o & \mathcal{K}_{**}(\mathcal{C}(X)) \end{array}$$

Are α and β approximately (K-) conjugate?