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If
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Classification of AT-algebras has many applications.

e.g. minimal Cantor systems, (Giordano, Putnam and Skau.)

Recent work of Eilers (et al) (substitutions).

Theorem

(A. Kishimoto) There exists a unital simple AF C*-algebra and a
strongly continuous one-parameter automorphism group « of A such
that « is not approximately inner.

This gives a counter-example of Powers and Sakai conjecture for
AF-algebras

One of keys to the proof: (®7A) X, Z has tracial rank zero, where o
is the two-sided shift. So classification theory can be applied.
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Theorem

(S. Walters) For irrational numbers 6 in a dense Gj set, the
C*-algebra Ay x Z/AZ has tracial rank zero.
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* The toroidal Z /47 orbifold Ay x Z/AZ

Theorem

(S. Walters) For irrational numbers 6 in a dense Gj set, the
C*-algebra Ay x Z/AZ has tracial rank zero.

Since K1(Ag x Z/4Z) = {0} and Ky(Ag x Z/4Z) is torsion free,
applying classification program, one has the following:
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* The toroidal Z /47 orbifold Ay x 7. /47

Theorem

(S. Walters) For irrational numbers 6 in a dense Gj set, the
C*-algebra Ay x Z/AZ has tracial rank zero.

Since K1(Ag x Z/4Z) = {0} and Ky(Ag x Z/4Z) is torsion free,
applying classification program, one has the following:

Corollary

(S. Walters) For irrational numbers 6 in a dense Gj set, the
C*-algebra Ay x 7/4Z is AF.
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(Existence Theorem) Let A and B be two unital separable amenable
C*-algebras. If
Ell(A) = El(B),
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(Existence Theorem) Let A and B be two unital separable amenable
C*-algebras. If
Ell(A) = El(B),

then there exists a map ¢ : A — B such that

Ell(¢) = &.

(Uniqueness Theorem) Let ¢, : A — B be two unital
monomorphisms. If

Ell(¢) = EN(¢)),

then there exists a unitary u € B such that

ad uo ¢ = .
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Theorem

(Gong and L-2000) Let X be a compact metric space and let A be a
unital simple C*-algebra with real rank zero, stable rank one, weakly
unperforated Ky(A) and with a unique tracial state 7.
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¢, : C(X) — A are two unital monomorphisms.
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unital simple C*-algebra with real rank zero, stable rank one, weakly
unperforated Ky(A) and with a unique tracial state 7. Suppose that
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Theorem

(Gong and L-2000) Let X be a compact metric space and let A be a
unital simple C*-algebra with real rank zero, stable rank one, weakly
unperforated Ky(A) and with a unique tracial state 7. Suppose that
¢, : C(X) — A are two unital monomorphisms. Then there exists a
sequence of unitaries {u,} C A such that

lim ad u, o ¢(f) = (f) for all f € C(X)

n—oo

if and only if

[¢] = [¢] in KL(C(X),A) and To¢p =To1.
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(L—) Let C be a unital AH-algebra and let A be a unital simple

C*-algebra with tracial rank zero. Suppose that ¢, : C — A are
two unital monomorphisms.
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Theorem

(L—) Let C be a unital AH-algebra and let A be a unital simple
C*-algebra with tracial rank zero. Suppose that ¢, : C — A are
two unital monomorphisms. Then there exists a sequence of unitaries
{un} C A such that

lim ad u, o ¢(c) = ¢(c) for all c € C

n—oo

if and only if

[¢] = [¢] in KL(C,A) and To¢p =70
for all T € T(A).
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* A Kishimoto problem:

Let A be a unital simple AT-algebra of real rank zero and let a be an
approximately inner automorphism (or o™ be approximately inner for
some m > 1). Suppose also that v has some Rokhlin property.

Huaxin Lin () Applications of the Elliott program November, 2007 at the Fields 8 /40



* A Kishimoto problem:

Let A be a unital simple AT-algebra of real rank zero and let o be an
approximately inner automorphism (or o™ be approximately inner for
some m > 1). Suppose also that v has some Rokhlin property.

Is A x,, 7Z simple AT-algebra ? ]
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Definition

(N. C. Phillips) Let A be a unital simple C*-algebra and let

a € Aut(A). Then «a has the tracial Rokhlin property if the following
holds:
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Definition

(N. C. Phillips) Let A be a unital simple C*-algebra and let

a € Aut(A). Then « has the tracial Rokhlin property if the following
holds: For any € > 0, any finite subset F, any n € N and any
non-zero element a € A, there are mutually orthogonal projections
e, €, ..., e, € A such that

o |la(e) — el <e, i=1,2,...,n—1,
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Definition
(N. C. Phillips) Let A be a unital simple C*-algebra and let
a € Aut(A). Then « has the tracial Rokhlin property if the following
holds: For any € > 0, any finite subset F, any n € N and any
non-zero element a € A, there are mutually orthogonal projections
e, €, ..., e, € A such that
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Definition
(N. C. Phillips) Let A be a unital simple C*-algebra and let
a € Aut(A). Then « has the tracial Rokhlin property if the following
holds: For any € > 0, any finite subset F, any n € N and any
non-zero element a € A, there are mutually orthogonal projections
e, €, ..., e, € A such that

° Ha(e,-) = e,~+1|] <e i=12..,n—1,

o |leja—aej|| <e forall 1<j<nand for all aecF,

o withe=>"" &, 1— e~ g for some projection q € aAa.
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Theorem

(Osaka-Phillips 2007) Let A be a unital simple C*-algebra with
tracial rank zero and let o € Aut(A). Suppose that A has a unique
tracial state 7. Then TFAE:
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Theorem

(Osaka-Phillips 2007) Let A be a unital simple C*-algebra with
tracial rank zero and let o € Aut(A). Suppose that A has a unique
tracial state 7. Then TFAE:

@ « has the tracial Rokhlin property;

e a™ is not weakly inner in the GNS representation . for any
m # 0;

@ A X, Z has real rank zero;

o A x, 7Z has a unique tracial state.
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Definition

Let A be a unital simple C*-algebra and let « € Aut(A). Then « has
the cyclic tracial Rokhlin property if the following holds: For any

e > 0, any finite subset F, any n € N and any non-zero element

a € A, there are mutually orthogonal projections ey, €, ...,e, € A
(with e,.1 = ey) such that
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Definition

Let A be a unital simple C*-algebra and let « € Aut(A). Then « has
the cyclic tracial Rokhlin property if the following holds: For any

e > 0, any finite subset F, any n € N and any non-zero element

a € A,, there are mutually orthogonal projections e;, €, ...,e, € A
(with e,.1 = ey) such that

C Ha(e,-) - el'Jrl” <, = 1727 ey 1y
o |leja—aej|| <e forall 1<j<nand for all aeF,

o withe=>"" &, 1— e~ q for some projection q € aAa.

Let A be a C*-algebra and let T(A) be the tracial state space.
Denote by pa : Ko(A) — AfF(T(A)) be the positive homomorphism
defined by

pa([p]) = 7 ® Tr(p) for all p € M (A).
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Theorem

(L-Osaka, and 1L-2006) Let A be a unital separable simple C*-algebra
with tracial rank zero and let o € Aut(A) be an automorphism such
that af}|¢c = id|g, where G C Ky(A) is a subgroup for which pa(G)
is dense in pa(Ko(A)) for some m and « has cyclic tracial Rokhlin
property,
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rank zero and let o € Aut(A) be an automorphism such that
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Corollary

Let A be a unital simple AH-algebra with real rank zero and with slow
dimension growth and let « be an automorphism on A.
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Corollary

Let A be a unital simple AH-algebra with real rank zero and with slow
dimension growth and let o be an automorphism on A. Suppose that
« has tracial Rokhlin property and suppose that that a}|c = id¢ for
some subgroup G C Ky(A) for which pa(G) is dense in pa(Ko(A)).
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Corollary

Let A be a unital simple AH-algebra with real rank zero and with slow
dimension growth and let o be an automorphism on A. Suppose that
« has tracial Rokhlin property and suppose that that a}|c = id¢ for
some subgroup G C Ky(A) for which pa(G) is dense in pa(Ko(A)).
Then A is again a unital simple AH-algebra (with real rank zero and
slow dimension growth).
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Corollary

Let A a unital simple AH-algebra with real rank zero and with slow
dimension growth and let o be an automorphism on A with tracial
Rokhlin property.
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Corollary

Let A a unital simple AH-algebra with real rank zero and with slow
dimension growth and let o be an automorphism on A with tracial

Rokhlin property. Suppose that o™ is approximately inner for some
integer m.
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Corollary

Let A a unital simple AH-algebra with real rank zero and with slow
dimension growth and let o be an automorphism on A with tracial
Rokhlin property. Suppose that o™ is approximately inner for some
integer m.Then A X, Z is again a unital simple AH-algebra (with real
rank zero and slow dimension growth).
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Let X be a compact metric space and o be a homeomorphism on X.
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Corollary

Let A a unital simple AH-algebra with real rank zero and with slow
dimension growth and let o be an automorphism on A with tracial
Rokhlin property. Suppose that o™ is approximately inner for some
integer m.Then A X, Z is again a unital simple AH-algebra (with real
rank zero and slow dimension growth).

v

AF-embedding

Let X be a compact metric space and o be a homeomorphism on X.
It was proved by Pimsner that

C(X) X4 Z is quasidiagonal if and only if

« is pseudo-non-wondering,

and if and only if C(X) %, Z can be embedded into an AF-algebra.
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Given a unital stably finite C*-algebra A and a € Aut(A), when can
A X, Z be embedded into a unital simple AF-algebra?
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Given a unital stably finite C*-algebra A and a € Aut(A), when can
A X, Z be embedded into a unital simple AF-algebra?
* A question of Voiculescu:
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Given a unital stably finite C*-algebra A and a € Aut(A), when can
A X, Z be embedded into a unital simple AF-algebra?
* A question of Voiculescu:

Let X be a compact metric space and let T : Z? — Aut(C(X)) be a
homomorphism. When can C(X) xr Z? be embedded into an
AF-algebra?
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Given a unital stably finite C*-algebra A and a € Aut(A), when can
A X, Z be embedded into a unital simple AF-algebra?
* A question of Voiculescu:

Let X be a compact metric space and let T : Z? — Aut(C(X)) be a
homomorphism. When can C(X) xr Z? be embedded into an
AF-algebra?

Theorem

(N. Brown —1998) Let A be a unital AF algebra and let o € Aut(A).
Then TFAE:
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Given a unital stably finite C*-algebra A and a € Aut(A), when can
A X, Z be embedded into a unital simple AF-algebra?
* A question of Voiculescu:

Let X be a compact metric space and let T : Z? — Aut(C(X)) be a
homomorphism. When can C(X) xr Z? be embedded into an
AF-algebra?

Theorem

(N. Brown —1998) Let A be a unital AF algebra and let o € Aut(A).
Then TFAE:

(1) A X, Z can be embedded into an AF-algebra;
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(N. Brown —1998) Let A be a unital AF algebra and let o € Aut(A).
Then TFAE:

(1) A X, Z can be embedded into an AF-algebra;

(2) A X, Z is quasidiagonal;
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Given a unital stably finite C*-algebra A and a € Aut(A), when can
A X, Z be embedded into a unital simple AF-algebra?
* A question of Voiculescu:

Let X be a compact metric space and let T : Z? — Aut(C(X)) be a

homomorphism. When can C(X) xr Z? be embedded into an
AF-algebra?

Theorem

(N. Brown —1998) Let A be a unital AF algebra and let o € Aut(A).
Then TFAE:

(1) A X, Z can be embedded into an AF-algebra;

(2) A X, Z is quasidiagonal;

(3) A X, Z is stably finite and
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Given a unital stably finite C*-algebra A and a € Aut(A), when can
A X, Z be embedded into a unital simple AF-algebra?
* A question of Voiculescu:

Let X be a compact metric space and let T : Z? — Aut(C(X)) be a
homomorphism. When can C(X) xr Z? be embedded into an
AF-algebra?

Theorem

(N. Brown —1998) Let A be a unital AF algebra and let o € Aut(A).
Then TFAE:

(1) A X, Z can be embedded into an AF-algebra;

(2) A X, Z is quasidiagonal;

(3) A X, Z is stably finite and

(4) if x € Ko(A), au(x) < x, then a,(x) = x.
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Theorem

(N. Brown) Let A be a UHF-algebra and o : Z" — Aut(A) be a
homomorphism. Then there is an AF-algebra B and a monomorphism
O:AXNZ" — B.
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Theorem

(N. Brown) Let A be a UHF-algebra and o : Z" — Aut(A) be a
homomorphism. Then there is an AF-algebra B and a monomorphism
O:AXNZ" — B.

Theorem

(H. Matui) Let A be a unital simple AT-algebra of real rank zero and
let o € Aut(A). Then there is always a unital simple AF-algebra B
and a unital monomorphism ¢ : A ¥, 7Z — B.

Huaxin Lin () Applications of the Elliott program November, 2007 at the Fields 16 / 40



Let C be a unital AH-algebra and let « € Aut(C).
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Let C be a unital AH-algebra and let « € Aut(C).

When can C x, Z be embedded into a unital simple
AF-algebra?
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Let C be a unital AH-algebra and let « € Aut(C).

When can C x, Z be embedded into a unital simple
AF-algebra?

When can C be embedded into a unital simple AF-algebra?
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Let C be a unital AH-algebra and let « € Aut(C).

When can C x, Z be embedded into a unital simple
AF-algebra?

When can C be embedded into a unital simple AF-algebra?

Suppose that there is a unital monomorphism ¢ : C — B for
some unital simple AF-algebra B.
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Let C be a unital AH-algebra and let « € Aut(C).

When can C x, Z be embedded into a unital simple
AF-algebra?

When can C be embedded into a unital simple AF-algebra?
Suppose that there is a unital monomorphism ¢ : C — B for

some unital simple AF-algebra B. Let 7 € T(B). Then 7o ¢ is a
faithful tracial state of C.
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Let C be a unital AH-algebra and let « € Aut(C).

When can C x, Z be embedded into a unital simple
AF-algebra?

When can C be embedded into a unital simple AF-algebra?

Suppose that there is a unital monomorphism ¢ : C — B for
some unital simple AF-algebra B. Let 7 € T(B). Then 7o ¢ is a
faithful tracial state of C.
Proposition
Let C be a unital AH-algebra.
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Let C be a unital AH-algebra and let « € Aut(C).

When can C x, Z be embedded into a unital simple
AF-algebra?

When can C be embedded into a unital simple AF-algebra?

Suppose that there is a unital monomorphism ¢ : C — B for
some unital simple AF-algebra B. Let 7 € T(B). Then 7o ¢ is a
faithful tracial state of C.

Proposition

Let C be a unital AH-algebra. Then C can be embedded into a unital
simple AF-algebra if and only if C admits a faithful tracial state.

Huaxin Lin () Applications of the Elliott program November, 2007 at the Fields 17 / 40



Theorem

( L-2007) Let C be a unital AH-algebra and let o € Aut(C). Then
C X Z can be embedded into a unital simple AF-algebra if and only
if C admits a faithful a-invariant tracial state.

Denote by U the universal UHF-algebra U = ®,>1M,.

Let {e,-(j)} be the canonical matrix units for M,,. Let u, € M,, be the
unitary matrix such that ad u,,(e,-(",-')) = e,-(J';)L,H (modulo n). Let

0 = @p>1ad u, € Aut(U) be the shift.
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Definition

Let A be a unital separable C*-algebra and let B be a unital
C*-algebra. Suppose that h: A — B is a unital monomorphism. We
say h satisfies property (H) for a positive number L, if the following
holds: For any € > 0 and any finite subset F C A, if there is a
continuous path of unitaries {v; : t € [0,1]} in B with v(1) = 1 such
that

|lviad w o h(a) —ad w o h(a)v¢]| < § for all a€ G and t € [0,1],

where w € B is a unitary, there is a continuous path of unitaries
{uy : t € [0,1]} such that

up=wv, i =1 and ||u;adw o h(a) —adw o h(a)u|| < ¢

for all a € F and all t € [0, 1]. Moreover,

lus — uy|| < L|t — ¢| for all t,t' €]0,1].
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The following is a version of a lemma of H. Matui:

Lemma

Let A be a unital separable C*-algebra, let B be a unital simple
separable C*-algebra of tracial rank zero, let ¢ : A — B be a unital
embedding, let o € Aut(A) and let 5y € Aut(B) be automorphisms.
Suppose that ¢ o o has the property (H) for a positive number L > 0
and suppose that there is a continuous path {v(t) : t € [0,00)} of
unitaries in B ® U satisfying the following:

Jim [[¢a(a) ~ adv() o B0 6(2)] = 0

for all a € A, where 3 = 3y ® o and U and o are defined before.
Then there are unitaries w, V,, € BQU (n=1,2,...,) such that

ad¢'ca=adwoBod,

where ¢'(a) = lim,_ad (Vi Vo --- V,) 0 ¢.
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Definition

Let C and B be two unital C*-algebras. Suppose that ¢,v : C — B

be two unital monomorphisms. We say that ¢ and ¢ are
asymptotically unitarily equivalent if there is a continuous path of
unitaries {u; : t € [0,00)} C B such that

tlim ad uy o Y(c) = ¢(c) for all c € C.
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Definition

Let C and B be two unital C*-algebras. Suppose that ¢,v : C — B
be two unital monomorphisms. We say that ¢ and ¢ are
asymptotically unitarily equivalent if there is a continuous path of
unitaries {u; : t € [0,00)} C B such that

tlim ad uy o Y(c) = ¢(c) for all c € C.

When are ¢ and 1) asymptotically unitarily equivalent?
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Definition

Let C and B be two unital C*-algebras. Suppose that ¢,v : C — B
be two unital monomorphisms. We say that ¢ and ¢ are
asymptotically unitarily equivalent if there is a continuous path of
unitaries {u; : t € [0,00)} C B such that

tlim ad u; 0 (c) = ¢(c) for all c € C.

When are ¢ and 1) asymptotically unitarily equivalent?
Definition

Mapping torus. Let C and A be unital C*-algebras and let
¢1, ¢2 - C — A be two unital monomorphisms. Set

M¢17¢2 =
{f € C([0,1],A) : f(0) = ¢1(c), f(1) = ¢a(c) for some c € C}.)
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We obtain a short exact sequence:

0— SA— My, 4, — C—0.
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We obtain a short exact sequence:
0— SA— My, 4, — C—0.

Suppose that there exists a continuous path {u(t)} so that
lim; oo ad u(t) o p1(c) = ¢o(c) for all c € C.

Huaxin Lin () Applications of the Elliott program November, 2007 at the Fields 22 / 40



We obtain a short exact sequence:
0— SA— My, 4, — C—0.

Suppose that there exists a continuous path {u(t)} so that
lime_oo ad u(t) o p1(c) = ¢(c) for all c € C. Define § : C — My, 4,
by

0(c)(t) = u(t)*¢1(c)u(t) for all t e [0,1)
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We obtain a short exact sequence:
0— SA— My, 4, — C—0.

Suppose that there exists a continuous path {u(t)} so that

lime_oo ad u(t) o p1(c) = ¢(c) for all c € C. Define § : C — My, 4,
by

0(c)(t) = u(t)*¢1(c)u(t) for all t e [0,1)
and

0(c)(1) = ¢2(c).
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If ¢1 and ¢, are asymptotically unitarily equivalent, one must have

[¢1] = [¢2] in KK(C, A).
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If ¢1 and ¢, are asymptotically unitarily equivalent, one must have
[¢1] = [62] in KK(C, A). Furthermore,

TOo@gy =To0 ¢.

Huaxin Lin () Applications of the Elliott program November, 2007 at the Fields 23 / 40



If ¢1 and ¢, are asymptotically unitarily equivalent, one must have
[¢1] = [62] in KK(C, A). Furthermore,

TO Qg1 =TO0 .

Let u € My, 4, be a unitary such that t — u(t) is piecewise C*.
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If ¢1 and ¢, are asymptotically unitarily equivalent, one must have
[¢1] = [62] in KK(C, A). Furthermore,

TO Qg1 =TO0 .

Let u € My, 4, be a unitary such that t — u(t) is piecewise C'. For
7 € T(A), we define

o) =5 [ ()t

27
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If @1 and ¢, are asymptotically unitarily equivalent, one must have
[¢1] = [62] in KK(C, A). Furthermore,
TOo@gy =To0 ¢.

Let u € My, 4, be a unitary such that t — u(t) is piecewise C'. For
T € T(A), we define
1 1 du(t)
()= £)*)dt.
o) = 5= [ A utey)
Since (240 y(£)*) = —7(u(t) 24, it is real. If u, v € My, 4,, then
pr(uv) = pr(u) + pr(v).
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If @1 and ¢, are asymptotically unitarily equivalent, one must have
[¢1] = [62] in KK(C, A). Furthermore,

TO Qg1 =TO0 .

Let u € My, 4, be a unitary such that t — u(t) is piecewise C'. For
T € T(A), we define

o) =5 [ ()t

~2r

Since (240 y(£)*) = —7(u(t) 24, it is real. If u, v € My, 4,, then

pr(uv) = pr(u) + pr(v).
Suppose that h = h* and h € My, 4, and his C*. Suppose u = >/,
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If @1 and ¢, are asymptotically unitarily equivalent, one must have
[¢1] = [62] in KK(C, A). Furthermore,
TOo@gy =To0 ¢.

Let u € My, 4, be a unitary such that t — u(t) is piecewise C'. For
T € T(A), we define

o) =5 [ ()t

~2r

Since (240 y(£)*) = —7(u(t) 24, it is real. If u, v € My, 4,, then

pr(uv) = pr(u) + p-(v).
Suppose that h = h* and h € My, 4, and his C*. Suppose u = >/,
Then

pr(u) = / (%881 — (1)) ~ 7(h(0)) =0,

since 7 o ¢1 = T o ¢,. From here one concludes that p is constant on
each connected component of C'-unitary group of M, 4,.
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Thus, we obtain a homomorphism p; : Ki(My, 4,) — R.

Consequently, we obtain a homomorphism
Rovg + Ki(Mg,,0,) — AFF(T(A)).
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Thus, we obtain a homomorphism p; : Ki(My, 4,) — R.

Consequently, we obtain a homomorphism
Rovgo = Ki(Myy0,) — AfF(T(A)).
Consider

0 — Ko(A) — Ki(My, 4,) — Ki(C) — 0.
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Thus, we obtain a homomorphism p; : Ki(My, 4,) — R.

Consequently, we obtain a homomorphism
Rovgo = Ki(Myy0,) — AfF(T(A)).
Consider

0 — Ko(A) — Ki(My,4,) — Ki(C) — 0.
It splits.
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Thus, we obtain a homomorphism p; : Ki(My, 4,) — R.

Consequently, we obtain a homomorphism
Rovgo = Ki(Myy0,) — AfF(T(A)).
Consider
0 — Ko(A) — Ki(My,4,) — Ki(C) — 0.

It splits. If p € A'is a projection, 7.o([p]) = [u] can be defined by

u(t) = e™p+ (1 - p).
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Thus, we obtain a homomorphism p; : Ki(My, 4,) — R.

Consequently, we obtain a homomorphism
Rovgo = Ki(Myy0,) — AfF(T(A)).
Consider
0 — Ko(A) — Ki(My,4,) — Ki(C) — 0.

It splits. If p € A'is a projection, 7.o([p]) = [u] can be defined by
u(t) = e p+ (1 - p).
We have the following commutative diagram:

Ko(A) — Ki(Mg,.,)

pa N\ S Ry
Aff(T(A)),
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Thus, we obtain a homomorphism p; : Ki(My, 4,) — R.

Consequently, we obtain a homomorphism
Rovgo = Ki(Myy0,) — AfF(T(A)).
Consider
0 — Ko(A) — Ki(My,4,) — Ki(C) — 0.

It splits. If p € A'is a projection, 7.o([p]) = [u] can be defined by
u(t) = e p+ (1 - p).
We have the following commutative diagram:
Ko(A) — Ki(Msy )
PA N\  Rovn
AfF(T(A)),

where pa([p])(7) = 7(p) for each 7 € T(A).
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Thus, we obtain a homomorphism p; : Ki(My, 4,) — R.

Consequently, we obtain a homomorphism
Rovgo = Ki(Myy0,) — AfF(T(A)).
Consider
0 — Ko(A) — Ki(My,4,) — Ki(C) — 0.

It splits. If p € A'is a projection, 7.o([p]) = [u] can be defined by
u(t) = e p+ (1 - p).
We have the following commutative diagram:

Ko(A) — Ki(Mg,.,)

pa N\ S Ry
Aff(T(A)),

where pa([p])(7) = 7(p) for each 7 € T(A). Moreover, Ry, », extends

PA-
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When [¢1] = [¢2] in KK(C, A), there exists a 6 so that the following
splits
0 — K(SA) = K(Ms, 4,) — K(C) — 0.
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When [¢1] = [¢2] in KK(C, A), there exists a # so that the following
splits
0 — K(SA) — K(Ms, 4,) — K(C) — 0.

We write

Mor0, = 0
if @ maps Ki(C) into kerRy, 4,, or we say a rotation map vanishes.
When Ki(C) is free, if

R¢1,¢2(K1(C)) - pA(KO(A))a

then ’f]’¢1,¢2 =0.
If [¢1] = [92] in KK(C, A), Ry, 0, 0 0(K1(C)) C pa(Ko(A)) and

0 — kerpa — G — Ry, 4, 0 0(K1(C)) — 0

splits (where G = p,*(Ry. 0 O(Ki(C)) ). then 7y, 4, = O.
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Proposition

Let A be a unital separable C*-algebra satisfying the Universal
Coefficient Theorem and let B be a unital separable C*-algebra.
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Proposition

Let A be a unital separable C*-algebra satisfying the Universal
Coefficient Theorem and let B be a unital separable C*-algebra.
Suppose that ¢y, ¢» : A — B are unital monomorphisms such that

lim ad u(t) o ¢1(a) = ¢a(a) for all a€ A

—00

for some continuous and piecewise smooth path of unitaries
{u(t) : t €[0,00)} C B.
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Proposition

Let A be a unital separable C*-algebra satisfying the Universal
Coefficient Theorem and let B be a unital separable C*-algebra.
Suppose that ¢y, ¢» : A — B are unital monomorphisms such that

lim ad u(t) o ¢1(a) = ¢a(a) for all a€ A

—00
for some continuous and piecewise smooth path of unitaries
{u(t) : t € [0,00)} C B. Then

[¢1] = [¢2), Todr =T o0y for all T € T(A)
and 77¢1’¢2 =0.
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Theorem

(Kishimoto and Kumjian ) Let A be a unital simple AT-algebra with
real rank zero and let o, 3 € Aut(A). Then o and 3 are
asymptotically unitarily equivalent if and only if

[a] = [6] in KK(A,A) and i 5 = {0}.
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Theorem

(L—2007) Let C be a unital AH-algebra and let A be a unital
separable simple C*-algebra with tracial rank zero.
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Theorem

(L—2007) Let C be a unital AH-algebra and let A be a unital
separable simple C*-algebra with tracial rank zero. Suppose that
¢1,¢2 : C — A are two unital monomorphisms.
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Theorem

(L—2007) Let C be a unital AH-algebra and let A be a unital
separable simple C*-algebra with tracial rank zero. Suppose that
¢1,¢2 : C — A are two unital monomorphisms.

Then ¢1, ¢, : C — A are asymptotically unitarily equivalent
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Theorem

(L—2007) Let C be a unital AH-algebra and let A be a unital
separable simple C*-algebra with tracial rank zero. Suppose that
¢1,¢2 : C — A are two unital monomorphisms.

Then ¢1, ¢ : C — A are asymptotically unitarily equivalent if and
only if

[p1] = [¢o] in KK(C,A),
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Theorem

(L—2007) Let C be a unital AH-algebra and let A be a unital
separable simple C*-algebra with tracial rank zero. Suppose that
¢1,¢2 : C — A are two unital monomorphisms.

Then ¢1, ¢ : C — A are asymptotically unitarily equivalent if and
only if

[p1] = [¢o] in KK(C,A),

TO¢)1 = TO¢2 and
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Theorem

(L—2007) Let C be a unital AH-algebra and let A be a unital
separable simple C*-algebra with tracial rank zero. Suppose that
¢1,¢2 : C — A are two unital monomorphisms.

Then ¢1, ¢ : C — A are asymptotically unitarily equivalent if and
only if

[p1] = [¢o] in KK(C,A),

TO¢)1 TO¢2 and

fgr.eo = 0.
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Theorem

(L—2007) Let C be a unital AH-algebra and let A be a unital
separable simple C*-algebra with tracial rank zero. Suppose that
¢1,¢2 : C — A are two unital monomorphisms.

Then ¢1, ¢ : C — A are asymptotically unitarily equivalent if and
only if

[#1] = [#2] in KK(C,A),
T O ¢ T o ¢y and

fgr.eo = 0.

This is a uniqueness theorem.

Huaxin Lin () Applications of the Elliott program November, 2007 at the Fields 28 / 40



Theorem

(L—2007) Let C be a unital AH-algebra and let A be a unital
separable simple C*-algebra with tracial rank zero. Suppose that
¢1,¢2 : C — A are two unital monomorphisms.

Then ¢1, ¢ : C — A are asymptotically unitarily equivalent if and
only if

[p1] = [¢o] in KK(C,A),

Togp;y = To¢, and

ﬁ¢17¢2 = 0.

This is a uniqueness theorem.
It is used a previously mentioned uniqueness theorem,
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Theorem

(L—2007) Let C be a unital AH-algebra and let A be a unital
separable simple C*-algebra with tracial rank zero. Suppose that
¢1,¢2 : C — A are two unital monomorphisms.

Then ¢1, ¢ : C — A are asymptotically unitarily equivalent if and
only if

[p1] = [¢o] in KK(C,A),
T O ¢ T o ¢y and

ﬁ¢17¢2 = 0.

This is a uniqueness theorem.
It is used a previously mentioned uniqueness theorem, an existence
theorem
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Theorem

(L—2007) Let C be a unital AH-algebra and let A be a unital
separable simple C*-algebra with tracial rank zero. Suppose that
¢1,¢2 : C — A are two unital monomorphisms.

Then ¢1, ¢ : C — A are asymptotically unitarily equivalent if and
only if

[p1] = [¢o] in KK(C,A),
T O ¢ T o ¢y and

ﬁ¢17¢2 = 0.

This is a uniqueness theorem.
It is used a previously mentioned uniqueness theorem, an existence
theorem as well as the Basic Homotopy Lemma.
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Theorem

(L-2007) Let C be a unital AH-algebra and let oo € Aut(C).
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Theorem

(L-2007) Let C be a unital AH-algebra and let o € Aut(C). Then
C X, 7Z can be embedded into a unital simple AF-algebra
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Theorem

(L-2007) Let C be a unital AH-algebra and let o« € Aut(C). Then

C X4 Z can be embedded into a unital simple AF-algebraif and only if
C admits a faithful a-invariant tracial state.
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Definition

Let A and C be two unital C*-algebras and let ¢1, ¢, : C — A be
unital homomorphisms. We say that ¢; and ¢, are strongly
asymptotically unitarily equivalent if there exists a continuous path of
unitaries {u; : t € [0,00)} C A such that

up =1, and tli)n;oad ur o ¢1(c) = ¢a(c) for all c € C.
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Definition
Let A and C be unital C*-algebras. Define
H]_(Ko(C), K]_(A)) = {X € K]_(A) cda € HOITI(K()(C), K]_(A))
a([lc]) = x}.
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Definition
Let A and C be unital C*-algebras. Define
H]_(Ko(C), K]_(A)) = {X € K]_(A) cda € Hom(Ko(C), Kl(A))
a([1c]) = x}.

Proposition

Let A be a unital separable C*-algebra and let B be a unital
C*-algebra. Suppose that ¢ : A — B is a unital homomorphism and
u € U(B) is a unitary.

v
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Definition
Let A and C be unital C*-algebras. Define
H]_(Ko(C), K]_(A)) = {X € K]_(A) cda € HOm(Ko(C), K]_(A))
a([1c]) = x}.

Proposition

Let A be a unital separable C*-algebra and let B be a unital
C*-algebra. Suppose that ¢ : A — B is a unital homomorphism and
u € U(B) is a unitary. Suppose that there is a continuous path of
unitaries {u(t) : t € [0,00)} C B such that

u(0) =1 and tli_)m ad u(t) o ¢(a) = ad u o ¢(a)

for all a € A.

v
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Definition
Let A and C be unital C*-algebras. Define
H]_(Ko(C), K]_(A)) = {X € K]_(A) cda € HOm(Ko(C), K]_(A))
a([1c]) = x}.

Proposition

Let A be a unital separable C*-algebra and let B be a unital
C*-algebra. Suppose that ¢ : A — B is a unital homomorphism and
u € U(B) is a unitary. Suppose that there is a continuous path of
unitaries {u(t) : t € [0,00)} C B such that

u(0) =1 and tli_)m ad u(t) o ¢(a) = ad u o ¢(a)

for all a € A. Then

[u] € Hi(Ko(A), Ki(B)).

v
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Theorem

(L—2007) Let C be a unital AH-algebra and let A be a unital
separable simple C*-algebra.
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Theorem

(L—2007) Let C be a unital AH-algebra and let A be a unital
separable simple C*-algebra. Suppose that

H,(Ko(C), Ki(A)) = Ki(A) and suppose that ¢1, ¢, : C — A are two
unital monomorphisms which are asymptotically unitarily equivalent.
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Theorem

(L—2007) Let C be a unital AH-algebra and let A be a unital
separable simple C*-algebra. Suppose that

H,(Ko(C), Ki(A)) = Ki(A) and suppose that ¢1, ¢, : C — A are two
unital monomorphisms which are asymptotically unitarily equivalent.

Then there exists a continuous path of unitaries {u(t) : t € [0,00)}
such that

u(0) =14 and lim adu(t) o ¢1(a) = ¢o(a) for all a € C.

t—o0
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Corollary

Let X be a compact metric space and let B be a unital separable
simple C*-algebra with tracial rank zero.
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Corollary

Let X be a compact metric space and let B be a unital separable
simple C*-algebra with tracial rank zero. Suppose that
¢1, 02 C(X) — B are two unital monomorphisms.
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Corollary

Let X be a compact metric space and let B be a unital separable
simple C*-algebra with tracial rank zero. Suppose that

¢1, 02 C(X) — B are two unital monomorphisms. Then there exists
a continuous path of unitaries {u(t) : t € [0,00)} C B such that

u(0) = 1g and tIl_(go ad u(t) o p1(a) = ¢o(a)

for all a € C(X)
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Corollary

Let X be a compact metric space and let B be a unital separable
simple C*-algebra with tracial rank zero. Suppose that

¢1, 02 C(X) — B are two unital monomorphisms. Then there exists
a continuous path of unitaries {u(t) : t € [0,00)} C B such that

u(0) = 1g and tIim ad u(t) o p1(a) = ¢o(a)
for all a € C(X) if and only if

[p1] = [¢a] in KK(C,B), fig.6, =0 and
Tog, = Tog, for all 7€ T(B).
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Recall Voiculescu's problem

Let X be a compact metric space and let T : Z? — Aut(C(X)) be a
homomorphism. When can C(X) xr Z? be embedded into an
AF-algebra?
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Recall Voiculescu's problem

Let X be a compact metric space and let T : Z? — Aut(C(X)) be a
homomorphism. When can C(X) xr Z? be embedded into an
AF-algebra?

Theorem

(L—2007) Let C be a unital AH-algebra and A : Z¥ — Aut(C) be a
homomorphism.
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Recall Voiculescu's problem

Let X be a compact metric space and let T : Z? — Aut(C(X)) be a
homomorphism. When can C(X) xr Z? be embedded into an
AF-algebra?

Theorem

(L—2007) Let C be a unital AH-algebra and A : Z¥ — Aut(C) be a
homomorphism. Then C xp Z* can be embedded into a unital simple
AF-algebra

v
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Recall Voiculescu's problem

Let X be a compact metric space and let T : Z? — Aut(C(X)) be a
homomorphism. When can C(X) xr Z? be embedded into an
AF-algebra?

Theorem

(L—2007) Let C be a unital AH-algebra and A : Z¥ — Aut(C) be a
homomorphism. Then C xp Z* can be embedded into a unital simple
AF-algebra if and only if C admits a faithful N-invariant tracial state. )

Huaxin Lin () Applications of the Elliott program November, 2007 at the Fields 36 / 40



There is a unital monomorphism j : U X, Z — U. However, in this
case, more is true. First [o] = [id|y] in KK(U,U) and T = T 0 0.
Since Ki(U) = {0}, Ki(Miq, o) = Ko(U). In particular, there exists a
continuous path of unitaries {v(t) : t € [0,00)} of U such that

lim v(t)*av(t) = o(a) for all a € U. (e0)

t—o0
Therefore, there is a unital embedding ¢ : U %, 7Z — U such that
TOop=r. (e0)

Define v : U X, Z — U @ U by ¢(a) = ¢(a) ® 1y for all a € U and
P(uy) = d(uy) @ ¢(uk). Then ¢ is a unital monomorphism. Denote
by s : U @ U — U an isomorphism with s,o = idk,weu). We define
1:U X, 7Z — U by so.

Huaxin Lin () Applications of the Elliott program November, 2007 at the Fields 37 / 40



Theorem

Let C be a unital AH-algebra, let o € Aut(C) be an automorphism
and let A= A®U be a unital simple AF-algebra with a unique tracial
state T and Ko(A) = pa(Ko(A)).
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Theorem

Let C be a unital AH-algebra, let o € Aut(C) be an automorphism
and let A= A®U be a unital simple AF-algebra with a unique tracial
state 7 and Ko(A) = pa(Ko(A)). Suppose that ¢1, ¢ : C X Z — A
are two unital monomorphisms such that

T O @ =TO0 ¢s.
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Theorem

Let C be a unital AH-algebra, let o € Aut(C) be an automorphism
and let A= A®U be a unital simple AF-algebra with a unique tracial
state 7 and Ko(A) = pa(Ko(A)). Suppose that ¢1, ¢ : C X Z — A
are two unital monomorphisms such that
T O @ =TO0 ¢s.
Suppose also that
R¢10j07¢2ojo(K1(C)) C pA(KO(A))v

where jo : C — C X, Z is the embedding. T
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Theorem

Let C be a unital AH-algebra, let o € Aut(C) be an automorphism
and let A= A®U be a unital simple AF-algebra with a unique tracial
state 7 and Ko(A) = pa(Ko(A)). Suppose that ¢1, ¢ : C X Z — A
are two unital monomorphisms such that

TO¢1:TO¢2.

Suppose also that
Roojo 2000 (K1(C)) C pa(Ko(A)),

where jo : C — C X, Z is the embedding. Then there exists a
sequence of unitaries {w,} C U(A® U) such that

lim ad w, o ¢§”(a) = gzﬁgl)(a) for all a € C x, Z.
where ¢§” C X Z — AU by (bgl)(c) = ¢i(c)®1 forallce C

1 .
and Gbg )(Ua) = ¢i(ua) ® 1(u,), i =1,2.
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Corollary

Let X be a compact metric space and let A\ : Z* — Aut(C(X))

Huaxin Lin ()

Applications of the Elliott program

‘<)



Corollary

Let X be a compact metric space and let A\ : Z* — Aut(C(X)). Then
C(X) xn ZK can be embedded into a unital simple AF-algebra
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Corollary

Let X be a compact metric space and let A\ : Z* — Aut(C(X)). Then
C(X) 3 ZK can be embedded into a unital simple AF-algebra if and
only if X admits a N-invariant strictly positive Borel probability
measure.
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Corollary

Let X be a compact metric space and let A\ : Z* — Aut(C(X)). Then
C(X) 3 ZK can be embedded into a unital simple AF-algebra if and
only if X admits a N-invariant strictly positive Borel probability
measure.

Theorem

Let C be a unital AH-algebra and let G be a finitely generated
abelian group.
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Corollary

Let X be a compact metric space and let A\ : Z* — Aut(C(X)). Then
C(X) 3 ZK can be embedded into a unital simple AF-algebra if and
only if X admits a N-invariant strictly positive Borel probability
measure.

Theorem

Let C be a unital AH-algebra and let G be a finitely generated
abelian group. Suppose that \ : G — Aut(C) is a homomorphism.
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Corollary

Let X be a compact metric space and let A\ : Z* — Aut(C(X)). Then
C(X) 3 ZK can be embedded into a unital simple AF-algebra if and
only if X admits a N-invariant strictly positive Borel probability
measure.

Theorem
Let C be a unital AH-algebra and let G be a finitely generated

abelian group. Suppose that \ : G — Aut(C) is a homomorphism.
Then C xp G can be embedded into a unital simple AF-algebra
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Corollary

Let X be a compact metric space and let A\ : Z* — Aut(C(X)). Then
C(X) 3 ZK can be embedded into a unital simple AF-algebra if and
only if X admits a N-invariant strictly positive Borel probability
measure.

Theorem

Let C be a unital AH-algebra and let G be a finitely generated
abelian group. Suppose that \ : G — Aut(C) is a homomorphism.
Then C xp G can be embedded into a unital simple AF-algebra if and
only if C admits a faithful N-invariant tracial state.

v

Huaxin Lin () Applications of the Elliott program November, 2007 at the Fields 39 / 40



Dynamical systems
Let X be a compact metric space with finite covering dimension, let
a, 3 : X — X be two minimal homeomorphisms.
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Dynamical systems

Let X be a compact metric space with finite covering dimension, let
a, 3 : X — X be two minimal homeomorphisms. Put

A, = C(X) %y Z and C(X) X, Z.

K**T(Aoz) - K**T(Aﬂ)
Ka(C(X) — Ku(C(X))

Are o and 3 approximately (K-) conjugate?
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