Strong "UCT"-classes of non-simple C*-algebras

Eberhard Kirchberg

Humboldt-Universität zu Berlin

November 15, 2007

Fields Institute, 2007

Some related papers

- 1. M.Rørdam, EK: Purely infinite C*-algebras: ideal-preserving zero homotopies, GAFA 15 (2005), 377-415. (concerning: Regular Abelian subalgebras of s.p.i. separable nuclear C*-algebras).
- 2. H.Harnisch, EK: The inverse problem for primitive ideal spaces, 2005, SFB478-preprint 399, Uni.Münster. (concerning: Topological characterization of primitive ideal spaces of separable nuclear C*-algebras and reconstruction from data (A,X).) available on the web: www.math.uni-muenster.de SFB478-Preprint server
- 3. EK: 'The non-commutative Michael selection principle and the classification of non-simple C*-algebras (german; pp. 92-141 in "C*-algebras" Springer, 2000) (concerning: KK-theory applications

to reconstruction and applications, and passage from the nuclear to the exact case.)

Matricially o-convex cones and actions

Definition 1. A point-norm closed cone C of completely positive maps from A into B is called a matricially operator-convex cone ("m.o.c.c") if C is invariant under the operations

(OC1): $b_1^*V_1(\cdot)b_1 + b_2 * V_2(\cdot)b_2 \in \mathcal{C}$ for $V_1, V_2 \in \mathcal{C}$, $b_1, b_2 \in B$, (i.e., \mathcal{C} is operator-convex) and (OC2): $c^*V \otimes \mathrm{id}_n(r^*(\cdot)r)c \in \mathcal{C}$ for all $V \in \mathcal{C}$, $n = 1, 2, \ldots$, columns $c \in M_{n,1}(B)$ and rows $r \in M_{1,n}(A)$. (i.e., \mathcal{C} is matricial).

If $S \subset \mathrm{CP}(A,B)$, then S generates the m.o.c.c. $\mathcal{C} := \mathcal{C}(S)$, that is, the point-norm closure of the smallest convex subset $M \subset \mathrm{CP}(A,B)$ invariant under the operations (OC2).

Denote by $C_2 \circ C_1$ (resp. by $C_1 \otimes C_3$) the m.o.c.c. that is generated by the set $S := \{V_2 \circ V_1 ; V_j \in C_j\}$

(resp. by $S := \{V_1 \otimes V_3 ; V_j \in C_j\}$) for m.o.c.c.'s $C_1 \subset \operatorname{CP}(A,B)$ and $C_2 \subset \operatorname{CP}(B,C)$. and $C_3 \subset \operatorname{CP}(C,D)$.

Examples of m.o.c.cones are $\operatorname{CP}(\Omega;A,B)$ (the Ω -equivariant c.p. maps) and $\operatorname{CP_{rn}}(\Omega,A,B)$ (Ω -residually nuclear maps) for actions $\Psi_A\colon\Omega\to\mathcal{I}(A)$ of lattices Ω on A and Ψ_B on B. The maps Ψ_A are general monotone increasing maps from the lattice Ω into the lattice of ideals $\mathcal{I}(A)\cong\mathbb{O}(\operatorname{Prim}(A))$. (There are m.o.c.c. that do not come from such a construction.) But, if A is separable and exact, B is separable and $\mathcal{C}\subset\operatorname{CP_{nuc}}(A,B)$, then $\mathcal{C}=\operatorname{CP}(\Omega;A,B)$ for $\Omega:=\mathbb{O}(X)$ and a suitable l.s.c. action $\Psi\colon\Omega\to\mathcal{I}(A)$ of X on A. Write: $\mathcal{C}=\operatorname{CP_{nuc}}(X;A,B)$.

If A and B are $\mathrm{C}_0(Y)$ algebras, then the natural action of $\Omega:=\mathbb{O}(Y)$ on A an B are given by $\Psi_A\colon U\mapsto \mathrm{C}_0(U)A\in\mathcal{I}(A)$ and similar Ψ_B . A map $T\in\mathrm{CP}(A,B)$ is in $\mathrm{CP}(\Omega;A,B)$ iff T is $\mathrm{C}_0(Y)$ -

modular.

It can happen that $\operatorname{CP}(Y;A,B)=\{0\}$: Consider e.g., the action of Y:=[0,1] on $B:=\operatorname{C}(Y)$ and on $A:=\operatorname{C}(\{0,1\}^{\mathbb{N}})$ given by the natural C(Y)-algebra structures $B=\operatorname{C}[0,1]$ and $A\supset\operatorname{C}[0,1]\cong C^*(1,f)$ -algebra where f is the continuous map $f(\alpha_1,\alpha_2,\ldots):=\sum_n\alpha_n2^{-n}$. (The action of $\Omega=\mathbb{O}(Y)$ on A is given by the inverse $\Psi_B(U):=f^{-1}(U)$ of f, and $\Psi_B=\operatorname{id}$.)

For a continuous map λ from [0,1] into a finite T_0 space Z one always has that $\mathrm{CP}(Z;A,B)$ is infinite-dimensional, where the action $\Phi_A\colon \mathbb{O}(Z) \to \mathcal{I}(A)$ is given by $\Phi_A(V) := \Psi_B(\lambda^{-1}(V))$ and similarly Φ_B . (Here, λ^{-1} could be replaced by any monotone increasing map from $\mathbb{O}(Z)$ to $\mathbb{O}[0,1]$.)

In some special cases (but with arbitrary topological spaces X, Z), one has that $\mathrm{CP}(X;A_1,A_2) = \mathrm{CP}(Z;A_1,A_2)$, provided that

- there is a continuous map $\lambda\colon X\to Z$ such that for the corresponding action $\Psi_{A_j}(\lambda^{-1}(V)))=\Phi_{A_j}(V)$ holds,
- $\bullet \ \lambda^{-1}(\mathbb{O}(Z))$ contains a basis of the topology of X , and
- ullet the actions of X are upper semi-continuous (see below).

If Ω is a complete lattice (i.e., $\bigvee=$ l.u.b. and $\bigwedge=$ g.l.b. exist inside Ω itself, so as e.g., for $\Omega=$ $\mathbb{O}(X)$) $\Psi_A\colon \Omega \to \mathcal{I}(A)$ will be called lower semicontinuous if $\Psi_A(\bigwedge U_n) = \bigcap \Psi(U_n)$ — in particular $A(U \wedge V) = A(U) \cap A(V)$ in relaxed notation —, and upper semi-continuous (respectively monotone upper semi-continuous) if $\Psi_A(\bigvee U_n) = \text{closure of } \sum \Psi_A(U_n)$ — in particular $A(U \vee V) = A(U) + A(V)$ —, (respectively if $\Psi_A(\bigvee U_n) = \text{closure of } \bigcup \Psi_A(U_n)$) for $U_1 \leq U_2 \leq \cdots$ in Ω .

We have seen: Upper semi-continuous actions of X usually have small $\mathrm{CP}(X;A,B)$ that do not allow one to rediscover the action itself.

It is not difficult to see:

If X is a T_0 space and X contains an open quasicompact subset, then X can not act lower s.c. and monotone upper s.c. at the same time on a separable purely infinite C^* -algebra that does not contain a projection.

The action of $\mathbb{O}(Y)$ defined for a $C_0(Y)$ -algebra A is always upper semi-continuous.

The prototype of a *lower* semi-continuous action of $\operatorname{Prim}(B)$ on $\operatorname{Prim}(A)$ should be given by a an action $\Psi_A(J) := h^{-1}(h(A) \cap \mathcal{M}(B,J))$ for some *-morphism $h \colon A \to \mathcal{M}(B)$. Unfortunately such h does not exist in general, i.e., in general also the lower s.c. actions can not produce sufficiently many A-B-bi-modules that allow one to rediscover the action.

But one has at least the following useful result (in the opposite direction), where F denotes the free group on countably many generators.

Theorem 2. [Separation for m.o.c.cones] For every m.o.c.c. $\mathcal{C} \subset \mathrm{CP}(A,B)$ there exists a lower s.c. action of $Z := \mathrm{Prim}(B \otimes^{max} C^*(F))$ on $A \otimes^{max} C^*(F)$ such that $T \in \mathrm{CP}(A,B)$ is in \mathcal{C} if and only if

$$T \otimes \mathrm{id} \in \mathrm{CP}(Z; A \otimes^{max} C^*(F), B \otimes^{max} C^*(F)).$$

Corollary 3. If B is nuclear, or if A is exact and $\mathcal{C} \subset \mathrm{CP}_{\mathrm{nuc}}(A,B)$ then

$$C = \mathrm{CP}_{\mathrm{rn}}(X; A, B)$$

for the lower s.c. action of X := Prim(B) on A given by

$$\Psi^{\mathcal{C}}(J) := \{ a \in A ; \ V(a) \in J \ \forall V \in \mathcal{C} \}.$$

The opposite direction is crucial: Given a lower s.c. action Ψ of $\operatorname{Prim}(B)$ on A for separable exact A. Show the existence of $\mathcal C$ such that $\Psi=\Psi^{\mathcal C}$ (after that it follows from the above corollary that $\mathcal C=\operatorname{CP}_{\operatorname{rn}}(X;A,B)$). This can be done; the proof needs some m.o.c.c.-related KK-theory.

A Hilbert $A\text{-}B\text{-module }(E,\phi)$ is $\mathcal{C}\text{-}compatible}$ if every map $a \in A \mapsto \langle d(a)x,x \rangle \in B$ is in \mathcal{C} . Each Hilbert $A\text{-}B\text{-module }(\mathcal{H},\phi\colon A \to \mathcal{L}(\mathcal{H}))$ defines a m.o.c.c. $\mathcal{C}(H,d):=$ the smallest m.o.c.c. containing all c.p. maps $V\colon a\in A\mapsto \langle \phi(a)x,x \rangle \in B$ for $x\in \mathcal{H}$ ("generalized" vector states). It induces:

Proposition 4. There is a natural bijection between m.o.c.c.'s $\mathcal{C} \subset \mathrm{CP}(A,B)$ and classes of of Hilbert A-B-modules that are closed under (infinite) Hilbert module sums and isometric module morphisms.

It leads to a natural definition of cone-depending KK-theory (or " \mathcal{C} -equivariant" KK-theory).

C-depending KK-, Ext- and R(ørdam)-groups.

Define KK-groups depending on m.o.c. cones $\mathcal{C} \subset \mathrm{CP}(A,B)$:

If A and B are separable algebras, equipped with gradings β_A and β_B and $\mathcal{C} = \beta_A \circ \mathcal{C} = \mathcal{C} \circ \beta_B$, then consider the Abelian semi-group $\mathbb{E}(\mathcal{C};A,B)$ of unitary equivalence classes of graded Kasparov modules (E,ϕ,F) with countably generated \mathcal{C} -compatible Hilbert A-B-module (E,ϕ) . The ϕ -compact perturbations of the derivatives F define an equivalence relation \sim_{sp} on $\mathbb{E}(\mathcal{C};A,B)$ that is compatible with addition. They define a semigroup $SKK(\mathcal{C};A,B)$.

If A and B are stable and trivially graded, then we can define the semigroups $\operatorname{SExt}(\mathcal{C};A,B)$ and $\operatorname{SR}(\mathcal{C};A,B)$ of unitary equivalence classes (by unitaries

in $\mathcal{M}(B)$ respectively in $\mathrm{Q}(\mathbb{R}_+,\mathcal{M}(B))$ of Busby invariants of extensions $h\colon A\to \mathrm{Q}(B):=\mathcal{M}(B)/B$ and $h\colon A\to \mathrm{Q}(\mathbb{R}_+,B):=\mathrm{C_b}(\mathbb{R}_+,B)/\mathrm{C_0}(\mathbb{R}_+,B)$ that have completely positive lifts $V\colon A\to \mathcal{M}(B)$ respectively $V\colon A\to \mathrm{C_b}(\mathbb{R}_+,B)$ that are "locally" in \mathcal{C} , i.e., $b^*V(\cdot)b\in\mathcal{C}$ for all $b\in B$ respectively $V(\cdot)(t)\in\mathcal{C}$ for all $t\in\mathbb{R}_+$.

Definition 5. Let KK(C; A, B) denote the Grothendieck group of $\mathbb{E}(C; A, B) / \sim_{sp}$.

Define Rørdam groups R(C;A,B), and Extension groups Ext(C;A,B) similar (for trivially graded A and B),

Suppose that A is separable, B is σ -unital Then it follows (almost) straight from the definitions and Kasparov's original approach, and from the fact that $\mathrm{CP_{in}}(B) \circ \mathcal{C} \circ \mathrm{CP_{in}}(A) = \mathcal{C}$ for all m.o.c.c.s $\mathcal{C} \subset \mathrm{CP}(A,B)$:

There are natural semigroup morphisms

$$\operatorname{Hom}(A,B) \cap \mathcal{C} \to \operatorname{SR}(\mathcal{C};A,B) \to \operatorname{SExt}(\mathcal{C};A,B)$$

ullet With $\mathcal{C}':=\mathcal{C}\otimes\mathrm{CP}(\mathbb{C},\mathbb{C}_{(1)})$, there is a natural isomorphism

$$\operatorname{Ext}(\mathcal{C}; A, B) \cong \operatorname{KK}(\mathcal{C}'; A, B_{(1)}).$$

• One can tensor elements of KK(C; A, B) with elements of KK(C, D) for nuclear separable C and D, i.e., there is a natural morphism

$$KK(C; A, B) \otimes_{\mathbb{Z}} KK(C, D) \to KK(C_{C,D}; A \otimes C, B \otimes D)$$
,

where $C_{C,D}$ denotes the cone of $T \in \mathrm{CP}(A \otimes C; B \otimes D)$ with $\mathrm{id} \otimes f(T(\cdot \otimes c)) \in \mathcal{C}$ for all $c \in C_+$ and $f \in D_+^*$.

• KK(C; A, B) is homotopy-invariant,

• the usual Kasparov product defines a morphism

$$KK(C_1; A, B) \times KK(C_2; B, C) \to KK(C_2 \circ C_1; A, C)$$
,

and satisfies Bott periodicity, i.e.

$$KK(C; A, B) \cong KK(C(\mathbb{R}^2); A, S^2B)$$
.

• in particular: If a locally quasi-compact T_0 space X acts on A, B and C then for $\mathcal{C}_1 := \mathrm{CP}_{rn}(X;A,B)$ and $\mathcal{C}_2 := \mathrm{CP}_{rn}(X;B,C)$ the above formulas lead to a bi-additive map

$$KK(X; A, B) \times KK(X; B, C) \rightarrow KK(X; A, C)$$
.

Additivity:

$$KK(C_1+C_2; A_1 \oplus A_2, B) \cong KK(C_1; A_1, B) \oplus KK(C_2; A_2, B)$$
,

• half-exactness:

If $J \triangleleft A$ are σ -unital, $\pi\colon A \to B := A/J$ and $\mathcal{C}_1 \subset \mathrm{CP}(D,A)$, $\mathcal{C}_0 := \mathrm{CP}_{\mathrm{in}}(A,J) \circ \mathcal{C}_1$, $\mathcal{C}_2 := \pi \circ \mathcal{C}_1$, then

$$KK(C_0; D, J) \to KK(C_1; D, A) \to KK(C_2; D, B)$$
,

is exact. On the other side,

$$KK(C_0; J, D) \to KK(C_1; A, D) \to KK(C_2 \circ C_1; B, D)$$

is exact if the cones \mathcal{C}_j satisfy $\mathcal{C}_0 = \mathcal{C}_1|J$ and

$$\mathcal{C}_2 \circ \pi = \{ V \in \mathcal{C}_1 ; \ V | J = 0 \}.$$

The notion of $KK(C; \cdot, \cdot)$ -equivalence.

One has \mathcal{C} -dependent "split-additivity": Suppose that $h\colon B \to A$ is a (grading-preserving) split morphism for $\pi := \pi_J$. Then the m.o.c. cone $\mathcal{C}_1 := \mathcal{C}(g) \subset \mathrm{CP}(J \oplus B, A)$ generated by

$$g:(j,b)\in J\oplus B\to \mathrm{diag}(j,h(b))\in M_2(A)$$

is the same as the sum of $\operatorname{CP}_{inn}(J,A)$ and $\mathcal{C}(h)$, and the cone $\mathcal{C}_2 \subset \operatorname{CP}(A,J\oplus B)$ generated by by the Kasparov $(A,J\oplus B)$ -module $z:=((J\oplus B)\oplus (J\oplus B)^{op},(k\oplus h)\oplus (k\circ h\circ \pi\oplus 0),F)$, where F is the flip $((j_1,b_1),(j_2,b_2))\mapsto ((j_2,b_2),(j_1,b_1))$, has the property that $\operatorname{CP}_{inn}(J\oplus B,J\oplus B)=\mathcal{C}_2\circ \mathcal{C}_1$, $\operatorname{CP}_{inn}(A,A)\subset \mathcal{C}_2\circ \mathcal{C}_1$ and $[g\otimes_A z]=[\operatorname{id}]\in \operatorname{KK}(\operatorname{CP}_{inn};J\oplus B,J\oplus B)$ $[z\otimes_{J\oplus B} g]=[\operatorname{id}]\in \operatorname{KK}(\mathcal{C}_2\circ \mathcal{C}_1;A,A)$.

Definition 6. Given $C_1 \subset \operatorname{CP}(A,B)$, $C_2 \subset \operatorname{CP}(B,A)$ with $\operatorname{CP_{in}}(A) \subset C_2 \circ C_1$ and $\operatorname{CP_{in}}(B) \subset C_2 \circ C_1$ if there are $z \in \operatorname{KK}(C_1;A,B)$ and $v \in \operatorname{KK}(C_2;B,A)$ such that $z \otimes_B v = [\operatorname{id}_A]$ and $v \otimes_A z = [\operatorname{id}_B]$ in $\operatorname{KK}(C_2 \circ C_1;A,A)$ and $\operatorname{KK}(C_1 \circ C_2;B,B)$ respectively, then we call $z \in \operatorname{KK}(C;\cdot,\cdot)$ -equivalence. $A \in \operatorname{And} B$ will be called $\operatorname{KK}(C;\cdot,\cdot)$ -equivalent.

Theorem 7. Suppose that A and B are stable and separable, and that $C_1 \subset \operatorname{CP}(A,B)$ is an m.o.c.c., and that there exists a non-degenerate *-monomorphism $h_1 \colon A \to B$ such that $h_1 \oplus h_1$ is unitarily equivalent to h_1 and generates C_2 ,

- (i) then the natural semi-group morphism from the semi-group of unitary equivalence classes $\operatorname{Hom}(A,B) \cap \mathcal{C}_1$ into $\operatorname{KK}(\mathcal{C}_1;A,B)$ (induced by $\varphi \mapsto [\varphi]$) is surjective, and
- (ii) $[\psi] = [\varphi]$ holds in $KK(\mathcal{C}_1; A, B)$ if and only if

 $\psi \oplus h_1$ and $\varphi \oplus h_1$ are unitarily homotopic (i.e. there is a norm-continuous map $t \in [0, \infty) \mapsto u(t)\mathcal{U}(\mathcal{M}(B))$ with u(0) = 1 and $\lim u(t)^*(\varphi(a) \oplus h_1(a))u(t) = \psi(a) \oplus h_1(a)$ for all $a \in A$).

Corollary 8. If, in addition to the assumptions of the last theorem, $C_2 \subset \mathrm{CP}(B,A)$ is an m.o.c.c. such that there is non-degenerate *-morphism $h_2 \colon B \to A$ which generates C_2 and is unitarily equivalent to $h_2 \oplus h_2$, then:

There is an isomorphism φ from A onto B with $\varphi \in \mathcal{C}_1$ and $\varphi^{-1} \in \mathcal{C}_2$ if and only if $\mathrm{id}_A \in \mathcal{C}_2 \circ \mathcal{C}_1$ and $\mathrm{id}_B \in \mathcal{C}_1 \circ \mathcal{C}_2$ and there are $z_1 \in \mathrm{KK}(\mathcal{C}_1; A, B)$ and $z_2 \in \mathrm{KK}(\mathcal{C}_2; B, A)$ with $z_1 \otimes_A z_2 = [\mathrm{id}_B]$ in $\mathrm{KK}(\mathcal{C}_1 \circ \mathcal{C}_2; B, B)$ and $z_2 \otimes_B z_1 = [\mathrm{id}_A]$ in $\mathrm{KK}(\mathcal{C}_2 \circ \mathcal{C}_1; A, A)$.

Examples:

If A and B are C(Y)-algebras then $KK(\mathcal{C};A,B)$ is the same as $\mathcal{R}KK^G(Y;A,B)$ in the sense of Kasparov (for the trivial group G or for trivial G-actions), if

 $\mathcal{C}:=\mathrm{CP}(Y;A,B)$, the m.o.c. cone of c.p. $\mathrm{C}_0(Y)$ -module maps from A into B.

If A is exact, then $\mathrm{KK}(\mathrm{CP}_{\mathrm{nuc}}(A,B);A,B)$ is the same as $\mathrm{KK}_{nuc}(A,B)$ in the sense of G. Skandalis.

Applications of Thm.7 and Cor.8 to classification problems:

Suppose that A and B are separable and stable. To apply the above Theorem one needs to know when there is a "universal" Hilbert (A,B)-module that rediscovers a given map Ψ from $\mathbb{O}(\operatorname{Prim}(B))$ into $\mathbb{O}(\operatorname{Prim}(A),\ e.g.,\ \operatorname{coming}\ \text{from}\ a\ \operatorname{homeomorphism}\ \text{from}\ \operatorname{Prim}(A)$ onto $\operatorname{Prim}(B)$.

Thus, a basic problem is the question of how well the cone $\mathcal{C}:=\operatorname{CP_{rm}}(X;A,B)$ rediscovers an given action Ψ of $X:=\operatorname{Prim}(B)$ on A, i.e., if, for each $J\in\mathcal{I}(B)$, $b\in J$ and $\varepsilon>0$, there is a Ψ -residually nuclear map $V\colon A\to B$ and $a\in\Psi(J)$ such that $\|V(a)-b\|<\varepsilon$. A necessary condition is that Ψ is lower semi-continuous (i.e., $J\to\|\Psi(J)+a\|$ defines a lower semi-continuous function on X). This is equivalent to $\Psi=\Psi^{\mathcal{C}}$ for a suitable residually nuclear

m.o.c.c. $\mathcal{C} \subset \mathrm{CP}_{\mathrm{nuc}}(A,B)$.

One has only the following partial results (Harnisch-K, Rørdam-K, K):

The answer is positive if $B\otimes \mathcal{O}_{\infty}$ contains a regular Abelian C^* -subalgebra C, A is arbitrary, and Ψ is lower s.c. A C^* -subalgebra C of $B\otimes \mathcal{O}_{\infty}$ is "regular" if the map $\Psi_C\colon \mathcal{I}(B)\ni J\to C\cap J\in \mathcal{I}(C)$ is injective and continuous. The latter happens here if and only if $C\cap J_1+C\cap J_2=C\cap (J_1+J_2)$. Thus this action satisfies the stronger assumptions of Ralf Meyer.

The above described results together show then that B satisfies this condition if B is nuclear, and – finally – even if B is exact. (The question is open for $A=\mathrm{C}[0,1],\ B$ arbitrary.)

Theorem 9. Suppose $H: A \to \mathcal{M}(B)$ is a non-degenerate nuclear monomorphism, A and B are stable and separable, B strongly purely infinite.

If the action of $\operatorname{Prim}(B)$ on A is monotone upper semi-continuous, then there exists a non-degenerate nuclear embedding $h_0 \colon A \to B$ such that h_0 and $h_0 \oplus h_0$ are unitarily homotopic, and that $\delta_{\infty} \circ h_0$ and $\delta_{\infty} \circ H$ are unitarily homotopic in $\mathcal{M}(B)$.

The action of $\operatorname{Prim}(B)$ is given here by $J \to H^{-1}(H(A) \cap \mathcal{M}(B,J)).$

With $h_0 \colon A \to B$ we can apply the Theorem to the realization of elements of $\mathrm{KK}(\mathrm{Prim}(B), A, B)$ by monomorphisms $h \colon A \to B$.

Definition 10. A separable B is in the "strong UCT class" if $B \otimes \mathcal{O}_{\infty}$ contains a "regular" Abelian C^* -subalgebra A such that $A \hookrightarrow B$ defines in $\mathrm{KK}(X;A,B)$ a $\mathrm{KK}(X;\cdot,\cdot)$ -equivalence of A and B (where $X:=\mathrm{Prim}(B)$). (The "weak" UCT class should allow in addition extensions, inductive limits, and should start with regular type I subalgebras.)

If such A exists, it is *not* uniquely determined, but it has the property that A and the action of X on A determine $B\otimes \mathcal{O}_{\infty}\otimes \mathbb{K}$ up to isomorphisms if B is nuclear, i.e. there is a canonical reconstruction of B from (A,X) if B is strongly purely infinite, separable, stable and nuclear. (Note that the action of Prim(B) on A now satisfies the additional requirements of Ralf Meyer.) Explicitly:

Theorem 11. [HH-EK, Reconstruction] Suppose that A is separable, nuclear and stable, that Ω is a sub-lattice of $\mathcal{I}(A) \cong \mathbb{O}(\operatorname{Prim}(A))$ such that $\operatorname{Prim}(A), \emptyset \in \Omega$, $\bigcup U_n, (\bigcap U_n)^{\circ} \in \Omega$ for every sequence U_1, U_2, \ldots in Ω . Then there is a non-degenerate *-monomorphism $H_0 \colon A \to \mathcal{M}(A)$ with following properties:

(i) The infinite repeat $\delta_{\infty} \circ H_0$ is unitarily equivalent to H_0 .

(ii) For every $U \in \mathbb{O}(\operatorname{Prim}(A))$ holds $H_0(J(V)) = H_0(A) \cap \mathcal{M}(A, J(U))$ where $V \in \Omega$ is given by $V = \bigcup \{W \in \Omega : W \subset U\}.$

The H_0 is uniquely determined up to unitary homotopy, i.e., if $H_1\colon A\to \mathcal{M}(A)$ also satisfies the requirements (i) and (ii) then there is a continuous path $t\in\mathbb{R}_+\to U(t)\in\mathcal{U}(\mathcal{M}(A))$ such that $U(t)^*H_2(a)U(t)-H_0(a)\in A$ for all $a\in A$ and $t\in\mathbb{R}_+$ and $\lim_{t\to\infty}U(t)^*H_2(a)U(t)=H_0(a)$.

The Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{H}}$ of the Hilbert A-A-module $\mathcal{H}:=(A,H_0)$ is stable and strongly purely infinite; and it is the same as the C^* -Fock algebra of \mathcal{H} .

The natural embedding of A into $\mathcal{O}_{\mathcal{H}}$ defines a lattice isomorphism from Ω onto $\mathbb{O}(\mathrm{Prim}(\mathcal{O}))$ and a $\mathrm{KK}(\mathcal{C};\cdot,\cdot)$ -equivalence.

If a locally compact group G acts on A by $\alpha\colon G\to$

Aut(A) and $\alpha(g)(J) \in \Omega$ for all $J \in \Omega$, then H_0 can be found such that in addition, H_0 is G-equivariant (i.e., $\gamma(g)(H_0(a)b) = H_0(\gamma(g)(a))\gamma(g)(b)$) with respect to an action $\gamma \colon G \to \operatorname{Aut}(A)$ of G on A that is outer conjugate to α . In particular, G acts on $\mathcal{O}_{\mathcal{H}}$ and in a way that is compatible with the $\operatorname{KK}(\Omega; \cdot, \cdot)$ -equivalence from A into $\mathcal{O}_{\mathcal{H}}$.

If A is of type I, then $\mathcal{O}_{\mathcal{H}}$ is a \mathbb{Z} -crossed product of an inductive limit of type I C^* -algebras by an automorphism.

The generalization of the proofs for simple classification to the non-simple case is related to the (non-trivial) fact that nuclear (or exact) B with $B\otimes \mathcal{O}_2\cong B$ have the strong UCT property: It says that a T_0 space X is the primitive ideal space $\mathrm{Prim}(B)$ of a separable nuclear C*-algebra B if and only if

(PN1) the topology of X is second countable,

(PN2) every prime closed subset of X is the closure of a point,

(PN3) there exists a locally compact space Y and a continuous map $\varphi\colon Y\to X$ that is *pseudo-open* (:= for every decreasing sequence $U_1\supset U_2\supset\cdots$ of open subsets of X, the inverse image $\varphi^{-1}(V)$ of the interior V of $\bigcap_n U_n$ is the interior of $\bigcap_n \varphi^{-1}(U_n)$) and *pseudo-epimorphic* (:= the intersection of $\varphi(Y)$ with different open subsets of X is different).

(Note that φ with (PN3) is an open epimorphism if X is a T_1 -space.)

One takes $\Omega := \varphi^{-1}(\mathbb{O}(X))$. The existence of the corresponding universal module $H_0 \colon \mathrm{C}_0(Y) \otimes \mathbb{K} \to \mathcal{M}(\mathrm{C}_0(Y) \otimes \mathbb{K})$ can be deduced directly from the Bartle-Graves-Michael selection theorem.

The (re-)construction of $B \otimes \mathbb{K}$ with $Prim(B) \cong X$

from $\pi\colon Y\to X$ shows that for every second countable locally compact group G and every continuous action α of G on X there is a continuous action of G on $B\otimes \mathcal{O}_2\otimes \mathbb{K}$ that induces α . In particular, $\operatorname{Aut}(B\otimes \mathcal{O}_2\otimes \mathbb{K})\to \operatorname{Homeo}(X)$ is a topological group epimorphism that has a sort of local splitting property.

Application to examples suggested by *Chris Phillips*: Let $G = \mathbb{Z}^m \times \mathbb{R}^n$ a locally compact non-compact second countable Abelian group. Then there is an action α of the dual group $\Gamma = \mathbb{T}^m \times \mathbb{R}^n$ (of G) on $\mathcal{O}_2 \otimes \mathbb{K}$ such that $A := (\mathcal{O}_2 \otimes \mathbb{K}) \rtimes \Gamma$

- is a *prime* strongly purely infinite C^* -algebra,
- A has quasi-compact primitive ideal space $\operatorname{Prim}(A) \cong G \cup \{\infty\}$ given by the (nontrivial) closed subsets consisting of the compact subsets of G,
- ullet and the dual action \widehat{lpha} of G on A induces the translation action of G on $G\cup\{\infty\}$

(The closure of the infinite point ∞ is the whole space $\operatorname{Prim}(A)$, and every clopen subset is $\operatorname{Prim}(A)$ or \emptyset . Therefore it can't be the primitive ideal space of an AF algebra.)

If G=Z or $G=\mathbb{R}$ one finds a 1-cocycle that changes the actions into actions that fixes a full projection p of A. (The non-trivial case $G=\mathbb{R}$ follows from a Lemma in the original proof of Connes of the non-commutative Thom isomorphism.)

The question, whether a prime $unital\ B$ with an \mathbb{R} -action that induces a minimal action on Prim(B) must be a simple algebra, appeared in a Seminar talk at Fields Institute.

Can we take \mathcal{O}_{∞} , \mathcal{P}_{∞} or \mathcal{Z} in place of \mathcal{O}_2 ? (Less important than proving the UCT for tensorially self-absorbing C^* -algebras! I don't want to hinder someone from doing this first.)

Ideas of proof (as an example of "straight" applications of the above described machinery):

(a) Show that $G \cup \{\infty\}$ with the above described "minimal" topology top_{new} is in the class of spaces with properties (PN1)-(PN3):

This could be done by showing that there is a finite-dimensional I.c. Polish space F, an open and continuous map $\lambda\colon F\to G$ and a homeomorphic embedding ν of F into some cube $[0,1]^k$, such that $\lim_{g\to\infty} \operatorname{dist}(x,\nu(\lambda^{-1}(g)))=0$ for each $x\in[0,1]^k$.

Then define for $x \in [0,1]^k$ the map $\varphi(x) := \lambda \circ \nu^{-1}(x)$ if $x \in \mu(F)$ and $\varphi(x) := \infty$ otherwise. Then φ is open and continuous. Thus $(G \cup \{\infty\}, \varphi)$ satisfies (PN1)-(PN3).

- (b) There is unique separable nuclear B with $\mathrm{Prim}(B) = G \cup \{\infty\}$ (with topology top_{new}) and with $B \cong B \otimes \mathcal{O}_2 \otimes \mathbb{K}$ (by (a) and Reconstruction theorem).
- (c) The homeomorphism $\ell \colon (t,s) \to (s+t,s)$ of

 $(G \cup \{\infty\}) \times G \cong \operatorname{Prim}(B \otimes \operatorname{C}_0(G))$ comes from some automorphism κ of $A := B \otimes \operatorname{C}_0(G)$ because $A \cong A \otimes \mathcal{O}_2 \otimes \mathbb{K}$.

(d) Now define a G-action $\gamma \colon g \mapsto \kappa^{-1}(\operatorname{id} \otimes \rho_g) \circ \kappa$ on A and apply the Reconstruction theorem to A, γ and lattice $\Omega := \{U \times G \colon U \in \operatorname{top}_{new}\}$ (here top_{new} is as above):

Since $\Omega \cong \mathbb{O}(\operatorname{Prim}(B))$, the corresponding G-equivariant Hilbert A-A-module \mathcal{H} defined by $H_0 \colon A \to \mathcal{M}(A)$ of the Reconstruction theorem produces the separable stable nuclear algebra $C := \mathcal{O}_{\mathcal{H}}$ with primitive ideal space $\cong \operatorname{Prim}(B)$ such that C is $\operatorname{KK}(\operatorname{Prim}(B);\cdot,\cdot)$ -equivalent to A, and with a G-action that induces on $\mathbb{O}(\operatorname{Prim}(C)) \cong \Omega$ the action of G on $\mathbb{O}(\operatorname{Prim}(B))$ given by ℓ . Since A absorbs \mathcal{O}_2 tensorially, we get $C \cong C \otimes \mathcal{O}_2 \otimes \mathbb{K} \cong B$ and, thus, an action of G on B that induces the given action of G on $\operatorname{Prim}(B) \cong G \cup \{\infty\}$.