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to reconstruction and applications, and passage from
the nuclear to the exact case.)
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Matricially o-convex cones and actions

Definition 1. A point-norm closed cone C of
completely positive maps from A into B is called
a matricially operator-convex cone (“m.o.c.c”) if C is
invariant under the operations

(OC1): b3Vi(-)by + bo x Vo(- )by € C for V1, V5 € C,
bi,b2 € B, (i.e., C is operator-convex) and

(0C2): ¢V ®idy(r*(-)r)c € C for all V € C,
n = 1,2,..., columns ¢ € M,1(B) and rows
r € My ,(A). (i.e, C is matricial).

If S C CP(A,B), then S generates the m.o.c.c.
C := C(S), that is, the point-norm closure of the
smallest convex subset M C CP(A,B) invariant
under the operations (OC2).

Denote by Co 0 Cy (resp. by C1 ® C3 ) the m.o.c.c.
that is generated by the set S := {VaoVy; V; € C;}
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(resp. by S :={V1®@V3; V; € C;}) form.o.c.c.’sCy C
CP(A, B) and Cy C CP(B,C) and C3 C CP(C, D)

Examples of m.o.c.cones are CP(2; A, B) (the
(Q-equivariant c.p. maps) and CP.,(Q2,A,B) (Q-
residually nuclear maps) for actions W4: Q — Z(A)
of lattices €2 on A and Y on B. The maps ¥4 are
general monotone increasing maps from the lattice
() into the lattice of ideals Z(A) = O(Prim(A)).
(There are m.o.c.c. that do not come from such
a construction.) But, if A is separable and
exact, B is separable and C C CP,..(A4, B), then
C = CP(Q;A,B) for Q := O(X) and a suitable
l.s.c. action ¥: Q) — T(A) of X on A. Write:
C = CPuuc(X; A, B).

If A and B are Cy(Y) algebras, then the natural
action of © := O(Y) on A an B are given by
WUa:U+— Co(U)A € Z(A) and similar 5. A map
T € CP(A,B) is in CP(Q; A, B) iff T is Co(Y)-
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modular.

It can happen that CP(Y; A, B) = {0}: Consider
e.g., the action of Y := [0,1] on B := C(Y) and
on A := C({0,1}Y) given by the natural C(Y)-
algebra structures B = C[0,1] and A D C[0,1] =
C*(1, f)-algebra where f is the continuous map
flar,ag,...) := > a,27". (The action of ) =
O(Y) on A is given by the inverse ¥ g(U) := f~1(U)
of f, and ¥ =id.)

For a continuous map A from [0, 1] into a finite T
space Z one always has that CP(Z; A, B) is infinite-
dimensional, where the action ®4: O(Z) — Z(A)
is given by P4(V) := Tg(A~1(V)) and similarly
®p. (Here, A1 could be replaced by any monotone
increasing map from O(Z) to 0|0, 1].)

In some special cases (but with arbitrary topological
spaces X, Z), one has that CP(X;A;, A;) =
CP(Z; A1, Ay), provided that
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e there is a continuous map A\: X — Z such that for
the corresponding action ¥4 (A™'(V))) = ®4.(V)
holds,

e \1(O(Z)) contains a basis of the topology of X,
and

e the actions of X are upper semi-continuous (see

below).

If Q is a complete lattice (i.e., \/=l.u.b. and
A=g.l.b. exist inside Q itself, so as e.g., for Q) =
O(X)) Wa: Q — Z(A) will be called lower semi-
continuous if WA(AU,) = (¥Y(U,) — in particular
AU ANV) = AWU) N A(V) in relaxed notation —
, and upper semi-continuous (respectively monotone
upper semi-continuous) if Wa(\/U,) = closure of
> W4 (U,) — in particular AA(UVV) =AU)+ A(V)
—, (respectively if ¥ 4(\/ U, ) = closure of | JU4(U,,))
for Uy < Us < ---in .
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We have seen: Upper semi-continuous actions of
X usually have small CP(X; A, B) that do not allow
one to rediscover the action itself.

It is not difficult to see:
If X is a Ty space and X contains an open quasi-
compact subset, then X can not act lower s.c. and
monotone upper s.c. at the same time on a separable
purely infinite (C*-algebra that does not contain a

projection.

The action of O(Y') defined for a Cy(Y )-algebra A

is always upper semi-continuous.

The prototype of a lower semi-continuous action
of Prim(B) on Prim(A) should be given by a an
action W4(J) :== h=1(h(A) N M(B,J)) for some *-
morphism h: A — M(B) . Unfortunately such h
does not exist in general, i.e., in general also the lower
s.c. actions can not produce sufficiently many A-B-

bi-modules that allow one to rediscover the action.
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But one has at least the following useful result (in the
opposite direction), where F' denotes the free group on

countably many generators.

Theorem 2. [Separation for m.o.c.cones] For
every m.o.c.c. C C CP(A, B) there exists a lower s.c.
action of Z := Prim(BQ™**C*(F)) on AQM**C*(F)
such that T' € CP(A, B) is in C if and only if

T ®id € CP(Z; A @™ C*(F), B @™ C*(F)).

Corollary 3. If B is nuclear, or if A is exact and
C C CPphuc(A, B) then

C =CP.(X; A, B)

for the lower s.c. action of X := Prim(B) on A given

by
() :={a€cA; V(a)eJ VYV eCl.
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The opposite direction is crucial: Given a lower s.c.
action ¥ of Prim(B) on A for separable exact A.
Show the existence of C such that ¥ = WC (after
that it follows from the above corollary that C =

CP..(X; A, B)). This can be done; the proof needs
some m.o.c.c.-related KK-theory.

A Hilbert A-B-module (E,¢) is C-compatible if
every map a € A — (d(a)x,x) € B is in C. Each
Hilbert A-B-module (H,¢: A — L(H)) defines a
m.o.c.c. C(H,d) := the smallest m.o.c.c. containing
all c.p. maps V:a € A (¢p(a)r,z) € B for x € H
(“generalized” vector states). It induces:

Proposition 4. There is a natural bijection between

m.o.c.c.’s C C CP(A,B) and classes of of Hilbert
A-B-modules that are closed under (infinite) Hilbert

module sums and isometric module morphisms.

It leads to a natural definition of cone-depending K K-
theory (or “C—equivariant” K K-theory).
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C—depending KK-, Ext- and
R(grdam)—groups.

Define KK-groups depending on m.o.c. cones
C C CP(A, B):
If A and B are separable algebras, equipped with
gradings B84 and (Bg and C = B840C = C o (B
, then consider the Abelian semi-group E(C; A, B)
of unitary equivalence classes of graded Kasparov
modules (F,¢,F) with countably generated C-
compatible Hilbert A-B-module (F,¢). The ¢-
compact perturbations of the derivatives F' define
an equivalence relation ~g, on E(C; A, B) that is

compatible with addition. They define a semigroup
SKK(C; A, B).

If A and B are stable and trivially graded, then
we can define the semigroups SExt(C; A, B) and
SR(C; A, B) of unitary equivalence classes (by unitaries
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in M(B) respectively in Q(R,, M(B))) of Busby
invariants of extensions h: A — Q(B) := M(B)/B
and h: A — Q(R,,B) = Cp(R,,B)/Co(R,, B)
that have completely positive lifts V: A — M(B)
respectively V: A — Cp(Ry, B) that are “locally”
in C, i.e., b*V(-)b € C for all b € B respectively
V()(t) eCforallt e R,.

Definition 5. Let KK(C; A, B) denote  the
Grothendieck group of E(C; A, B)/ ~sp.

Define Rgrdam groups R(C; A, B), and Extension

groups Ext(C; A, B) similar (for trivially graded A and
B),

Suppose that A is separable, B is o-unital Then
it follows (almost) straight from the definitions and

Kasparov's original approach, and from the fact
that CPy,(B) o C o CPi(A) = C for all m.o.c.c.s
C C CP(A,B) :
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e There are natural semigroup morphisms

Hom(A, B) NC — SR(C; A, B) — SExt(C; A, B)

e With (' := C ® CP(C,C(y)), there is a natural

isomorphism

Ext(C; A, B) 2 KK(C'; A, B(1)) -

e One can tensor elements of KK(C;A, B) with
elements of KK(C, D) for nuclear separable C' and
D, i.e., there is a natural morphism

KK(C; A, B)®;KK(C, D) — KK (Cc.p; ARC, BRD)

where Cc p denotes the cone of T' € CP(A®C; B®
D) with id®f(T(- ® c)) € C for all ¢ € Cy and
JeDy.

e KK(C; A, B) is homotopy-invariant,
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e the usual Kasparov product defines a morphism
KK(C1; A, B)xKK(Cq; B,C') — KK(Cy0C1; A, C)
and satisfies Bott periodicity, i.e.

KK(C; A, B) 2 KK(C(R?); A, S*B) .

e in particular: If a locally quasi-compact T, space X
acts on A, B and C then for C; := CP,.,(X; A, B)
and Cy := CP,.,(X; B, (') the above formulas lead

to a bi-additive map

KK(X; A, B) x KK(X;B,C) — KK(X; A4,C).

o Additivity:
KK(C14+Ca; A1® Az, B) = KK(Cy; A1, B)®KK(Ca; A2, B)
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e half-exactness:
If J<1A are o-unital, m: A — B := A/J and

C1 C CP(D, A), Cy := CPiu(A, J)oCq, Cy := moly,
then

KK(Co; D, J) — KK(Cy1; D, A) — KK(Cy; D, B),
is exact. On the other side,

KK(Cy; J, D) — KK(Cy; A, D) — KK(C20C1; B, D)

is exact if the cones C; satisfy Cy = C1|J and

CQOT(:{Vécl; V’J:O}

— Typeset by Foil TEX — 14



The notion of KK(C; -, -)-equivalence.

One has C-dependent “split-additivity”: Suppose
that h: B — A is a (grading-preserving) split
morphism for m := m;. Then the m.o.c. cone
C1:=C(g) C CP(J & B, A) generated by

g:(j,b) € JP B — diag(j, h(b)) € Ms(A)

is the same as the sum of CP;,,(J,A) and C(h),
and the cone Co C CP(A,J & B) generated by by
the Kasparov (A,J @& B)-module z := ((J & B) ®
(J® B)P, (k@ h)P® (kohomw®0),F), where I
is the flip ((j1,61), (j2, b2)) — ((j2,b2), (j1,b1)), has
the property that CP;,,.(J & B,J & B) = Cs o (q,
CPinn(A,A) C Ca0C; and |g ®a 2] = [id]
KK(CPipn:J @ B,J & B) [z ®sep 9] = [id]
KK(Cy0Cy; A A).
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Definition 6. Given C; C CP(A,B), (C; C
CP(B, A) with CPy,(A) C C20Cq and CPy,(B) C Cqo0
Cy ifthere are z € KK(Cy; A, B) andv € KK(Cq; B, A)
such that z @p v = |ida] and v ®4 z = [idg] in
KK(Cy0C1; A, A) and KK(Cy 0 Co; B, B) respectively,
then we call z a KK(C;-,-)-equivalence. A and B will
be called KK(C; -, -)-equivalent.

Theorem 7. Suppose that A and B are stable and
separable, and that C; C CP(A, B) is an m.o.c.c., and
that there exists a non-degenerate *-monomorphism
hi: A — B such that hi & hy is unitarily equivalent
to hy1 and generates Cs,

(i) then the natural semi-group morphism from

the semi-group of unitary equivalence classes
Hom(A, B) N Cy; into KK(Cy1; A, B) (induced by
@ +— [p]) is surjective, and

(ii) [¥] = [p] holds in KK(Cy; A, B) if and only if
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W @ hqy and @ & hq are unitarily homotopic

(i.e. there is a norm-continuous map t € [0,00) —
u(t)U(M(B)) with u(0) = 1 and lim u(t)*(o(a) ®
hi(a))u(t) = Y¥(a) ® hi(a) for alla € A).

Corollary 8. [If, in addition to the assumptions of the
last theorem, Co C CP(B, A) is an m.o.c.c. such that
there is non-degenerate *-morphism ho: B — A which
generates Co and is unitarily equivalent to ho @ hs,
then:

There is an isomorphism ¢ from A onto B with
o € Cq and o= € Cy if and only ifid4 € Co0Cy and
idg € C1 0Cy and there are z; € KK(C1; A, B) and
29 € KK(Co; B, A) with z1 ® 4 2o = |idg] in KK(C; o
Co; B, B) and zo ®@p 21 = [ida]| in KK(C30Cy; A, A).

Examples:
If A and B are C(Y)-algebras then KK(C; A, B) is

the same as RKK“(Y'; A, B) in the sense of Kasparov
(for the trivial group G or for trivial G-actions), if

— Typeset by Foil TEX — 17



C := CP(Y;A,B), the m.o.c. cone of c.p. Cy(Y)-
module maps from A into B.

If Ais exact, then KK(CPp,.(A4, B); A, B) is the same
as KK,,,c(A, B) in the sense of G. Skandalis.
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Applications of Thm.7 and Cor.8 to

classification problems:

Suppose that A and B are separable and stable.
To apply the above Theorem one needs to know
when there is a “universal” Hilbert (A, B)-module
that rediscovers a given map ¥ from O(Prim(B))

into O(Prim(A), e.g., coming from a homeomorphism
from Prim(A) onto Prim(B).

Thus, a basic problem is the question of how well
the cone C := CP.y(X; A, B) rediscovers an given
action ¥ of X := Prim(B) on A, i.e., if, for each
J €I(B), be Jand € > 0, there is a U-residually
nuclear map V: A — B and a € V(J) such that
|V (a) — b]| < e. A necessary condition is that W is
lower semi-continuous (i.e., J — ||¥(J) + al|| defines
a lower semi-continuous function on X). This is

equivalent to U = WC for a suitable residually nuclear
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m.o.c.c. C C CPuyu(A, B).

One has only the following partial results (Harnisch-
K, Rgrdam-K, K):
The answer is positive if B ® (O, contains a regular
Abelian C*-subalgebra C, A is arbitrary, and ¥ is
lower s.c. A C'*—subalgebra C of B® O is “regular”
if themap V¢o: Z(B) > J — CNJ € Z(C) is injective
and continuous. The latter happens here if and only
ifCNJi+CnJy=CnN(Jy+ J3). Thus this action
satisfies the stronger assumptions of Ralf Meyer.

The above described results together show then
that B satisfies this condition if B is nuclear, and —

finally — even if B is exact. (The question is open for
A = C|0,1], B arbitrary.)

Theorem 9. Suppose H: A — M(B) is a non-
degenerate nuclear monomorphism, A and B are

stable and separable, B strongly purely infinite.
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If the action of Prim(B) on A is monotone upper
semi-continuous, then there exists a non-degenerate
nuclear embedding ho: A — B such that hg and
ho @ hg are unitarily homotopic, and that 0., o hg and
dso © H are unitarily homotopic in M(B).

The action of Prim(B) is given here by J —
H Y (H(A) N M(B,J)).

With hg: A — B we can apply the Theorem to
the realization of elements of KK(Prim(B), A, B) by
monomorphisms h: A — B.

Definition 10. A separable B is in the “strong
UCT class” if B® O contains a “regular” Abelian
C*-subalgebra A such that A — B defines in
KK(X;A,B) a KK(X;-,-)—equivalence of A and
B (where X := Prim(B)). (The “weak” UCT class
should allow in addition extensions, inductive limits,

and should start with regular type | subalgebras.)
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If such A exists, it is not uniquely determined, but it
has the property that A and the action of X on A
determine B ® O4 ® K up to isomorphisms if B is
nuclear, i.e. there is a canonical reconstruction of B
from (A, X) if B is strongly purely infinite, separable,
stable and nuclear. (Note that the action of Prim(B)
on A now satisfies the additional requirements of Ralf
Meyer.) Explicitly:

Theorem 11. [HH-EK, Reconstruction] Suppose

that A is separable, nuclear and stable, that
Q) is a sub-lattice of IT(A) = O(Prim(A)) such
that Prim(A),0 € Q, JU,,((Un)° € Q for every
sequence Uy,Us,... in ). Then there is a non-
degenerate *-monomorphism Hy: A — M(A) with
following properties:

(i) The infinite repeat 0., o Hy is unitarily equivalent
to Ho.
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(ii) For every U € O(Prim(A)) holds Ho(J(V)) =
Ho(A) N M(A,J(U)) where V € Q is given by
V=U{WeQ: WcU.

The Hgy is uniquely determined up to unitary
homotopy, ie., if Hi: A — M(A) also satisfies
the requirements (i) and (ii) then there is a
continuous path t € Ry — U(t) € U(M(A)) such
that U(t)*H2(a)U(t) — Ho(a) € A for all a € A and
t € Ry and limy oo U(t)*Ha(a)U(t) = Hoy(a).

The Cuntz-Pimsner algebra O of the Hilbert A-
A-module 'H := (A, Hy) is stable and strongly purely
infinite; and it is the same as the C*-Fock algebra of

H.

The natural embedding of A into Oy defines a
lattice isomorphism from Q onto O(Prim(QO)) and a

KK(C; -, -)-equivalence.
If a locally compact group G acts on A by a.: G —
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Aut(A) and a(g)(J) € Q forall J € Q, then Hy can be
found such that in addition, Hy is G-equivariant (i.e.,
v(g) (Ho(a)b) = Ho (v(9)(a)) v(g)(b)) with respect to
an action v: G — Aut(A) of G on A that is outer
conjugate to a. In particular, G acts on Oy and in a
way that is compatible with the KK(2; -, -)-equivalence
from A into Ox.

If A is of type |, then Oy is a Z-crossed product
of an inductive limit of type | C*-algebras by an

automorphism.

The generalization of the proofs for simple
classification to the non-simple case is related to
the (non-trivial) fact that nuclear (or exact) B with
B ® Oy = B have the strong UCT property: It says
that a T space X is the primitive ideal space Prim(B)
of a separable nuclear C*-algebra B if and only if

(PN1) the topology of X is second countable,
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(PN2) every prime closed subset of X is the closure of a
point,

(PN3) there exists a locally compact space Y and a
continuous map ¢: Y — X that is pseudo-open
(:= for every decreasing sequence Uy D Uy D - - of
open subsets of X, the inverse image ¢~ 1(V) of the
interior V' of (), U, is the interior of [, ¢~ *(U,))
and pseudo-epimorphic (:= the intersection of ¢ (Y")
with different open subsets of X is different).

(Note that ¢ with (PN3) is an open epimorphism if X
is a T1-space.)

One takes 2 := o 1(O(X)). The existence of the
corresponding universal module Hy: Co(Y) ® K —
M(Co(Y) ® K) can be deduced directly from the
Bartle-Graves-Michael selection theorem.

The (re-)construction of BQK with Prim(B) = X
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from 7w: Y — X shows that for every second countable
locally compact group G and every continuous action
a of G on X there is a continuous action of
G on B® Oy ® K that induces «. In particular,
Aut(B® 02 ®K) — Homeo(X) is a topological group
epimorphism that has a sort of local splitting property.

Application to examples suggested by Chris Phillips:
Let G = Z™ x R™ a locally compact non-compact
second countable Abelian group. Then there is an
action « of the dual group I' = T™ x R" (of G) on
O ® K such that A := (O3 ®K) x T

e is a prime strongly purely infinite C'*-algebra,

e A has quasi-compact primitive ideal space
Prim(A) = GU{oo} given by the (nontrivial) closed

subsets consisting of the compact subsets of GG,

e and the dual action a of G on A induces the

translation action of G on G U {0}
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(The closure of the infinite point co is the whole space
Prim(A), and every clopen subset is Prim(A) or (.

Therefore it can't be the primitive ideal space of an
AF algebra.)

If G = Z or G = R one finds a 1-cocycle that
changes the actions into actions that fixes a full
projection p of A. (The non-trivial case G = R
follows from a Lemma in the original proof of Connes

of the non-commutative Thom isomorphism.)

The question, whether a prime unital B with an
R-action that induces a minimal action on Prim(B)
must be a simple algebra, appeared in a Seminar talk
at Fields Institute.

Can we take O, Ps or Z in place of Oy 7
(Less important than proving the UCT for tensorially
self-absorbing C*-algebras! | don't want to hinder

someone from doing this first.)
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ldeas of proof (as an example of “straight”
applications of the above described machinery):
(a) Show that G'U {oco} with the above described
“minimal” topology top,,.,, Is in the class of spaces
with properties (PN1)-(PN3):
This could be done by showing that there is a
finite-dimensional l.c. Polish space F', an open and
continuous map A: FF — G and a homeomorphic
embedding v of F' into some cube [0, 1], such that
lim, o dist(z,v(A"1(g))) = 0 for each z € [0, 1]*.
Then define for z € [0, 1]* the map ¢(z) := Aov~1(x)
if © € u(F) and ¢(x) := oo otherwise. Then ¢ is
open and continuous. Thus (G U {oo}, ) satisfies
(PN1)-(PN3).
(b) There is unique separable nuclear B with
Prim(B) = G U {oo} (with topology top,,.,) and
with B =2 B ® Oy ® K (by (a) and Reconstruction
theorem).
(c) The homeomorphism /¢: (t,s) — (s + t,s) of
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(G U {o0o}) x G = Prim(B ® Cy(G)) comes from
some automorphism k of A := B ® Cy(G) because
AZ AR O ® K.

(d) Now define a G-action v: g — k1 (id ®p,) o K on
A and apply the Reconstruction theorem to A, ~ and
lattice Q :={U x G ; U € top,,.,,} (here top,,.,, is as
above):

Since 2 = O(Prim(B)), the corresponding G-
equivariant Hilbert A-A-module ‘H defined by
Hy: A — M(A) of the Reconstruction theorem
produces the separable stable nuclear algebra C' := Oy
with primitive ideal space = Prim(B) such that C' is
KK(Prim(B); -, -)-equivalent to A, and with a G-
action that induces on Q(Prim(C')) = 2 the action of
G on O(Prim(B)) given by ¢. Since A absorbs O,
tensorially, we get C = C ® O, ® K = B and, thus,
an action of G on B that induces the given action of
G on Prim(B) = G U {o0}.
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