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to reconstruction and applications, and passage from

the nuclear to the exact case.)
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Matricially o-convex cones and actions

Definition 1. A point-norm closed cone C of

completely positive maps from A into B is called

a matricially operator-convex cone (“m.o.c.c”) if C is

invariant under the operations

(OC1): b∗1V1( · )b1 + b2 ∗ V2( · )b2 ∈ C for V1, V2 ∈ C,

b1, b2 ∈ B, (i.e., C is operator-convex) and

(OC2): c∗V ⊗ idn(r∗( · )r)c ∈ C for all V ∈ C,

n = 1, 2, . . ., columns c ∈ Mn,1(B) and rows

r ∈M1,n(A). (i.e., C is matricial).

If S ⊂ CP(A,B), then S generates the m.o.c.c.

C := C(S), that is, the point-norm closure of the

smallest convex subset M ⊂ CP(A,B) invariant

under the operations (OC2).

Denote by C2 ◦ C1 (resp. by C1 ⊗ C3 ) the m.o.c.c.

that is generated by the set S := {V2 ◦ V1 ; Vj ∈ Cj}
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(resp. by S := {V1⊗V3 ; Vj ∈ Cj}) for m.o.c.c.’s C1 ⊂
CP(A,B) and C2 ⊂ CP(B,C). and C3 ⊂ CP(C,D).

Examples of m.o.c.cones are CP(Ω;A,B) (the

Ω-equivariant c.p. maps) and CPrn(Ω, A,B) (Ω-

residually nuclear maps) for actions ΨA : Ω → I(A)
of lattices Ω on A and ΨB on B. The maps ΨA are

general monotone increasing maps from the lattice

Ω into the lattice of ideals I(A) ∼= O(Prim(A)).
(There are m.o.c.c. that do not come from such

a construction.) But, if A is separable and

exact, B is separable and C ⊂ CPnuc(A,B), then

C = CP(Ω;A,B) for Ω := O(X) and a suitable

l.s.c. action Ψ: Ω → I(A) of X on A. Write:

C = CPnuc(X;A,B).

If A and B are C0(Y ) algebras, then the natural

action of Ω := O(Y ) on A an B are given by

ΨA : U 7→ C0(U)A ∈ I(A) and similar ΨB. A map

T ∈ CP(A,B) is in CP(Ω;A,B) iff T is C0(Y )-
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modular.

It can happen that CP(Y ;A,B) = {0}: Consider

e.g., the action of Y := [0, 1] on B := C(Y ) and

on A := C({0, 1}N) given by the natural C(Y )-
algebra structures B = C[0, 1] and A ⊃ C[0, 1] ∼=
C∗(1, f)-algebra where f is the continuous map

f(α1, α2, . . .) :=
∑

nαn2−n. (The action of Ω =
O(Y ) on A is given by the inverse ΨB(U) := f−1(U)
of f , and ΨB = id.)

For a continuous map λ from [0, 1] into a finite T0

space Z one always has that CP(Z;A,B) is infinite-

dimensional, where the action ΦA : O(Z) → I(A)
is given by ΦA(V ) := ΨB(λ−1(V )) and similarly

ΦB. (Here, λ−1 could be replaced by any monotone

increasing map from O(Z) to O[0, 1].)

In some special cases (but with arbitrary topological

spaces X, Z), one has that CP(X;A1, A2) =
CP(Z;A1, A2), provided that
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• there is a continuous map λ : X → Z such that for

the corresponding action ΨAj
(λ−1(V ))) = ΦAj

(V )
holds,

• λ−1(O(Z)) contains a basis of the topology of X ,

and

• the actions of X are upper semi-continuous (see

below).

If Ω is a complete lattice (i.e.,
∨

=l.u.b. and∧
=g.l.b. exist inside Ω itself, so as e.g., for Ω =

O(X)) ΨA : Ω → I(A) will be called lower semi-

continuous if ΨA(
∧
Un) =

⋂
Ψ(Un) — in particular

A(U ∧ V ) = A(U) ∩ A(V ) in relaxed notation —

, and upper semi-continuous (respectively monotone

upper semi-continuous) if ΨA(
∨
Un) = closure of∑

ΨA(Un) — in particular A(U ∨V ) = A(U)+A(V )
—, (respectively if ΨA(

∨
Un) = closure of

⋃
ΨA(Un))

for U1 ≤ U2 ≤ · · · in Ω.
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We have seen: Upper semi-continuous actions of

X usually have small CP(X;A,B) that do not allow

one to rediscover the action itself.

It is not difficult to see:

If X is a T0 space and X contains an open quasi-

compact subset, then X can not act lower s.c. and

monotone upper s.c. at the same time on a separable

purely infinite C*-algebra that does not contain a

projection.

The action of O(Y ) defined for a C0(Y )-algebra A

is always upper semi-continuous.

The prototype of a lower semi-continuous action

of Prim(B) on Prim(A) should be given by a an

action ΨA(J) := h−1(h(A) ∩M(B, J)) for some *-

morphism h : A → M(B) . Unfortunately such h

does not exist in general, i.e., in general also the lower

s.c. actions can not produce sufficiently many A–B-

bi-modules that allow one to rediscover the action.
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But one has at least the following useful result (in the

opposite direction), where F denotes the free group on

countably many generators.

Theorem 2. [Separation for m.o.c.cones] For

every m.o.c.c. C ⊂ CP(A,B) there exists a lower s.c.

action of Z := Prim(B⊗maxC∗(F )) on A⊗maxC∗(F )
such that T ∈ CP(A,B) is in C if and only if

T ⊗ id ∈ CP(Z;A⊗max C∗(F ), B ⊗max C∗(F )).

Corollary 3. If B is nuclear, or if A is exact and

C ⊂ CPnuc(A,B) then

C = CPrn(X;A,B)

for the lower s.c. action of X := Prim(B) on A given

by

ΨC(J) := {a ∈ A ; V (a) ∈ J ∀V ∈ C }.
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The opposite direction is crucial: Given a lower s.c.

action Ψ of Prim(B) on A for separable exact A.

Show the existence of C such that Ψ = ΨC (after

that it follows from the above corollary that C =
CPrn(X;A,B)). This can be done; the proof needs

some m.o.c.c.-related KK-theory.

A Hilbert A-B-module (E, φ) is C-compatible if

every map a ∈ A 7→ 〈d(a)x, x〉 ∈ B is in C. Each

Hilbert A-B-module (H, φ : A → L(H)) defines a

m.o.c.c. C(H, d) := the smallest m.o.c.c. containing

all c.p. maps V : a ∈ A 7→ 〈φ(a)x, x〉 ∈ B for x ∈ H
(“generalized” vector states). It induces:

Proposition 4. There is a natural bijection between

m.o.c.c.’s C ⊂ CP(A,B) and classes of of Hilbert

A-B-modules that are closed under (infinite) Hilbert

module sums and isometric module morphisms.

It leads to a natural definition of cone-depending KK-

theory (or “C–equivariant” KK-theory).
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C–depending KK-, Ext- and

R(ørdam)–groups.

Define KK-groups depending on m.o.c. cones

C ⊂ CP(A,B):
If A and B are separable algebras, equipped with

gradings βA and βB and C = βA ◦ C = C ◦ βB

, then consider the Abelian semi-group E(C;A,B)
of unitary equivalence classes of graded Kasparov

modules (E, φ, F ) with countably generated C-

compatible Hilbert A-B-module (E, φ). The φ-

compact perturbations of the derivatives F define

an equivalence relation ∼sp on E(C;A,B) that is

compatible with addition. They define a semigroup

SKK(C;A,B).

If A and B are stable and trivially graded, then

we can define the semigroups SExt(C;A,B) and

SR(C;A,B) of unitary equivalence classes (by unitaries
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in M(B) respectively in Q(R+,M(B))) of Busby

invariants of extensions h : A → Q(B) := M(B)/B
and h : A → Q(R+, B) := Cb(R+, B)/C0(R+, B)
that have completely positive lifts V : A → M(B)
respectively V : A → Cb(R+, B) that are “locally”

in C, i.e., b∗V (·)b ∈ C for all b ∈ B respectively

V (·)(t) ∈ C for all t ∈ R+.

Definition 5. Let KK(C;A,B) denote the

Grothendieck group of E(C;A,B)/ ∼sp.

Define Rørdam groups R(C;A,B), and Extension

groups Ext(C;A,B) similar (for trivially graded A and

B),

Suppose that A is separable, B is σ-unital Then

it follows (almost) straight from the definitions and

Kasparov’s original approach, and from the fact

that CPin(B) ◦ C ◦ CPin(A) = C for all m.o.c.c.s

C ⊂ CP(A,B) :
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• There are natural semigroup morphisms

Hom(A,B) ∩ C → SR(C;A,B) → SExt(C;A,B)

• With C′ := C ⊗ CP(C,C(1)), there is a natural

isomorphism

Ext(C;A,B) ∼= KK(C′;A,B(1)) .

• One can tensor elements of KK(C;A,B) with

elements of KK(C,D) for nuclear separable C and

D, i.e., there is a natural morphism

KK(C;A,B)⊗ZKK(C,D) → KK(CC,D;A⊗C,B⊗D) ,

where CC,D denotes the cone of T ∈ CP(A⊗C;B⊗
D) with id⊗f(T (· ⊗ c)) ∈ C for all c ∈ C+ and

f ∈ D∗+.

• KK(C;A,B) is homotopy-invariant,
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• the usual Kasparov product defines a morphism

KK(C1;A,B)×KK(C2;B,C) → KK(C2◦C1;A,C) ,

and satisfies Bott periodicity, i.e.

KK(C;A,B) ∼= KK(C(R2);A,S2B) .

• in particular: If a locally quasi-compact T0 space X

acts on A, B and C then for C1 := CPrn(X;A,B)
and C2 := CPrn(X;B,C) the above formulas lead

to a bi-additive map

KK(X;A,B)×KK(X;B,C) → KK(X;A,C) .

• Additivity:

KK(C1+C2;A1⊕A2, B) ∼= KK(C1;A1, B)⊕KK(C2;A2, B) ,
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• half-exactness:

If J / A are σ-unital, π : A → B := A/J and

C1 ⊂ CP(D,A), C0 := CPin(A, J)◦C1, C2 := π◦C1 ,

then

KK(C0;D,J) → KK(C1;D,A) → KK(C2;D,B) ,

is exact. On the other side,

KK(C0;J,D) → KK(C1;A,D) → KK(C2◦C1;B,D)

is exact if the cones Cj satisfy C0 = C1|J and

C2 ◦ π = {V ∈ C1 ; V |J = 0}.
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The notion of KK(C; ·, ·)-equivalence.

One has C-dependent “split-additivity”: Suppose

that h : B → A is a (grading-preserving) split

morphism for π := πJ . Then the m.o.c. cone

C1 := C(g) ⊂ CP(J ⊕B,A) generated by

g : (j, b) ∈ J ⊕B → diag(j, h(b)) ∈M2(A)

is the same as the sum of CPinn(J,A) and C(h),
and the cone C2 ⊂ CP(A, J ⊕ B) generated by by

the Kasparov (A, J ⊕ B)–module z := ((J ⊕ B) ⊕
(J ⊕ B)op, (k ⊕ h) ⊕ (k ◦ h ◦ π ⊕ 0), F ), where F

is the flip ((j1, b1), (j2, b2)) 7→ ((j2, b2), (j1, b1)), has

the property that CPinn(J ⊕ B, J ⊕ B) = C2 ◦ C1,

CPinn(A,A) ⊂ C2 ◦ C1 and [g ⊗A z] = [id] ∈
KK(CPinn;J ⊕ B, J ⊕ B) [z ⊗J⊕B g] = [id] ∈
KK(C2 ◦ C1;A,A).
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Definition 6. Given C1 ⊂ CP(A,B), C2 ⊂
CP(B,A) with CPin(A) ⊂ C2◦C1 and CPin(B) ⊂ C2◦
C1 if there are z ∈ KK(C1;A,B) and v ∈ KK(C2;B,A)
such that z ⊗B v = [idA] and v ⊗A z = [idB] in

KK(C2 ◦ C1;A,A) and KK(C1 ◦ C2;B,B) respectively,

then we call z a KK(C; ·, ·)-equivalence. A and B will

be called KK(C; ·, ·)-equivalent.

Theorem 7. Suppose that A and B are stable and

separable, and that C1 ⊂ CP(A,B) is an m.o.c.c., and

that there exists a non-degenerate *-monomorphism

h1 : A → B such that h1 ⊕ h1 is unitarily equivalent

to h1 and generates C2,

(i) then the natural semi-group morphism from

the semi-group of unitary equivalence classes

Hom(A,B) ∩ C1 into KK(C1;A,B) (induced by

ϕ 7→ [ϕ]) is surjective, and

(ii) [ψ] = [ϕ] holds in KK(C1;A,B) if and only if
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ψ ⊕ h1 and ϕ⊕ h1 are unitarily homotopic

(i.e. there is a norm-continuous map t ∈ [0,∞) 7→
u(t)U(M(B)) with u(0) = 1 and limu(t)∗(ϕ(a)⊕
h1(a))u(t) = ψ(a)⊕ h1(a) for all a ∈ A).

Corollary 8. If, in addition to the assumptions of the

last theorem, C2 ⊂ CP(B,A) is an m.o.c.c. such that

there is non-degenerate *-morphism h2 : B → A which

generates C2 and is unitarily equivalent to h2 ⊕ h2,

then:

There is an isomorphism ϕ from A onto B with

ϕ ∈ C1 and ϕ−1 ∈ C2 if and only if idA ∈ C2 ◦ C1 and

idB ∈ C1 ◦ C2 and there are z1 ∈ KK(C1;A,B) and

z2 ∈ KK(C2;B,A) with z1 ⊗A z2 = [idB] in KK(C1 ◦
C2;B,B) and z2 ⊗B z1 = [idA] in KK(C2 ◦ C1;A,A).

Examples:

If A and B are C(Y )-algebras then KK(C;A,B) is

the same as RKKG(Y ;A,B) in the sense of Kasparov

(for the trivial group G or for trivial G-actions), if

– Typeset by FoilTEX – 17



C := CP(Y ;A,B), the m.o.c. cone of c.p. C0(Y )-
module maps from A into B.

If A is exact, then KK(CPnuc(A,B);A,B) is the same

as KKnuc(A,B) in the sense of G. Skandalis.
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Applications of Thm.7 and Cor.8 to

classification problems:

Suppose that A and B are separable and stable.

To apply the above Theorem one needs to know

when there is a “universal” Hilbert (A,B)-module

that rediscovers a given map Ψ from O(Prim(B))
into O(Prim(A), e.g., coming from a homeomorphism

from Prim(A) onto Prim(B).

Thus, a basic problem is the question of how well

the cone C := CPrn(X;A,B) rediscovers an given

action Ψ of X := Prim(B) on A, i.e., if, for each

J ∈ I(B), b ∈ J and ε > 0, there is a Ψ-residually

nuclear map V : A → B and a ∈ Ψ(J) such that

‖V (a) − b‖ < ε. A necessary condition is that Ψ is

lower semi-continuous (i.e., J → ‖Ψ(J) + a‖ defines

a lower semi-continuous function on X). This is

equivalent to Ψ = ΨC for a suitable residually nuclear
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m.o.c.c. C ⊂ CPnuc(A,B).

One has only the following partial results (Harnisch-

K, Rørdam-K, K):

The answer is positive if B ⊗ O∞ contains a regular

Abelian C*–subalgebra C, A is arbitrary, and Ψ is

lower s.c. A C*–subalgebra C of B⊗O∞ is “regular”

if the map ΨC : I(B) 3 J → C∩J ∈ I(C) is injective

and continuous. The latter happens here if and only

if C ∩ J1 + C ∩ J2 = C ∩ (J1 + J2). Thus this action

satisfies the stronger assumptions of Ralf Meyer.

The above described results together show then

that B satisfies this condition if B is nuclear, and –

finally – even if B is exact. (The question is open for

A = C[0, 1], B arbitrary.)

Theorem 9. Suppose H : A → M(B) is a non-

degenerate nuclear monomorphism, A and B are

stable and separable, B strongly purely infinite.
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If the action of Prim(B) on A is monotone upper

semi-continuous, then there exists a non-degenerate

nuclear embedding h0 : A → B such that h0 and

h0⊕ h0 are unitarily homotopic, and that δ∞ ◦ h0 and

δ∞ ◦H are unitarily homotopic in M(B).

The action of Prim(B) is given here by J →
H−1(H(A) ∩M(B, J)).

With h0 : A → B we can apply the Theorem to

the realization of elements of KK(Prim(B), A,B) by

monomorphisms h : A→ B.

Definition 10. A separable B is in the “strong

UCT class” if B ⊗ O∞ contains a “regular” Abelian

C*-subalgebra A such that A ↪→ B defines in

KK(X;A,B) a KK(X; ·, ·)–equivalence of A and

B (where X := Prim(B)). (The “weak” UCT class

should allow in addition extensions, inductive limits,

and should start with regular type I subalgebras.)
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If such A exists, it is not uniquely determined, but it

has the property that A and the action of X on A

determine B ⊗ O∞ ⊗ K up to isomorphisms if B is

nuclear, i.e. there is a canonical reconstruction of B

from (A,X) if B is strongly purely infinite, separable,

stable and nuclear. (Note that the action of Prim(B)
on A now satisfies the additional requirements of Ralf

Meyer.) Explicitly:

Theorem 11. [HH-EK, Reconstruction] Suppose

that A is separable, nuclear and stable, that

Ω is a sub-lattice of I(A) ∼= O(Prim(A)) such

that Prim(A), ∅ ∈ Ω,
⋃
Un, (

⋂
Un)◦ ∈ Ω for every

sequence U1, U2, . . . in Ω. Then there is a non-

degenerate *-monomorphism H0 : A → M(A) with

following properties:

(i) The infinite repeat δ∞ ◦H0 is unitarily equivalent

to H0.
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(ii) For every U ∈ O(Prim(A)) holds H0(J(V )) =
H0(A) ∩M(A, J(U)) where V ∈ Ω is given by

V =
⋃
{W ∈ Ω ; W ⊂ U}.

The H0 is uniquely determined up to unitary

homotopy, i.e., if H1 : A → M(A) also satisfies

the requirements (i) and (ii) then there is a

continuous path t ∈ R+ → U(t) ∈ U(M(A)) such

that U(t)∗H2(a)U(t) −H0(a) ∈ A for all a ∈ A and

t ∈ R+ and limt→∞U(t)∗H2(a)U(t) = H0(a).

The Cuntz-Pimsner algebra OH of the Hilbert A-

A-module H := (A,H0) is stable and strongly purely

infinite; and it is the same as the C*-Fock algebra of

H.

The natural embedding of A into OH defines a

lattice isomorphism from Ω onto O(Prim(O)) and a

KK(C; ·, ·)-equivalence.

If a locally compact group G acts on A by α : G→
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Aut(A) and α(g)(J) ∈ Ω for all J ∈ Ω, thenH0 can be

found such that in addition, H0 is G-equivariant (i.e.,

γ(g) (H0(a)b) = H0 (γ(g)(a)) γ(g)(b)) with respect to

an action γ : G → Aut(A) of G on A that is outer

conjugate to α. In particular, G acts on OH and in a

way that is compatible with the KK(Ω; ·, ·)-equivalence

from A into OH.

If A is of type I, then OH is a Z-crossed product

of an inductive limit of type I C*-algebras by an

automorphism.

The generalization of the proofs for simple

classification to the non-simple case is related to

the (non-trivial) fact that nuclear (or exact) B with

B ⊗ O2
∼= B have the strong UCT property: It says

that a T0 space X is the primitive ideal space Prim(B)
of a separable nuclear C*-algebra B if and only if

(PN1) the topology of X is second countable,

– Typeset by FoilTEX – 24



(PN2) every prime closed subset of X is the closure of a

point,

(PN3) there exists a locally compact space Y and a

continuous map ϕ : Y → X that is pseudo-open

(:= for every decreasing sequence U1 ⊃ U2 ⊃ · · · of

open subsets of X, the inverse image ϕ−1(V ) of the

interior V of
⋂

nUn is the interior of
⋂

nϕ
−1(Un))

and pseudo-epimorphic (:= the intersection of ϕ(Y )
with different open subsets of X is different).

(Note that ϕ with (PN3) is an open epimorphism if X

is a T1-space.)

One takes Ω := ϕ−1(O(X)). The existence of the

corresponding universal module H0 : C0(Y ) ⊗ K →
M(C0(Y ) ⊗ K) can be deduced directly from the

Bartle-Graves-Michael selection theorem.

The (re-)construction of B⊗K with Prim(B) ∼= X
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from π : Y → X shows that for every second countable

locally compact group G and every continuous action

α of G on X there is a continuous action of

G on B ⊗ O2 ⊗ K that induces α. In particular,

Aut(B⊗O2⊗K) → Homeo(X) is a topological group

epimorphism that has a sort of local splitting property.

Application to examples suggested by Chris Phillips:

Let G = Zm × Rn a locally compact non-compact

second countable Abelian group. Then there is an

action α of the dual group Γ = Tm × Rn (of G) on

O2 ⊗K such that A := (O2 ⊗K) o Γ

• is a prime strongly purely infinite C*-algebra,

• A has quasi-compact primitive ideal space

Prim(A) ∼= G∪{∞} given by the (nontrivial) closed

subsets consisting of the compact subsets of G,

• and the dual action α̂ of G on A induces the

translation action of G on G ∪ {∞}
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(The closure of the infinite point ∞ is the whole space

Prim(A), and every clopen subset is Prim(A) or ∅.
Therefore it can’t be the primitive ideal space of an

AF algebra.)

If G = Z or G = R one finds a 1-cocycle that

changes the actions into actions that fixes a full

projection p of A. (The non-trivial case G = R
follows from a Lemma in the original proof of Connes

of the non-commutative Thom isomorphism.)

The question, whether a prime unital B with an

R-action that induces a minimal action on Prim(B)
must be a simple algebra, appeared in a Seminar talk

at Fields Institute.

Can we take O∞, P∞ or Z in place of O2 ?

(Less important than proving the UCT for tensorially

self-absorbing C*-algebras! I don’t want to hinder

someone from doing this first.)
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Ideas of proof (as an example of “straight”

applications of the above described machinery):

(a) Show that G ∪ {∞} with the above described

“minimal” topology topnew is in the class of spaces

with properties (PN1)-(PN3):

This could be done by showing that there is a

finite-dimensional l.c. Polish space F , an open and

continuous map λ : F → G and a homeomorphic

embedding ν of F into some cube [0, 1]k, such that

limg→∞ dist(x, ν(λ−1(g))) = 0 for each x ∈ [0, 1]k.
Then define for x ∈ [0, 1]k the map ϕ(x) := λ◦ν−1(x)
if x ∈ µ(F ) and ϕ(x) := ∞ otherwise. Then ϕ is

open and continuous. Thus (G ∪ {∞}, ϕ) satisfies

(PN1)-(PN3).

(b) There is unique separable nuclear B with

Prim(B) = G ∪ {∞} (with topology topnew) and

with B ∼= B ⊗ O2 ⊗ K (by (a) and Reconstruction

theorem).

(c) The homeomorphism ` : (t, s) → (s + t, s) of
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(G ∪ {∞}) × G ∼= Prim(B ⊗ C0(G)) comes from

some automorphism κ of A := B ⊗ C0(G) because

A ∼= A⊗O2 ⊗K.

(d) Now define a G-action γ : g 7→ κ−1(id⊗ρg) ◦ κ on

A and apply the Reconstruction theorem to A, γ and

lattice Ω := {U ×G ; U ∈ topnew} (here topnew is as

above):

Since Ω ∼= O(Prim(B)), the corresponding G-

equivariant Hilbert A-A-module H defined by

H0 : A → M(A) of the Reconstruction theorem

produces the separable stable nuclear algebra C := OH
with primitive ideal space ∼= Prim(B) such that C is

KK(Prim(B); ·, ·)-equivalent to A, and with a G-

action that induces on O(Prim(C)) ∼= Ω the action of

G on O(Prim(B)) given by `. Since A absorbs O2

tensorially, we get C ∼= C ⊗ O2 ⊗ K ∼= B and, thus,

an action of G on B that induces the given action of

G on Prim(B) ∼= G ∪ {∞}.
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