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Perforation in K0

A simple ordered Abelian group G is said to be weakly
unperforated if, for all g ∈ G and n ∈ N, ng > 0 implies
g > 0.

Theorem (Villadsen). There exists a simple C∗-algebra
of the form lim−→Mnk ⊗ C(Bmk) whose K0 group has per-
foration.

Question. Can Villadsen’s arguments be recast in a dy-
namical framework?



The embeddings in Villadsen’s construction are diagonal
and are composed of maps arising from block projections
Bmk+1 → Bmk along with a certain number of point eval-
uations to ensure simplicity in the limit.

One starts with a complex line bundle ζ over B for which
no tensor power of the Euler class is zero (e.g., B = S2).
Setting ξ = ζ × ζ one then applies the following lemma to
show that perforation propagates across the finite stages
of the inductive limit if the number of point evaluations
remains relatively small.

Lemma. For a complex line bundle ζ over B and n ∈ N,
if [ζ×n] − [θ1] ∈ K0(Bn) is positive then the nth tensor
power of the Euler class of ζ is zero.

So by the lemma [ξ] − [θ1] remains nonpositive under the
connecting maps, while a general result shows that dim(Bn)
times this element is positive.



Let Y be a compact Hausdorff space and T the shift
(xk)k 7→ (xk+1)k on Y Z.

We have a factorization

C(Y )→ C(Y Z) o Z→ C(Y )

of the identity map on C(Y ) where the first map arises
from the projection of Y Z onto the zeroeth coordinate and
the second arises from the universal property of the full
crossed product using the map Y → Y Z which assigns to
a point y ∈ Y the fixed point (. . . , y, y, y, . . . ) ∈ Y Z.

We thus see that if K0(Y ) has perforation then so does
K0(C(Y Z) o Z).

Although the shift is transitive, it is far from being mini-
mal. If we desire a simple crossed product exhibiting perfo-
ration, we should look for a subshift that is “small” enough
to be minimal but “large” enough to sustain a perforation-
producing Euler class obstruction, which can easily be de-
stroyed by noncommutativity.



Our subshift will be constructed as the limit of a decreas-
ing sequence of subshifts defined by a recursive blocking
procedure. In the finite blocks from which the subshifts in
the sequence are built, the base space Y will appear with
asymptotically nonzero density, in analogy with the asymp-
totically nonzero dimension-rank ratio in the examples of
Villadsen and Toms.

This nonzero density is reflected in nonzero values of mean
dimension, which is an entropy-like invariant for dynamical
systems that provides a measure of dimension growth.



Subshifts from blocks

Consider a product B = D1 × · · · ×Dl of closed subsets
of Y , which we call a block. Associated to B we have the
following two closed T -invariant subsets of Y Z:

XB: the set of all sequences in Y Z which are concate-
nations of elements of B.

PB: the set of all l-periodic sequences in XB.

We can embed B into PB, and hence into XB, in l pos-
sible ways according to phase. By distributing the asso-
ciated ∗-homomorphisms C(XB) → C(B) down the di-
agonal in l × l matrices over C(B) and applying the uni-
versal property of the full crossed product, we obtain a
∗-homomorphism

C(XB) o Z ϕ−→Ml ⊗ C(B)

with the dynamics on the right-hand side implemented by
the shift matrix.



Let γ be the composition

C(Y ) −→ C(XB) o Z ϕ−→Ml ⊗ C(B)

where the first map is induced from the projection of XB

onto the zeroeth coordinate. Let πi : B → Di ⊆ Y for
i = 1, . . . , l be the coordinate projections.

For a vector bundle ξ over Y , viewing projections in Ml⊗
C(B) as bundles we have

γ(ξ) ∼= π∗1(ξ)⊕ · · · ⊕ π∗l (ξ)

which is isomorphic to

ξ×|L| ⊕ θdim(ξ)(l−|L|)

in the case that Di is equal to Y for all i in a set L ⊆
{1, . . . , l} and is a singleton otherwise.



Suppose now that ξ = ζ × ζ for some complex line bundle
ζ for which the Euler class of every tensor power is nonzero.
Set g = [ξ]− [θ1] ∈ K0(Y ). If |L| > l/2 then

K0(γ)(g) = [ξ×|L| ⊕ θ2(l−|L|)]− [θl]

= [ξ×|L|]− [θ2|L|−l]

≤ [ξ×|L|]− [θ1]

so that K0(γ)(g) is not positive by Villadsen’s lemma.
Thus the image of g in K0(C(XB) o Z) is not positive,
while the image of dim(Y )g is positive.



The limit subshift

We now wish to build a minimal system from these building
blocks in a way which respects the perforation.

Fix a metric ρ on X . Let 0 < d < 1. A decreasing
sequence X1 ⊇ X2 ⊇ . . . of closed T -invariant subsets of
Y Z can be constructed so that for each n the set Xn is
defined by a block Bn = Dn,1 × · · · ×Dn,ln ⊆ Y ln and

(1) for all x, y ∈ Xn there is a k such that
ρ(T kx, y) ≤ 2−n+2,

(2) Dn,i is equal to Y for all i in a subset of
{1, . . . , ln} of size greater than dln and Dn,i is
a singleton for all other i.

Set X =
⋂∞
n=1Xn. Taking d > 1/2 ensures that perfora-

tion will propagate to the inductive limit lim−→C(Xn)oZ ∼=
C(X) o Z.

Finally, we observe that condition (1) ensures that the sys-
tem (X,T ) is minimal, so that C(X) o Z is simple.



Perforation in the Cuntz semigroup

Let A be a C∗-algebra. For elements a, b in M∞(A)+ =⋃∞
n=1Mn(A)+ we write a - b if there is a sequence {tk}k

in some Mm,n(A) such that limk→∞ t
∗
kbtk = a, and a ∼ b

if a - b and b - a.

Set W (A) = M∞(A)+/ ∼ and write 〈a〉 for the equiva-
lence class of a. For a ∈ Mn(A)+ and b ∈ Mm(A)+ we
set 〈a〉 + 〈b〉 = 〈a ⊕ b〉 and declare that 〈a〉 ≤ 〈b〉 when
a - b. We refer to W (A) with this structure as the Cuntz
semigroup of A.

In the case that na ≤ mb implies a ≤ b for all a, b ∈
W (A) and positive integers n > m, we say that W (A) is
almost unperforated.



Theorem (Toms). There exists a simple AH algebra that
has the same Elliott invariant (ordered K-theory paired
with traces) as an AI algebra and a Cuntz semigroup that
fails to be almost unperforated.

Toms furthermore produced an infinite number of simple
AH-algebas with the same Elliott invariant but different
radii of comparison.

Radius of comparison

We say that A has r-comparison if for all a, b ∈M∞(A)+

we have 〈a〉 ≤ 〈b〉 whenever s(〈a〉) + r < s(〈b〉) for
all lower semicontinuous dimension functions s on W (A).
The radius of comparison of A is the infimum of the set of
all r ∈ R+ for which A has r-comparison, or ∞ if this set
is empty.

Our goal is to construct crossed products of minimal home-
omorphisms that have arbitrarily large radius of comparison
and the same Elliott invariant as an AT algebra. By a re-
sult of Rørdam, the Cuntz semigroup of these algebras will
not be almost unperforated.



As before, our minimal subshift will be constructed by a
recursive blocking procedure. This time however we want
to arrange for the crossed product to have simple K-theory.
More precisely, the ordered K0 group will be isomorphic to
(Q,Q+, 1) and the K1 group isomorphic to Z.

In order to produce this K-theory we will introduce a spac-
ing factor into our base space. This will enable us at each
stage to group together the concatenations of elements
from the block into disjoint contractible sets determined by
the phase of the blocking. These disjoint sets are permuted
by the action, and in the limit we obtain an extension of
the universal odometer which produces an isomorphism on
K-theory at the level of the crossed product.



Let Y be a compact Hausdorff space and T the shift
(xk)k 7→ (xk+1)k on (Y × I)Z.

For a block B ⊆ (Y × I)l and an i ∈ {1, . . . , l} we write
XB,i for the set of all sequences (xk)k ∈ (Y × I)Z which
are blocked off by B with phase i, i.e.,

(xi+sl, xi+sl+1, . . . , xi+sl+l−1) ∈ B

for all s ∈ Z. Note that T cyclically permutes the XB,i.

Set

XB = XB,1 ∪ · · · ∪XB,l,

which is a closed T -invariant subset of (Y × I)Z.

In general the sets XB,1, . . . , XB,l need not be pairwise
disjoint (i.e., it might be possible to block off a sequence
by B in more than one way), but here we will want to
arrange for this to be the case in order for the K0 group
of the crossed product to be isomorphic to the rationals.
This is the reason for the second factor in Y × I , which
will serve as a spacing device.



Fix a metric ρ on X . Let 0 < d < 1. We build a decreasing
sequence X1 ⊇ X2 ⊇ . . . of closed T -invariant subsets of
(Y × I)Z such that for each n the set Xn is defined by a
block Bn = (Dn,1 × In,1)× · · · × (Dn,ln × In,ln) where

(1) for all x,w ∈ Xn there is a k such that
ρ(T kx,w) ≤ 2−n+2,

(2) In,1, . . . , In,ln are pairwise disjoint closed subin-
tervals of I each with nonempty interior and
length at most 2−n−2,

(3) Dn,i = Y for all i in a subset of {1, . . . , ln} of
cardinality greater than dln, and Dn,i is a single-
ton for all other i,

(4) n divides ln.

The block Bn+1 is constructed as a subset of B
ln+1/ln
n by

taking a large number of copies of Bn, trimming these
by shrinking the subintervals in the second factor at each
coordinate, and then forming the product of the resulting
blocks together with a bunch of sets of the form {y} × J
where J is a small subinterval of I .

Setting X =
⋂∞
n=1Xn we obtain a simple crossed product

C(X) o Z ∼= lim−→C(Xn) o Z.



Let q ≥ 2 and suppose that Y = I3q and 1−1/q < d < 1.
We build a positive element b ∈M2q(C(Y )) by taking the
q-fold product of a line bundle on S2 with nonzero Euler
class and pulling back into Y via a two-element partition
of unity with one element supported on a homeomorph of
(S2 × [0, 1])q. We also take a projection a in M2q(C(Y ))
corresponding to a line bundle on Y .

For a given n, the universal property of the full crossed
product yields a ∗-homomorphism

C(XBn) o Z ϕn−→Mln ⊗ C(Bn)

with the dynamics on the right-hand side implemented by
the shift matrix.

Writing E for the set of all coordinates i = 1, . . . , ln such
that Dn,i = Y , we have an embedding

((S2)q)E → Bn

which gives rise to a ∗-homomorphism γn at the C∗-algebra
level.



Consider the composition

C(Y )→ C(XBn)oZ ϕn→Mln⊗C(Bn)
id⊗γn−→ Mln⊗C(((S2)q)E)

where the first map arises from the embedding into the
zeroeth coordinate. The images an and bn of a and b
under this composition are θln and ξ×q|E| ⊕ θq(ln−|E|).

Since ξ has nonzero Euler class and

q(ln − |E|) ≤ qln(1− d) < ln,

the trivial bundle θln is not subequivalent to ξ×q|E|⊕θq(ln−|E|).
Thus

‖t∗(ξ×q|E| ⊕ θq(ln−|E|))t− θln‖ ≥ 1/2

for all t ∈M2q ⊗Mln ⊗ C(((S2)q)E).

We conclude that ‖t∗bnt − an‖ ≥ 1/2 for all t ∈ M2q ⊗
(C(Xn) o Z) and hence 〈an〉 6≤ 〈bn〉.



Now map a and b to elements a∞ and b∞ in the limit
C(X) o Z. By minimality the tracial states on C(X) o Z
all arise from invariant measures, so that s(〈a∞〉) = 1
and s(〈b∞〉) ≥ q for every lower semicontinuous dimension
function s on W (C(X) o Z). Consequently the radius of
comparison of C(X) o Z is at least q − 1.



K-theory

Suppose that Y is contractible. Then for any n the sets
Xn,1, . . . , Xn,ln are contractible, and since they are pair-
wise disjoint it follows that K1(Xn) = 0 and

K0(Xn) ∼= K0(Xn,1)⊕ · · · ⊕K0(Xn,ln)
∼= Zln.

The map K0(Xn)→ K0(Xn+1) is given by

k 7→ (k, . . . , k) ∈ (Zln)ln+1/ln ∼= Zln+1,

and we have

K0(X) ∼= lim−→K0(Xn) ∼= lim−→Zln.

Writing α for the ∗-automorphism f 7→ f ◦ T−1 of C(X),
the Pimsner-Voiculescu sequence reads

K∗(X)
id−α∗ //K∗(X)

ι∗wwooooooooooo

K∗(C(X) o Z)

ggOOOOOOOOOOO



Since K1(X) = lim−→K1(Xn) = 0, we have the exact se-
quence

0 //K1(C(X) o Z) //K0(X)

id−α∗
��

0 K0(C(X) o Z)oo K0(X).
ι∗oo

For each n the sets Xn,1, . . . , Xn,ln are cyclically permuted
by T and n divides ln. Thus (X,T ) is an extension of
the universal odometer S, which is defined by addition of
(1, 0, 0, . . . ) on W =

∏∞
n=1{1, . . . , ln+1/ln}.

Moreover, the above exact sequence is identical to that as-
sociated to the universal odometer and hence of the type
arising in Giordano, Putnam, and Skau’s K-theoretic clas-
sification of minimal Cantor systems up to strong orbit
equivalence.



Identifying K0(W ) with C(W,Z), we have

K0(C(W )oZ) ∼= C(W,Z)/{f−f ◦S−1 : f ∈ C(W,Z)}

by the Pimsner-Voiculescu sequence. By unique ergodicity
the equivalence class of a function in C(W,Z) is deter-
mined by the value of f on the unique S-invariant state µ.

Since µ(C(W,Z)) = Q, the K0 groups of the crossed
products of both (W,S) and (X,T ) are isomorphic to Q,
and so

(K0(C(X) o Z), K0(C(X) o Z)+, [1]) ∼= (Q,Q+, 1)

K1(C(X) o Z) ∼= Z.



By a range result of Villadsen, there exists a simple AT
algebra with the same Elliott invariant as C(X) o Z but
not isomorphic to C(X) o Z.

Question. Is the radius of comparison ever finite within
this class of systems?

Question. Do there exist nonisomorphic simple crossed
products with the same Elliott invariant?



Proposition. Suppose that Y is uncountable. Then the
tracial state space of C(X) o Z has uncountably many
extreme points.

Corollary. Suppose that Y is infinite. Then C(X) o Z
does not have real rank zero.

Since C(X)oZ is stably finite and exact, if C(X)oZ had
real rank zero then the canonical continuous affine map

T (C(X) o Z)→ S(K0(C(X) o Z))

from tracial states to states on K0 would be a homeo-
morphism by a result of Blackadar and Handelman. But
K0(C(X)oZ) has a unique state and so by the proposition
this map is not injective.



When Y has nonzero topological dimension the system
(X,T ) has nonzero mean dimension, and in this case the
uncountability of the set of extreme points follows from the
fact that Z-systems with nonzero mean dimension do not
possess the small boundary property (Lindenstrauss and
Weiss) and hence cannot have only countably many ex-
treme invariant states (Shub and Weiss).

Question. What in general is the relationship between
mean dimension and radius of comparison?

Question. Is there a uniquely ergodic minimal home-
omophism whose crossed product has nonzero radius of
comparison?


