Generic automorphisms of approximately divisible AF algebras satisfy the Rohlin property

Takeshi Katsura (joint work with N. Chris Phillips)

University of Toronto & Fields Institute

16th / November / 2007 Workshop on Structure of C*-algebras Fields Institute

Classification of automorphisms

Problem

Classify automorphisms (or group actions) up to outer conjugacy (or cocycle conjugacy).

Key tool: Rohlin property

2 Steps:

- Show "aperiodic" automorphisms have the Rohlin property
- Show automorphisms with the Rohlin property are classified up to outer conjugacy by K-theoretical invariant.

Theorem of Evans-Kishimoto

A: AF algebra

 $K_0(A)$: scaled ordered group

 $\operatorname{Aut}(A) \ni \alpha \mapsto \alpha_* \in \operatorname{Aut}(K_0(A))$

Theorem (Evans-Kishimoto ('97))

A: AF algebra

 $\alpha, \beta \in Aut(A)$ with the Rohlin property

If $\alpha_* = \beta_* \in \text{Aut}(K_0(A))$, then $\alpha = \text{Ad } u \circ \gamma \circ \beta \circ \gamma^{-1}$ for some unitary $u \in A + \mathbb{C}1$ and $\gamma \in \text{Aut}(A)$.

Problem

Which $\sigma \in Aut(K_0(A))$ is induced by an automorphism of A with the Rohlin property?

Definition of Rohlin property (unital case)

Definition

A: unital C*-algebra

 $\alpha \in \operatorname{Aut}(A)$ has the Rohlin property (RP) if $\forall n \in \mathbb{N}. \ \forall F \subset A$ finite. $\forall \varepsilon > 0$

 $\exists (e_k)_{k=0}^{n-1} \cup (f_l)_{l=0}^n$: mut. ortho. proj. in A s.t.

- $\sum_{k=0}^{n-1} e_k + \sum_{l=0}^n f_l = 1,$
- * $||e_k x xe_k|| < \varepsilon$, $||f_l x xf_l|| < \varepsilon$ for $0 \le k \le n - 1$, $0 \le l \le n$ and $x \in F$,
- * $\|(\alpha(e_k) e_{k+1})\| < \varepsilon$, $\|(\alpha(f_l) f_{l+1})\| < \varepsilon$ for $0 \le k \le n-2$, $0 \le l \le n-1$.

Rohlin tower

Remark

- · Assuming $\|(\alpha(e_{n-1}) e_0)\| < \varepsilon$, $\|(\alpha(f_n) f_0)\| < \varepsilon$ is strictly stronger than the Rohlin property.
- · "Single tower version" is strictly stronger than RP.
- $\cdot \forall n \in \mathbb{N}, \exists n_1, \ldots, n_k \geq n, \cdots \iff \mathsf{RP}.$

Examples

X: Cantor space

 $\alpha \in Aut(C(X)) \leftrightarrow \sigma$: homeomorphism on X

Fact

 α has RP $\iff \sigma$ is free.

$$A = \bigotimes_{k=1}^{\infty} M_{n_k}(\mathbb{C})$$
: UHF algebra $\alpha = \bigotimes_{k=1}^{\infty} \operatorname{Ad}(\text{"shift unitary"})$

Fact

 α has $RP \iff \sup_{k} n_{k} = \infty$.

Examples

$$A = \bigotimes_{k=-\infty}^{\infty} M_n(\mathbb{C})$$
: UHF algebra $\alpha = \text{tensor shift} \in \text{Aut}(A)$

Theorem (Bratteli, Kishimoto, Rørdam, Størmer)

 α has the Rohlin property.

If A has a unique character, then A has no automorphism with RP.

Definition of Rohlin property (general)

Definition (K-Phillips)

A: C*-algebra

 $\mathcal{M}(A)$: the multiplier algebra of A

 $\alpha \in Aut(A)$ has the Rohlin property (RP) if

 $\forall n \in \mathbb{N}, \forall F \subset A \text{ finite, } \forall \varepsilon > 0$

 $\exists (e_k)_{k=0}^{n-1} \cup (f_l)_{l=0}^n$: mut. ortho. proj. in $\mathcal{M}(A)$ s.t.

$$\sum_{k=0}^{n-1} e_k + \sum_{l=0}^n f_l = 1,$$

$$\|e_k x - xe_k\| < \varepsilon, \ \|f_l x - xf_l\| < \varepsilon \ \text{for } k, \ l, \ x,$$

$$\|(\alpha(\mathbf{e}_k) - \mathbf{e}_{k+1})\alpha(\mathbf{x})\| < \varepsilon, \|(\alpha(f_l) - f_{l+1})\alpha(\mathbf{x})\| < \varepsilon \text{ for } k, l \text{ and } \mathbf{x} \in F.$$

Permanence property

Lemma

A: C^* -algebra, $\alpha \in Aut(A)$ with RP Then the following automorphisms also have RP;

- $\gamma \circ \alpha \circ \gamma^{-1}$ for $\gamma \in Aut(A)$,
- · $Ad(u) \circ \alpha$ for a unitary $u \in \mathcal{M}(A)$,
- α^n for $n \in \mathbb{Z} \setminus \{0\}$,
- $\alpha \otimes \beta \in Aut(A \otimes B) \text{ for } \beta \in Aut(B),$
- the restriction of α to an α -invariant ideal I,
- the induced automorphism of the quotient A / I,
- the restriction of α to a hereditary subalgebra $B \subset A$ if B has an approx. unit of projections.

Limit of unital C*-algebras

Lemma

A: C*-algebra with an approx. unit of projections.

$$\alpha \in Aut(A)$$
 has the Rohlin property

$$\iff \forall n \in \mathbb{N}, \forall F \subset A \text{ finite, } \forall \varepsilon > 0$$

 $\exists (e_k)_{k=0}^{n-1} \cup (f_l)_{l=0}^n : \text{ mut. ortho. proj. in } A \text{ s.t.}$

*
$$q = \sum_{k=0}^{n-1} e_k + \sum_{l=0}^{n} f_l$$

satisfies $||qx - x|| < \varepsilon$ for $x \in F$,

•
$$\|\mathbf{e}_k \mathbf{x} - \mathbf{x} \mathbf{e}_k\| < \varepsilon$$
, $\|f_l \mathbf{x} - \mathbf{x} f_l\| < \varepsilon$ for k , l , \mathbf{x} ,

$$\|(\alpha(\mathbf{e}_k) - \mathbf{e}_{k+1})\alpha(\mathbf{x})\| < \varepsilon, \|(\alpha(f_l) - f_{l+1})\alpha(\mathbf{x})\| < \varepsilon \quad \text{for } k, l \text{ and } \mathbf{x} \in F.$$

$R(n, F, \varepsilon)$

Definition

A: C*-algebra with an approx. unit of projections. Let $n \in \mathbb{N}$, $F \subset A$ finite, $\varepsilon > 0$.

We define $R(n, F, \varepsilon) \subset \operatorname{Aut}(A)$ to be the set of $\alpha \in \operatorname{Aut}(A)$ s.t. $\exists (e_k)_{k=0}^{n-1} \cup (f_l)_{l=0}^n$ as in Lemma.

$$\alpha \in Aut(A)$$
: RP $\iff \alpha \in \bigcap_{n \in \mathcal{E}} R(n, F, \varepsilon)$

Intersection of countable open subsets

A: C*-algebra with an approx. unit of projections.

Lemma

 $(F_k)_{k=1}^{\infty}$: increasing sequence of finite subsets of A whose union is dense in A

$$\{\alpha \in \operatorname{Aut}(A) : RP\} = \bigcap_{n,k \in \mathbb{N}} R(n,F_k,2^{-k})$$

Lemma

 $\forall n \in \mathbb{N}, \forall F \subset A \text{ finite, } \forall \varepsilon > 0,$ $R(n, F, \varepsilon) \subset \operatorname{Aut}(A) \text{ is open.}$

Aut(A): topology of pointwise norm convergence

Complete metric on Aut(A)

A: separable C*-algebra

Aut(A) has a complete metric d defined by

$$d(\alpha,\beta) = \sum_{k=1}^{\infty} 2^{-k} (\|\alpha(x_k) - \beta(x_k)\| + \|\alpha^{-1}(x_k) - \beta^{-1}(x_k)\|)$$

for $\alpha, \beta \in Aut(A)$

where $\{x_k\}_{k=1}^{\infty}$: dense in the unit ball of A.

AF algebras

A: AF algebra

 $K_0(A)$: scaled ordered group

 $K_0(A)_+$: positive cone

$$\operatorname{\mathsf{Aut}}(\mathsf{A}) \ni \alpha \mapsto \alpha_* \in \operatorname{\mathsf{Aut}}(\mathsf{K}_0(\mathsf{A}))$$

Lemma

For $\sigma \in \operatorname{Aut}(K_0(A))$, $\{\alpha \in \operatorname{Aut}(A) : \alpha_* = \sigma\}$ is non-empty and closed.

 $\{\alpha \in Aut(A) : \alpha_* = \sigma\}$ has a complete metric.

Theorem of Evans-Kishimoto

Theorem (Evans-Kishimoto ('97))

A: *AF* algebra $\alpha, \beta \in Aut(A)$ with the Rohlin property

If
$$\alpha_* = \beta_* \in \operatorname{Aut}(K_0(A))$$
, then $\forall \varepsilon > 0$, $\exists u \in A + \mathbb{C}1$ unitary with $||u - 1|| < \varepsilon$ and $\exists \gamma \in \operatorname{Aut}(A)$ with $\gamma_* = \operatorname{id}$ such that

$$\alpha = \operatorname{Ad} u \circ \gamma \circ \beta \circ \gamma^{-1}.$$

Problem

Which $\sigma \in Aut(K_0(A))$ is induced by an automorphism of A with the Rohlin property?

Property (R)

Definition

 $\sigma \in \operatorname{Aut}(K_0(A))$ satisfies Property (R) if $\forall n \in \mathbb{N}$, finite sets I, J, a map $x \colon I \to K_0(A)_+$ and maps $m, m' \colon I \times J \to \mathbb{Z}_+$ such that $\sum_{i \in I} m(i,j)\sigma(x(i)) = \sum_{i \in I} m'(i,j)x(i)$ for $j \in J$, $\exists y_k \colon I \to K_0(A)_+$ for $0 \le k \le n$ satisfying:

- * $\sum_{k=0}^{n} y_k(i) = x(i)$ for $i \in I$,
- $\sum_{i \in I} m(i, j) \sigma(y_k(i)) = \sum_{i \in I} m'(i, j) y_{k+1}(i),$ $\sum_{i \in I} m(i, j) \sigma(y_{n-1}(i)) \ge \sum_{i \in I} m'(i, j) y_n(i)$ for k = 0, 1, ..., n-2 and $j \in J$.

Main Theorem

Theorem (K-Phillips)

```
A: AF algebra
```

 $\sigma \in \operatorname{Aut}(K_0(A))$ is induced by $\alpha \in \operatorname{Aut}(A)$ with RP $\iff \sigma$ satisfies Property (R).

Moreover for such σ , $\{\alpha \in \operatorname{Aut}(A) : RP, \alpha_* = \sigma\}$ is a dense G_{δ} -set of $\{\alpha \in \operatorname{Aut}(A) : \alpha_* = \sigma\}$.

Main Corollary

Corollary

For an AF algebra A, T.F.A.E.:

- * Every $\sigma \in \operatorname{Aut}(K_0(A))$ is induced by $\alpha \in \operatorname{Aut}(A)$ with the Rohlin property.
- * Every $\sigma \in Aut(K_0(A))$ satisfies Property (R).
- $^{\bullet}$ ∃ α ∈ Aut(A) approx. inner with RP.
- * id ∈ Aut($K_0(A)$) satisfies Property (R).
- $\forall x \in K_0(A)_+ \text{ and } \forall n \in \mathbb{N},$ $\exists y \in K_0(A)_+ \text{ with } ny \leq x \leq (n+1)y.$

Main Corollary (continued)

Proposition

For an AF algebra A, T.F.A.E.:

- * $\forall x \in K_0(A)_+$ and $\forall n \in \mathbb{N}$, $\exists y \in K_0(A)_+$ with $ny \le x \le (n+1)y$.
- * $\forall x \in K_0(A)_+, \exists y \in K_0(A)_+ \text{ with } 2y \le x \le 3y.$
- A is approximately divisible.
- $^{\circ}$ A is Z-absorbing.
- No corner of A has a non-zero finite dimensional quotient.

Approximately divisible AF algebras

Corollary

For an approx. div. (= \mathbb{Z} -absorbing) AF algebra A, every $\sigma \in \operatorname{Aut}(K_0(A))$ is induced by $\alpha \in \operatorname{Aut}(A)$ with the Rohlin property.

A simple, non-type-I AF algebra is approx. div.

Problem

Give a direct proof of it, and generalize it.

\mathcal{Z} -absorbing AF algebras

Problem

A: a \mathcal{Z} -absorbing AF algebra, $\alpha \in \operatorname{Aut}(A)$, $\gamma \in \operatorname{Aut}(\mathcal{Z})$: tensor shift of $\mathcal{Z} \cong \bigotimes_{k=-\infty}^{\infty} \mathcal{Z}$. Does $\alpha \otimes \gamma \in \operatorname{Aut}(A \otimes \mathcal{Z}) = \operatorname{Aut}(A)$ have RP?

Remark

Phillips showed that $\alpha \otimes \gamma$ has the tracial Rohlin property.

Problem

Are the tracial Rohlin property and the Rohlin property equivalent?

I will sketch the proof of Main Theorem:

Theorem (K-Phillips)

A: AF algebra

 $\sigma \in \operatorname{Aut}(K_0(A))$ is induced by $\alpha \in \operatorname{Aut}(A)$ with RP $\iff \sigma$ satisfies Property (R).

Moreover for such σ , $\{\alpha \in \operatorname{Aut}(A) : RP, \alpha_* = \sigma\}$ is a dense G_{δ} -set of $\{\alpha \in \operatorname{Aut}(A) : \alpha_* = \sigma\}$.

```
Recall \sigma \in Aut(K_0(A)) satisfies Property (R)
 \iff \forall n \in \mathbb{N}, a finite collection (x(i))_i in K_0(A)_+
        and a finite collection of "relations"
             between (\sigma(x(i)))_i and (x(i))_i,
\exists collections (y_k(i))_i in K_0(A)_+ for 0 \le k \le n with
\sum_{k=0}^{n} y_k(i) = x(i) for i \in I such that
(\sigma(y_k(i)))_i and (y_{k+1}(i))_i satisfy
the "relations" for 0 < k < n - 2.
and (\sigma(y_{n-1}(i)))_i dominates (y_n(i))_i
       with respect to the "relations".
```

Recall $\alpha \in \operatorname{Aut}(A)$: RP $\iff \alpha \in \bigcap_{n,F,\varepsilon} R(n,F,\varepsilon)$ where for $n \in \mathbb{N}$, $F \subset A$ finite, $\varepsilon > 0$ $R(n,F,\varepsilon)$ is the set of $\alpha \in \operatorname{Aut}(A)$ such that $\exists (e_k)_{k=0}^{n-1} \cup (f_l)_{l=0}^n$: mut. ortho. proj. in A satisfying

- * $q = \sum_{k=0}^{n-1} e_k + \sum_{l=0}^n f_l$ satisfies $||qx - x|| < \varepsilon$ for $x \in F$,
- $\|e_k x xe_k\| < \varepsilon, \ \|f_l x xf_l\| < \varepsilon \ \text{for } k, \ l, \ x,$
- $\|(\alpha(e_k) e_{k+1})\alpha(x)\| < \varepsilon,$ $\|(\alpha(f_l) - f_{l+1})\alpha(x)\| < \varepsilon \text{ for } k, l \text{ and } x \in F.$

Proposition

```
If \alpha \in Aut(A) has RP,
then \sigma = \alpha_* \in Aut(K_0(A)) satisfies Property (R).
(Proof)
              May assume A is stable.
Give n \in \mathbb{N} and a collection (x(i))_i in K_0(A)_+
with "relations" between (\sigma(x(i)))_i and (x(i))_i.
Choose mut. ortho. projs (p(i))_{i \in I} with [p(i)] = x(i),
and partial isometries representing "the relations".
By the RP of \alpha, \exists a Rohlin tower (e_k)_{k=0}^{n-1} \cup (f_k)_{k=0}^n.
Define y_k(i) = [(e_k + f_k)p(i)] \in K_0(A)_+
for 0 \le k \le n-1, and y_n(i) = [f_n p(i)] \in K_0(A)_+.
```

Proposition

Let $\sigma \in \text{Aut}(K_0(A))$ satisfy Property (R). Let $n \in \mathbb{N}$, $F \subset A$ finite, $\varepsilon > 0$.

Then
$$R(n, F, \varepsilon) \cap \{\alpha \in \operatorname{Aut}(A) : \alpha_* = \sigma\}$$
 is dense in $\{\alpha \in \operatorname{Aut}(A) : \alpha_* = \sigma\}$.

Main Theorem follows from two propositions and Baire's category theorem.

This proposition follows from

Lemma

Let $\sigma \in \operatorname{Aut}(K_0(A))$ satisfy Property (R). Let $\alpha \in \operatorname{Aut}(A)$ be $\alpha_* = \sigma$. Let $n \in \mathbb{N}$, $F \subset A$ finite $\varepsilon > 0$, and $B \subset A$ finite dimensional subalgebra.

Then $\exists u \in (A + \mathbb{C}1) \cap B'$ unitary such that $\alpha \circ Ad u \in R(n, F, \varepsilon)$.

(Proof of Lemma)

```
Choose D \subset A: finite dimensional algebra such that F \subset_{\varepsilon} D, \bigcup_{k=0}^{n} \alpha^{k}(B) \subset D
Let (x(i))_{i \in I} be the generators of K_{0}(E).
Two inclusions D \subset E and \alpha(D) \subset E give several relations between (\sigma(x(i)))_{i} and (x(i))_{i}.
```

Since σ satisfies Property (R), we get $y_k : I \to K_0(A)_+$ for $0 \le k \le n$ satisfying $\sum_{k=0}^n y_k(i) = x(i)$ and so on.

Choose projections $p_k(i)$ with $[p_k(i)] = y_k(i)$. From $\{p_k(i)\}\$, construct projections $p_k \in A \cap E'$ with $\sum_{k=0}^{n} p_k = 1_E$. Using "relations" of $(y_k(i))_{k,i}$, show $[p_k 1_D] = [\alpha^{-1}(p_{k+1})1_D]$ in $K_0((A \cap D')1_D)$. Find a unitary $u \in (A + \mathbb{C}1) \cap D'$ such that $\alpha \circ \operatorname{Ad} u(p_k 1_D) = p_{k+1} \alpha(1_D).$ Construct a Rohlin tower from $(p_k)_{k=0}^n$ to conclude $\alpha \circ \mathsf{Ad} \ u \in R(n, F, \varepsilon).$

Remark: $K_0((A \cap D')1_D) \to K_0(A)$ is not injective in general.

Problems

Problem

Generalize the result to AT algebras or ASH algebras or · · · .

Problem

Find a condition on automorphisms (outerness?) which is equivalent to have RP, but is easier to check than RP.

Problem

What is $A \rtimes_{\alpha} \mathbb{Z}$ for $\alpha \in Aut(A)$ with RP?

Problems

Problem

Apply the main result to AF-embedding of crossed products with controlling *K*-theory.

Problem

Lift $\sigma \in Aut(K_0(A))$ to $\alpha \in Aut(A)$ with the same order.

Problem

Generalize the main result to "corner" endomorphisms.