Classification of \mathbb{Z}^2 -actions on the Kirchberg algebras

by

Masaki Izumi

Department of Mathematics
Graduate School of Science
Kyoto University
Japan

November, 2007, at Toronto

Joint work with Hiroki Matui

§1. Introduction

• A: Unital C^* -algebra, $u, v \in U(A)$: Unitaries s.t. uv - vu small,

One can associate the Bott element Bott(u, v) in $K_0(A)$ to u, v (Loring).

$$e(u,v) = \begin{pmatrix} f(v) & h(v)u + g(v) \\ u^*h(v) + g(v) & 1 - f(v) \end{pmatrix}$$

$$Bott(u,v) = [\chi_{[\frac{1}{2},\infty)}(e(u,v))]_0 - [1]_0 \in K_0(A).$$

• When u is homotopic to 1 in U(A), Bott(u, v) is an obstruction for existence of a homotopy $\{u_t\}_{t\in[0,1]}$ in U(A) s.t. $u_0=1,\ u_1=1$, and u_tv-vu_t small.

This is the only obstruction for many classes of C^* -algebras.

e.g. purely infinite simple C^* -algebras. (Bratteli-Elliott-Evans-Kishimoto)

Automorphism case

• $\alpha, \beta \in Aut(A)$: Homotopic to id s.t. $\alpha \circ \beta = \beta \circ \alpha$.

What is a relevant obstruction for existence of a homotopy $\{\alpha_t\}_{t\in[0,1]}$ in $\operatorname{Aut}(A)$ s.t. $\alpha_0=\operatorname{id},\ \alpha_1=\alpha$, and $\beta\circ\alpha_t=\alpha_t\circ\beta$ for $\forall t$?

• Choose an arbitrary homotopy $\{\gamma_t\}_{t\in[0,1]}$ in $\operatorname{Aut}(A)$ s.t. $\gamma_0=\operatorname{id},\ \gamma_1=\alpha.$

For $x \in A$, the function $t \mapsto \gamma_t \circ \beta \circ \gamma_t^{-1} \circ \beta^{-1}(x)$ is periodic, which gives a homomorphism $\rho: A \to C(\mathbb{T}) \otimes A$.

Let $j_A: A \ni x \mapsto 1 \otimes x \in C(\mathbb{T}) \otimes A$. The class $[\rho] - [j_A]$ in

$$KK(A, C_0((0,1)) \otimes A) = KK^1(A, A)$$

does not depend on the choice of $\{\gamma_t\}$.

This is an obstruction!

Goal

To classify \mathbb{Z}^2 -actions α with $KK(\alpha_g)=1$ for $\forall g\in\mathbb{Z}^2$ by $KK^1(A,A)$.

- $KK^1(A, A)$ is enough for Kirchberg algebras (main result).
- Obviously, $KK^1(A, A)$ is not enough in stably finite case.

§2. Main Results

 Γ : Discrete group, A,B: Unital C^* -algebras,

 $\alpha: \Gamma \to \operatorname{Aut}(A), \ \beta: \Gamma \to \operatorname{Aut}(B)$: Actions.

ullet α and eta are conjugate

 $\stackrel{\mathsf{def}}{\Leftrightarrow} \exists \theta : A \to B \text{ isomorphism s.t. } \theta^{-1} \circ \beta_g \circ \theta = \alpha_g.$

ullet α and eta are outer conjugate

 $\stackrel{\text{def}}{\Leftrightarrow} \exists \theta : A \to B \text{ isomorphism, } \exists u_g \in U(A) \text{ s.t.}$ $\theta^{-1} \circ \beta_g \circ \theta = \operatorname{Ad} u_g \circ \alpha_g.$

ullet α and eta are cocycle conjugate

 $\stackrel{\text{def}}{\Leftrightarrow} \exists \theta : A \to B \text{ isomorphism, } \exists u_g \in U(A) \text{ s.t.} \\ \theta^{-1} \circ \beta_g \circ \theta = \operatorname{Ad} u_g \circ \alpha_g \text{ and} \\ u_g \alpha_g(u_h) = u_{gh} \text{ (1-cocycle relation).}$

If moreover A=B and $KK(\theta)=1$, we say that α and β are cocycle conjugate by a KK-trivial automorphism.

ullet A Kirchberg algebra is a purely infinite, simple, nuclear, separable C^* -algebra.

Theorem (M.I., H. Matui)

Let A be a unital Kirchberg algebra.

Then there exists a one-to-one correspondence between the following two sets:

- (1) The set of outer actions α of \mathbb{Z}^2 on A with $KK(\alpha_g) = 1$ for $\forall g \in \mathbb{Z}^2$, modulo cocycle conjugacy by KK-trivial automorphisms.
- (2) $\{x \in KK^1(A, A); [1]_0 \otimes_A x = 0\}$, where $[1]_0 \in K_0(A) = KK(\mathbb{C}, A)$.

Example

There are exactly n-1 cocycle conjugacy classes of outer \mathbb{Z}^2 -actions on the Cuntz algebra \mathcal{O}_n for $n<\infty$ because

$$KK^1(\mathcal{O}_n, \mathcal{O}_n) = \mathsf{Ext}(\mathbb{Z}_{n-1}, \mathbb{Z}_{n-1}) = \mathbb{Z}_{n-1}.$$

Theorem (M.I., H. Matui)

There exists only one cocycle conjugacy class of outer \mathbb{Z}^n -actions for $\forall n \in \mathbb{N}$ on the Cuntz algebra \mathcal{O}_{∞} .

Remark

The same statement for \mathcal{O}_2 was obtained by Matui before.

Fix an outer action μ of \mathbb{Z}^n on \mathcal{O}_{∞} .

Theorem (M.I., H. Matui)

Any outer \mathbb{Z}^n -action α on a Kirchberg algebra A is cocycle conjugate to the diagonal action $\alpha \otimes \mu$ on $A \otimes \mathcal{O}_{\infty}$.

In consequence, α has the Rohlin property.

Remark

 $A \cong A \otimes \mathcal{O}_{\infty}$ by Kirchberg-Phillips.

- (α, w) is a <u>cocycle action</u> of Γ on A $\stackrel{\text{def}}{\Leftrightarrow} \alpha : \Gamma \to \operatorname{Aut}(A), \ w(g,h) \in U(A) \text{ s.t.}$ $\alpha_g \circ \alpha_h = \operatorname{Ad} w_{g,h} \circ \alpha_{gh},$ $w_{g,h} w_{gh,k} = \alpha_g(w_{h,k}) w_{g,hk}$ (2-cocycle relation).
- ullet Two cocycle actions (α,w) and (α',w') are equivalent

$$\overset{\text{def}}{\Leftrightarrow} \exists v_g \in U(A) \text{ s.t. } \alpha_g' = \operatorname{Ad} v_g \circ \alpha_g,$$
$$w_{g,h}' = v_g \alpha_g(v_h) w_{g,h} v_{gh}^* \text{ (cohomologous)}.$$

Theorem (M.I., H. Matui)

Any outer cocycle \mathbb{Z}^2 -action (α, w) on a unital Kirchberg algebra A with trivial cohomology class $[[w(\cdot, \cdot)]_1] \in H^2(\mathbb{Z}^2, K_1(A))$ is equivalent to a genuine action.

In particular, when $[1]_0 = 0$ in $K_0(A)$, any outer cocycle \mathbb{Z}^2 -action is equivalent to a genuine action.

Example

Any outer cocycle \mathbb{Z}^2 -action on \mathcal{O}_n for $n=2,\cdots,\infty$ is equivalent to a genuine action.

Remark

There are countably many cocycle conjugacy classes of outer \mathbb{Z}^n -actions on $\mathcal{O}_{\infty} \otimes \mathbb{K}$ for $n \geq 3$.

This means that for $n \geq 3$, there are a lot of outer cocycle \mathbb{Z}^n -actions on \mathcal{O}_{∞} that are <u>not</u> equivalent to genuine actions.

§3. Strategy

- $\rho_1, \rho_2 \in \operatorname{Hom}(A, B)$ are asymptotically unitarily equivalent, $\rho_1 \overset{\operatorname{as.u.}}{\sim} \rho_2$,
- $\stackrel{\text{def}}{\Leftrightarrow} \exists \{u(t)\}_{t \geq 0} \text{ continuous path in } U(B) \text{ s.t.}$

$$\lim_{t\to\infty} \|\mathsf{Ad}u(t) \circ \rho_2(x) - \rho_1(x)\| = 0, \ \forall x \in A.$$

- A, B: Unital Kirchberg algebras with $[1_A]_0 = 0$ in $K_0(A)$, and $[1_B]_0 = 0$ in $K_0(B)$.
- $\widehat{H}(A,B):=$ The set of unital homomorphisms from A to B modulo asym. u. equivalence.

Theorem (Phillips)

 $\widehat{H}(A,B) \cong KK(A,B).$

Theorem (Nakamura)

A: Kirchberg algebra

 $\alpha, \beta \in Aut(A)$: Aperiodic

The following conditions are equivalent

- (1) $KK(\alpha) = KK(\beta)$.
- (2) $\exists \theta \in \operatorname{Aut}(A), \ \exists u \in U(A) \text{ s.t. } KK(\theta) = 1, \\ \theta^{-1} \circ \beta \circ \theta = \operatorname{Ad} u \circ \alpha.$

A: Unital Kirchberg algebra, α , β : Outer \mathbb{Z}^2 -actions on A s.t. $KK(\alpha_g) = KK(\beta_g) = 1$ for $\forall g \in \mathbb{Z}^2$.

• $\gamma:=\alpha_{(1,0)}$ is a unique aperiodic automorphism with $KK(\gamma)=1$ up to cocycle conjugacy by Nakamura.

We may assume $\operatorname{Ad} u \circ \beta_{(1,0)} = \gamma$, $\Rightarrow B := A \rtimes_{\gamma} \mathbb{Z} = A \rtimes_{\beta_{(1,0)}} \mathbb{Z}$, $\widehat{\gamma} = \widehat{\beta_{(1,0)}}$, dual actions.

- $\alpha_{(0,1)}, \beta_{(0,1)}$ extend to $\tilde{\alpha}, \tilde{\beta} \in \text{Aut}(B)$ commuting with $\hat{\gamma}_t$.
- Conversely, if $\theta \in \operatorname{Aut}(B)$ commutes with $\widehat{\gamma}_t$, \Rightarrow the restriction $\theta_0 := \theta|_A$ commutes with γ up to inner automorphism.
- \Rightarrow (γ, θ_0) gives a cocycle \mathbb{Z}^2 -action.

Strategy for uniqueness

- T-equivariant versions of the above results of Phillips and Nakamura. (for outer conjugacy.)
- Model action splitting

$$(A, \alpha) \cong (A \otimes \mathcal{O}_{\infty}, \alpha \otimes \mu),$$

where μ is a quasi-free action. Every rotation algebra embeds in \mathcal{O}_{∞} . (outer conjugacy \Rightarrow cocycle conjugacy.)

Strategy for existence

Second cohomology vanishing theorem based on Ocneanu's idea (with special care of K-theory).

§4. Asymptotically representable actions

A: Unital C^* -algebra,

Γ: Discrete amenable group,

 γ : Action of Γ on A.

ullet γ is asymptotically representable

$$\lim_{t \to \infty} \|u_g(t)xu_g(t)^* - \gamma_g(x)\| = 0, \ \forall x \in A,$$

$$\lim_{t \to \infty} \|u_g(t)u_h(t) - u_{gh}(t)\| = 0, \ \forall g, h \in \Gamma,$$

$$\lim_{t \to \infty} \|\gamma_g(u_h(t)) - u_{ghg^{-1}}(t)\| = 0, \ \forall g, h \in \Gamma.$$

If γ is an asym. rep. action, so is its cocycle perturbation.

• If A is a Kirchberg algebra, and $\theta \in \operatorname{Aut}(A)$ is aperiodic with $KK(\theta) = 1$, θ gives a unique outer asym. rep. action of \mathbb{Z} on A up to cocycle conjugacy by KK-trivial automorphisms.

 $B:=A\rtimes_{\gamma}\Gamma$: Crossed product, $\widehat{\gamma}:B\to B\otimes C^*(\Gamma)$: Dual coaction of γ , $\operatorname{End}_{\widehat{\Gamma}}(B)$: The set of unital $\rho\in\operatorname{End}(B)$ s.t.

$$\hat{\gamma} \circ \rho = (\rho \otimes id) \circ \hat{\gamma}.$$

- $\rho_1, \rho_2 \in \operatorname{End}_{\widehat{\Gamma}}(B)$ are $\widehat{\Gamma}$ -asymptotically unitarily equivalent, $\rho_1 \overset{\widehat{\Gamma}-\operatorname{as.u.}}{\sim} \rho_2$, $\overset{\text{def}}{\Leftrightarrow} \rho_1$ and ρ_2 are asym. u. equivalent by a continuous path of unitaries $\underline{\operatorname{in } A}$.
- $\hat{H}_{\widehat{\Gamma}}(B,B):=\operatorname{End}_{\widehat{\Gamma}}(B)$ modulo $\widehat{\Gamma}$ -asym. u equivalence.

Assumption

A: Unital Kirchberg algebra.

 γ : Outer asym. rep. action.

Lemma

If a unital $\rho \in \operatorname{End}(B)$ satisfies

$$KK(\hat{\gamma} \circ \rho) = KK((\rho \otimes id) \circ \hat{\gamma}),$$

then $\exists \rho_1 \in \operatorname{End}_{\widehat{\Gamma}}(B)$ s.t. $KK(\rho) = KK(\rho_1)$.

Lemma

If $\rho_1, \rho_2 \in \operatorname{End}_{\widehat{\Gamma}}(B)$ satisfy $KK(\rho_1) = KK(\rho_2)$, then $[\rho_1] = [\rho_2]$ in $\widehat{H}_{\widehat{\Gamma}}(B, B)$.

- ullet The proofs use a very strong form of the "Rohlin property" of $\widehat{\gamma}$.
- These two lemmas imply

$$\widehat{H}_{\widehat{\Gamma}}(B,B) \cong \{x \in KK(B,B); x \otimes_B KK(\widehat{\gamma}) = KK(\widehat{\gamma}) \otimes_{B \otimes C^*(\Gamma)} (x \otimes 1_{C^*(\Gamma)}) \}.$$

Theorem

If $[1]_0 = 0$ in $K_0(A)$ and $\Gamma = \mathbb{Z}$, then $\hat{H}_{\mathbb{T}}(B,B) \cong KK(A,A) \oplus KK^1(A,A)$, with ring structure:

$$(x_0 \oplus x_1) \cdot (y_0 \oplus y_1) = (x_0 \otimes_A y_0 \oplus (x_0 \otimes_A y_1 + x_1 \otimes_A y_0)).$$

 $x_0 \oplus x_1$ is invertible $\Leftrightarrow x_0$ is invertible.

If $\rho \in \operatorname{End}_{\widehat{\Gamma}}(B)$ corresponds to $x_0 \oplus x_1$, $KK(\rho|_A) = x_0$.

Outline of the proof

• Since $KK(\gamma) = 1$, (A, γ) is cocycle conjugate to $(A \otimes \mathcal{O}_{\infty}, \mathrm{id} \otimes \gamma')$, where γ' is a quasi-free action.

$$\Rightarrow (B, \widehat{\gamma}) \cong (A \otimes (\mathcal{O}_{\infty} \rtimes_{\gamma'} \mathbb{Z}), \mathsf{id} \otimes \widehat{\gamma'}).$$

$$\bullet \ (\mathcal{O}_{\infty}, \gamma') \overset{KK_{\mathbb{Z}}}{\sim} (\mathbb{C}, \mathsf{id}) \Rightarrow$$

$$(\mathcal{O}_{\infty} \rtimes_{\gamma'} \mathbb{Z}, \widehat{\gamma'}) \overset{KK}{\sim} (C^*(\mathbb{Z}), \delta)$$

$$\overset{KK}{\sim} (\mathbb{C} \oplus C_0(\mathbb{R}), \delta').$$

To show uniqueness up to outer conjugacy, it suffices to prove

Theorem

```
If \theta_1, \theta_2 \in \operatorname{Aut}_{\widehat{\Gamma}}(B) s.t. \theta_1|_A, \theta_2|_A are aperiodic and [\theta_1] = [\theta_2] in \widehat{H}_{\widehat{\Gamma}}(B,B), then \exists \varphi \in \operatorname{Aut}_{\widehat{\Gamma}}(B), \exists u \in U(A) s.t. \varphi^{-1} \circ \theta_2 \circ \varphi = \operatorname{Ad} u \circ \theta_1 and [\varphi] = [\operatorname{id}] in \widehat{H}_{\widehat{\Gamma}}(B,B).
```

The proof is an $\widehat{\Gamma}$ -equivariant version of Nakamura's argument, which requires the Rohlin projections for θ_1 and θ_2 in A.

We need the following two lemmas.

$$\omega \in \beta \mathbb{N} \setminus \mathbb{N}$$
: free ultrafilter,
 $c_{\omega}(B) = \{(x_n) \in \ell^{\infty}(\mathbb{N}, B); \lim_{n \to \omega} ||x_n|| = 0\},$
 $B^{\omega} = \ell^{\infty}(\mathbb{N}, B)/c_{\omega}(B),$
 $A^{\omega}, B \subset B^{\omega}.$

<u>Lemma</u> (Equivariant Kirchberg theorem) $A^{\omega} \cap B'$ is purely infinite simple.

- To construct the Rohlin projections for θ_1 and θ_2 in A, it suffices to show that θ_1 and θ_2 induce aperiodic automorphisms of $A^{\omega} \cap B'$.
- Note that $A^{\omega} \cap B' = (A^{\omega})^{\Gamma}$.

<u>Lemma</u> (Asymptotic Galois correspondence) Let $\theta \in \operatorname{Aut}(A)$ s.t. $\theta^{\omega}(x) = x$ for $\forall x \in A^{\omega} \cap B'$. Then $\exists u \in U(A)$ and $\exists g \in \Gamma$ s.t. $\theta = \operatorname{Ad} u \circ \gamma_g$.

Remark

This lemma holds for any outer action of any countable discrete group.

§5. Model action splitting

$$\rho_l: \mathcal{O}_{\infty} \ni x \mapsto x \otimes 1 \in \mathcal{O}_{\infty} \otimes \mathcal{O}_{\infty},
\rho_r: \mathcal{O}_{\infty} \ni x \mapsto 1 \otimes x \in \mathcal{O}_{\infty} \otimes \mathcal{O}_{\infty}.$$

The essence of the \mathcal{O}_{∞} -theorem $A \cong A \otimes \mathcal{O}_{\infty}$ is the fact that ρ_l and ρ_r are approximately unitarily equivalent, shown by Lin-Phillips.

 Γ : Countable infinite discrete amenable group. μ^{Γ} : Quasi-free action of Γ on $\mathcal{O}_{\infty} = C^*\{S_g\}_{g \in \Gamma}$ given by $\mu_g^{\Gamma}(S_h) = S_{gh}$.

Lemma

If there exists a sequence of unitaries $\{u_n\}$ in $\mathcal{O}_{\infty}\otimes\mathcal{O}_{\infty}$ s.t.

$$\lim_{n\to\infty} \|\mathsf{Ad}u_n \circ \rho_l(x) - \rho_r(x)\| = 0, \ \forall x \in \mathcal{O}_{\infty},$$

$$\lim_{n\to\infty} \|\mu_g^{\Gamma} \otimes \mu_g^{\Gamma}(u_n) - u_n\| = 0, \ \forall g \in \Gamma,$$

then (A, α) is cocycle conjugate to $(A \otimes \mathcal{O}_{\infty}, \alpha \otimes \mu^{\Gamma})$ for any outer action α of Γ on any unital Kirchberg algebra A.

Theorem

If the diagonal action $\mu^{\Gamma} \otimes \mu^{\Gamma}$ on $\mathcal{O}_{\infty} \otimes \mathcal{O}_{\infty}$ is approximately representable, then (A, α) is cocycle conjugate to $(A \otimes \mathcal{O}_{\infty}, \alpha \otimes \mu^{\Gamma})$ for any outer action α of Γ on any unital Kirchberg algebra A.

In particular, if μ^{Γ} is approximately representable, the conclusion follows.

Remark

- •Since $KK^1(\mathcal{O}_{\infty}, \mathcal{O}_{\infty})$ is trivial, there exists only one outer conjugacy class of outer \mathbb{Z}^2 -actions on \mathcal{O}_{∞} .
- ullet The facts that any rotation algebra embeds in \mathcal{O}_{∞} , and that \mathcal{O}_{∞} is isomorphic to the infinite tensor product of itself imply that there exists only one cocycle conjugacy class as well.
- ullet This shows that $\mu^{\mathbb{Z}^2}$ is asymptotically representable.

By an induction argument, we get

Theorem

 $\mu^{\mathbb{Z}^n}$ is asymptotically representable for any n. In consequence, any outer \mathbb{Z}^n -action α on a Kirchberg algebra A is cocycle conjugate to the diagonal action $\alpha\otimes\mu^{\mathbb{Z}^n}$ on $A\otimes\mathcal{O}_\infty$.

The proof of the theorem shows:

$$\forall \omega \in Z^2(\mathbb{Z}^n, \mathbb{T}), \ \exists \theta \in \operatorname{Aut}(\mathcal{O}_{\infty}), \ \exists u_g \in U(\mathcal{O}_{\infty})$$

s.t. $\theta^{-1} \circ \mu_g^{\mathbb{Z}^n} \circ \theta = \operatorname{Ad} u_g \circ \mu_g^{\mathbb{Z}^n},$
 $u_g \mu_q^{\mathbb{Z}^n}(u_h) = \omega(g, h) u_{qh}.$

Corollary

Let α and β be outer \mathbb{Z}^n -actions on a unital Kirchberg algebra A.

If α and β are outer conjugate, then they are cocycle conjugate.

Remark

Nakamura and Katsura-Matui show that for \mathbb{Z}^2 -actions on UHF algebras, there is a gap between cocycle conjugacy and outer conjugacy.