Semiprojectivity of non-commutative CW-complexes

Søren Eilers

The Fields Institute, November 13, 2007

S. Eilers, T.A. Loring and G.K. Pedersen: Stability of anticommutation relations. An application of noncommutative CW complexes. Journal für die reine und angewandte Mathematik **499** (1998), 101–143.

Definition [Blackadar 1985]

A is **semiprojective** whenever

B. Blackadar: Semiprojectivity in simple C^* -algebras. Proceedings of the US-Japan Seminar held at Kyushu University, Fukuoka, June 7–11, 1999.

Semiprojective examples

$M_n(\mathbb{C})$	$e_{ij}e_{kl} = \delta_{jk}e_{il}, e_{ij}^* = e_{ji}$	
C([0,1])	$x = x^*$	
$C(S^1)$	$uu^* = u^*u = 1$	
$\mathbb{I}_{p,q}$	$f: [0,1] o \mathbf{M}_{pq}(\mathbb{C}) \mid$	
	$f(0) \in \mathbf{M}_p(\mathbb{C}), f(1) \in \mathbf{M}_q(\mathbb{C}) \}$	
$q\mathbb{C}$	$\{f:(0,1] o \mathbf{M}_2(\mathbb{C})\ \ f(1)\ ext{is diagonal}\}$	
\mathcal{O}_n	$\sum_{i=1}^{n} s_i s_i^* = 1, s_i s_i^* s_i = s_i$	
\mathcal{T}	$s^*s = 1$	

Stable relations

 $C^*(\mathcal{G} \mid \mathcal{R})$ is semiprojective when $\forall \epsilon \exists \delta$:

- (g_i) δ -satisfies \mathcal{R} in A
- $(\pi(g_i))$ satisfies \mathcal{R} in A/I

there exist h_i , $\|h_i - g_i\| < \epsilon$ such that

- (h_i) satisfies \mathcal{R} in A
- $\bullet \ \pi(g_i) = \pi(h_i).$

Inductive limits

When A is semiprojective then for any

$$\phi: A \to B = \varinjlim B_n$$

we get

$$B_1 {
ightharpoonup} \cdots {
ightharpoonup} B_N {
ightharpoonup} \widetilde{B_{N+1}} {
ightharpoonup} \cdots {
ightharpoonup} B$$
 from A to B homotopic — and poin

with all maps from A to B homotopic — and pointwise converging — to ϕ .

NB: \mathbb{K} is not semiprojective.

Classification seems to require an "ample supply" of semiprojective C^* -algebras.

Theorem [Spielberg 01]

Any purely infinite C^* -algebra A with $K_*(A)$ finitely generated and with tor $K_1(A) = 0$ is semiprojective.

Theorem [E-Loring-Pedersen 98]

Any pullback

$$\downarrow^* \qquad \qquad \downarrow^{F_0} \\
C([0,1],F_1) \xrightarrow{\partial} F_1 \oplus F_1$$

is semiprojective when dim F_0 , dim $F_1 < \infty$.

(-: Closure properties:-)

A, B semiprojective $\iff A \oplus B$ semiprojective.

A semiprojective $\iff A^{\sim}$ semiprojective.

A semiprojective $\Rightarrow \mathbf{M}_n(A)$ semiprojective. [\Leftarrow when A is unital]

-: Closure properties :-(

$$0 \longrightarrow A \longrightarrow X \longrightarrow B \longrightarrow 0$$

X semiprojective $\Rightarrow A$ semiprojective.

X semiprojective $\Rightarrow B$ semiprojective.

A and B semiprojective $\Rightarrow X$ semiprojective.

Counterexamples

C(X) semiprojective $\Rightarrow X$ is an absolute neighborhood retract.

C(X) semiprojective $\Rightarrow X$ has no closed set homeomorphic to $[0,1]^k$, $k \ge 2$.

-: Probable closure results :-

Say A, B and C are semiprojective. Then so is X when

(1)

$$0 \longrightarrow A \longrightarrow X \longrightarrow B \longrightarrow 0$$
 $\dim B < \infty$

(1') [Blackadar]

$$0 \longrightarrow A \longrightarrow X \stackrel{\text{\tiny }}{\longrightarrow} \mathbb{C} \longrightarrow 0$$

(2) Pullback over proper maps α, β :

Theorem [ELP98]

Any pullback

$$C([0,1],F_1) \oplus_{F_1^2} F_0$$

is semiprojective when $\dim F_0, \dim F_1 < \infty$.

Key technical concepts in the proof:

- Conditionally (semi)projective diagram
- Corona extendible map

Conditionally projective diagram:

$$A_{00} \longrightarrow A_{01} \longrightarrow D$$

$$\downarrow \qquad \qquad \downarrow$$

$$A_{10} \longrightarrow A_{11} \longrightarrow D/J$$

Conditionally semiprojective diagram:

Observation A is semiprojective when the diagram

$$0 \longrightarrow 0$$
 \downarrow
 $A \longrightarrow A$

is conditionally semiprojective.

Lemma [ELP98]

For $F_1 \subseteq F_2$ with dim $F_2 < \infty$ consider the canonical map

$$\phi: F_1 \to \widehat{\mathbf{T}}(F_1, F_2) = \{ f \in C([0, 1], F_2) \mid f(0) \in F_1 \}.$$

The diagram

$$F_1 = F_1$$
 $\phi \downarrow \qquad \qquad \downarrow \phi$
 $\widehat{\mathbf{T}}(F_1, F_2) = \widehat{\mathbf{T}}(F_1, F_2)$

is conditionally projective.

Theorem [ELP98]

$$0 \longrightarrow A \longrightarrow X \longrightarrow F \longrightarrow 0$$

$$\downarrow \alpha \qquad \downarrow \chi \qquad \parallel$$

$$0 \longrightarrow A_1 \longrightarrow X_1 \longrightarrow F \longrightarrow 0$$

Suppose $\dim(F)<\infty$ and $\alpha(A)$ is an ideal of A_1 having a unit there. Then

$$\begin{array}{ccc}
A \xrightarrow{\alpha} A_1 \\
\downarrow & \downarrow \\
X \xrightarrow{\chi} X_1
\end{array}$$

is conditionally semiprojective.

Definition [Loring-Pedersen]

A morphism $\theta:A\to B$ (necessarily injective) is **corona extendible** when

$$A \longrightarrow M(E)/E$$
 $\theta \mid B$

Observation Kasparov's technical theorem essentially amounts to corona extendibility of any map of the form

$$\otimes$$
 id : $C[\mathtt{0},\mathtt{1}]\otimes D o C[\mathtt{0},\mathtt{1}]\otimes D$

Proposition [ELP98]

Given a commutative diagram of the form

$$0 \longrightarrow A \longrightarrow X \longrightarrow B \longrightarrow 0$$

$$\downarrow \chi \qquad \downarrow \beta$$

$$0 \longrightarrow A \longrightarrow X_1 \longrightarrow B_1 \longrightarrow 0$$

If

$$B = B$$
 $\beta \downarrow \beta$
 $B_1 = B_1$

is conditionally projective, then χ is corona extendible.