On *K*-fibrations

joint with Ryszard Nest, Herve Oyono-Oyono

Toronto, November 12, 2007

Siegfried Echterhoff

Westfälische Wilhelms-Universität Münster

Serre Fibrations

A Serre fibration in Topology is a continuous map $p:Y\to X$ which satisfies the HLP

Serre Fibrations

A Serre fibration in Topology is a continuous map $p:Y\to X$ which satisfies the HLP

Serre Fibrations

A Serre fibration in Topology is a continuous map $p: Y \to X$ which satisfies the HLP

Consequence: If $p: Y \to X$ is a Serre fibration with X path connected, then all fibres $Y_x = p^{-1}(\{x\})$ are homotopy equivalent. A Serre fibration behaves like a "locally trivial fibre bundle" up to homotopy.

General Assumptions

All algebras (except multiplier algebras) are separable and all locally compact spaces (or groups) are second contable

C*-Algebra bundles (or $C_0(X)$ -algebras)

A C*-algebra bundle over X is a C*-algebra A=A(X) together with a nondegenerate *-homomorphism

$$\Phi: C_0(X) \to ZM(A)$$

C^* -Algebra bundles (or $C_0(X)$ -algebras)

A C*-algebra bundle over X is a C*-algebra A=A(X) together with a nondegenerate *-homomorphism

$$\Phi: C_0(X) \to ZM(A)$$

If $I_x := \Phi(C_0(X \setminus \{x\}))A$, then

$$A_x := A/I_x$$

is the fibre of A at $x \in X$. If $a \in A$, then

$$x \mapsto ||a_x||, \quad a_x := a + I_x \in A_x$$

is always upper semi continuous and vanishes at ∞ .

C^* -Algebra bundles (or $C_0(X)$ -algebras)

A C*-algebra bundle over X is a C*-algebra A=A(X) together with a nondegenerate *-homomorphism

$$\Phi: C_0(X) \to ZM(A)$$

If $I_x := \Phi(C_0(X \setminus \{x\}))A$, then

$$A_x := A/I_x$$

is the fibre of A at $x \in X$. If $a \in A$, then

$$x \mapsto ||a_x||, \quad a_x := a + I_x \in A_x$$

is always upper semi continuous and vanishes at ∞ . We say that A(X) is continuous, if this map is continuous.

• Trivial bundles $A(X) = C_0(X, B)$

- Trivial bundles $A(X) = C_0(X, B)$
- Locally trivial bundles: every $x \in X$ has an open neighbourhood U such that $A(U) := \Phi(C_0(U))A \cong C_0(U,B)$

- Trivial bundles $A(X) = C_0(X, B)$
- Locally trivial bundles: every $x \in X$ has an open neighbourhood U such that $A(U) := \Phi(C_0(U))A \cong C_0(U,B)$
- Continuous trace algebras (the case $B = \mathcal{K}$).

- Trivial bundles $A(X) = C_0(X, B)$
- Locally trivial bundles: every $x \in X$ has an open neighbourhood U such that $A(U) := \Phi(C_0(U))A \cong C_0(U,B)$
- Continuous trace algebras (the case $B = \mathcal{K}$).
- Heisenberg group algebra: $C^*(H_2) = C^*(U, V, W)$ where U, V, W are unitaries with relations

$$UV = WVU$$
, $UW = WU$, $VW = WV$.

Functional calculus: $\Phi:C(\mathbb{T})\stackrel{\cong}{\to} C^*(W)\subseteq C^*(U,V,W)$. We get $A_z=C^*(U_z,V_z)$ with relation $U_zV_z=zV_zU_z$. Thus $A_z=A_\theta$ if $z=e^{2\pi i\theta}$.

Let A(X) be a C*-algebra bundle over X and let $f:Z\to X$ be a continuous map. Then we define the pull-back $f^*A(Z)$ of A(X) along f as

$$f^*A(Z) = C_0(Z) \otimes_{C_0(X)} A(X)$$

 $f^*A(Z)$ is a C*-algebra bundle over Z with fibres $f^*A_z = A_{f(z)}$.

Let A(X) be a C*-algebra bundle over X and let $f:Z\to X$ be a continuous map. Then we define the pull-back $f^*A(Z)$ of A(X) along f as

$$f^*A(Z) = C_0(Z) \otimes_{C_0(X)} A(X)$$

 $f^*A(Z)$ is a C*-algebra bundle over Z with fibres $f^*A_z = A_{f(z)}$.

Definition

A(X) is a K-fibration if for every compact contractible space Δ the evaluation map $\operatorname{ev}_v: f^*A(\Delta) \to A_{f(v)}$ induces an isomorphism $K_*(f^*A(\Delta)) \cong K_*(A_{f(v)})$ for all $v \in \Delta$.

Let A(X) be a C*-algebra bundle over X and let $f:Z\to X$ be a continuous map. Then we define the pull-back $f^*A(Z)$ of A(X) along f as

$$f^*A(Z) = C_0(Z) \otimes_{C_0(X)} A(X)$$

 $f^*A(Z)$ is a C*-algebra bundle over Z with fibres $f^*A_z = A_{f(z)}$.

Definition

A(X) is a K-fibration if for every compact contractible space Δ the evaluation map $\operatorname{ev}_v: f^*A(\Delta) \to A_{f(v)}$ induces an isomorphism $K_*(f^*A(\Delta)) \cong K_*(A_{f(v)})$ for all $v \in \Delta$.

A(X) is a KK-fibration if $\operatorname{ev}_v: f^*A(\Delta) \to A_{f(v)}$ is a KK-equiv.

Let A(X) be a C*-algebra bundle over X and let $f:Z\to X$ be a continuous map. Then we define the pull-back $f^*A(Z)$ of A(X) along f as

$$f^*A(Z) = C_0(Z) \otimes_{C_0(X)} A(X)$$

 $f^*A(Z)$ is a C*-algebra bundle over Z with fibres $f^*A_z=A_{f(z)}$.

Definition

A(X) is a K-fibration if for every compact contractible space Δ the evaluation map $\operatorname{ev}_v: f^*A(\Delta) \to A_{f(v)}$ induces an isomorphism $K_*(f^*A(\Delta)) \cong K_*(A_{f(v)})$ for all $v \in \Delta$.

A(X) is a KK-fibration if $\operatorname{ev}_v: f^*A(\Delta) \to A_{f(v)}$ is a KK-equiv.

A(X) is an $\mathcal{R}KK$ -fibration, if $f^*A(\Delta) \sim_{\mathcal{R}KK} C(\Delta, A_{f(v)})$.

We have: $\mathcal{R}KK$ -fibration $\Rightarrow KK$ -fibration $\Rightarrow K$ -fibration.

We have: $\mathcal{R}KK$ -fibration $\Rightarrow KK$ -fibration $\Rightarrow K$ -fibration.

We also have the following theorem, which follows from some deep result of Dadarlat:

Theorem

If A(X) is a continuous and nuclear C*-algebra bundle. Then

A(X) is a KK-fibration $\iff A(X)$ is an $\mathcal{R}KK$ -fibration.

We have: $\mathcal{R}KK$ -fibration $\Rightarrow KK$ -fibration $\Rightarrow K$ -fibration.

We also have the following theorem, which follows from some deep result of Dadarlat:

Theorem

If A(X) is a continuous and nuclear C*-algebra bundle. Then

A(X) is a KK-fibration $\iff A(X)$ is an $\mathcal{R}KK$ -fibration.

Idea: Let $X = \Delta$ and consider

$$KK(A_x, A(\Delta)) \stackrel{\otimes C(\Delta)}{\to} \mathcal{R}KK(\Delta; C(\Delta, A_x), C(\Delta, A(\Delta)))$$

 $\to \mathcal{R}KK(\Delta; C(\Delta, A_x), A(\Delta)),$

where the last map is given by restriction on the diagonal.

• Locally trivial bundles are $\mathcal{R}KK$ -fibrations.

- Locally trivial bundles are $\mathcal{R}KK$ -fibrations.
- The Heisenberg group algebra $C^*(H_2)(\mathbb{T}) = C^*(U, V, W)(\mathbb{T})$ is an $\mathcal{R}KK$ -fibration.

- Locally trivial bundles are $\mathcal{R}KK$ -fibrations.
- The Heisenberg group algebra $C^*(H_2)(\mathbb{T}) = C^*(U, V, W)(\mathbb{T})$ is an $\mathcal{R}KK$ -fibration.
- If A(X) is a K-fibration (resp. KK-fibration) then the same is true for $A(X) \rtimes \mathbb{Z}^n$ or $A(X) \rtimes \mathbb{R}^n$ for every fibre-wise action $\alpha : \mathbb{Z}^n, \mathbb{R}^n \to \operatorname{Aut}(A(X))$.

- Locally trivial bundles are $\mathcal{R}KK$ -fibrations.
- The Heisenberg group algebra $C^*(H_2)(\mathbb{T}) = C^*(U, V, W)(\mathbb{T})$ is an $\mathcal{R}KK$ -fibration.
- If A(X) is a K-fibration (resp. KK-fibration) then the same is true for $A(X) \rtimes \mathbb{Z}^n$ or $A(X) \rtimes \mathbb{R}^n$ for every fibre-wise action $\alpha : \mathbb{Z}^n, \mathbb{R}^n \to \operatorname{Aut}(A(X))$.
- Theorem. Suppose G is an amenable group which acts fibre-wise on the C*-algebra bundle A(X). Suppose that $A(X) \rtimes K$ is a K-fibration (resp. KK-fibration) for all compact subgroups K of G. Then $A(X) \rtimes G$ is a K-fibration (resp. KK-fibration).

Idea of Proof

If G is amenable, the Baum-Connes assembly map

$$\mu: K_*^{\mathrm{top}}(G; A) \to K_*(A \rtimes G)$$

is an isomorphism for all A, with

$$K_*^{\text{top}}(G; A) = \lim_{X \subseteq \underline{EG}} KK_*^G(C_0(X), A).$$

Theorem (Chabert, E, Oyono-Oyono) If $x \in KK^G(A, B)$ such that $\operatorname{res}_K^G(x) \in KK^K(A, B)$ induces an isomorphism $K_*(A \rtimes K) \cong K_*(B \rtimes K)$ for *all* compact subgroups K of G, then x induces an isomorphism $K_*^{\operatorname{top}}(G;A) \cong K_*^{\operatorname{top}}(G;B)$.

Apply this theorem to

$$[\operatorname{ev}_v] \in KK^G(f^*A(\Delta), A_{f_v})$$
 for any given $f: \Delta \to X$.

Idea of Proof

If G is amenable, the Baum-Connes assembly map

$$\mu: K_*^{\mathrm{top}}(G; A) \to K_*(A \rtimes G)$$

is an isomorphism for all A, with

$$K_*^{\text{top}}(G; A) = \lim_{X \subseteq \underline{EG}} KK_*^G(C_0(X), A).$$

Theorem (Meyer-Nest) If G is amenable (or satisfies the strong Baum-Connes conjecture) and $x \in KK^G(A,B)$ such that $\operatorname{res}_K^G(x) \in KK^K(A,B)$ is a KK^K -equivalence for *all* compact $K \subseteq G$, then $x \rtimes G \in KK(A \rtimes G, B \rtimes G)$ is a KK-equivalence.

As before, apply this theorem to

$$[\operatorname{ev}_v] \in KK^G(f^*A(\Delta), A_{f_v})$$
 for any given $f: \Delta \to X$.

Corollary. If A(X) is a continuous-trace algebra over X and if G is an amenable group acting fibre-wise on A(X), then $A(X) \rtimes G$ is an $\mathcal{R}KK$ -fibration.

Corollary. If A(X) is a continuous-trace algebra over X and if G is an amenable group acting fibre-wise on A(X), then $A(X) \rtimes G$ is an $\mathcal{R}KK$ -fibration.

Proof. It follows from a Theorem of E and Williams, that for any continuous trace algebra A we have

$$f^*A(\Delta) \rtimes K \cong C(\Delta, A_{f_v} \rtimes K).$$

Corollary. If A(X) is a continuous-trace algebra over X and if G is an amenable group acting fibre-wise on A(X), then $A(X) \rtimes G$ is an $\mathcal{R}KK$ -fibration.

Proof. It follows from a Theorem of E and Williams, that for any continuous trace algebra A we have

$$f^*A(\Delta) \rtimes K \cong C(\Delta, A_{f_v} \rtimes K).$$

Corollary. Suppose that $1 \to Z \to H \to G \to 1$ is any central extension of groups. Then $C^*(H)$ is bundle over over \widehat{Z} via

$$\varphi: C_0(\widehat{Z}) \cong C^*(Z) \to ZM(C^*(H))$$

given by convolution. If G is amenable, then $C^*(H)(\widehat{Z})$ is a KK-fibration. (Use $C^*(H) \otimes \mathcal{K} \cong C_0(\widehat{Z}, \mathcal{K}) \rtimes G$.)

The C*-algebra bundle

$$A([0,1]) = \{ f : [0,1] \to M_2(\mathbb{C}) : f(0) = \begin{pmatrix} f_{11}(0) & 0 \\ 0 & f_{22}(0) \end{pmatrix} \}$$

is NOT a K-fibration.

Application: Computation of K-groups.

Consider a K-fibration A([0,1]) over the unit intervall [0,1]. Then for each $t \in [0,1]$, we have $\operatorname{ev}_{t,*}: K_*(A([0,1]) \stackrel{\cong}{\to} K_*(A_t)$. As a consequence, if $s,t \in [0,1]$, then

$$K_*(A_s) \cong K_*(A([0,1])) \cong K_*(A_t)$$

Application: Computation of K-groups.

Consider a K-fibration A([0,1]) over the unit intervall [0,1]. Then for each $t \in [0,1]$, we have $\operatorname{ev}_{t,*}: K_*(A([0,1]) \stackrel{\cong}{\to} K_*(A_t)$. As a consequence, if $s,t \in [0,1]$, then

$$K_*(A_s) \cong K_*(A([0,1])) \cong K_*(A_t)$$

Example (E, Lück, Phillips, Walters) Consider the "Non-commutative 2-spheres

$$A_{\theta} \rtimes F \qquad F = \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_6 \subseteq SL(2, \mathbb{Z}).$$

Then
$$K_*(A_\theta \rtimes F) \cong K_*(A_0 \rtimes F) \cong K_*(C(\mathbb{T}^2) \rtimes F)$$
.

Application: Computation of K-groups.

Consider a K-fibration A([0,1]) over the unit intervall [0,1]. Then for each $t \in [0,1]$, we have $\operatorname{ev}_{t,*}: K_*(A([0,1]) \stackrel{\cong}{\to} K_*(A_t)$. As a consequence, if $s,t \in [0,1]$, then

$$K_*(A_s) \cong K_*(A([0,1])) \cong K_*(A_t)$$

Example (E, Lück, Phillips, Walters) Consider the "Non-commutative 2-spheres

$$A_{\theta} \rtimes F \qquad F = \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_6 \subseteq SL(2, \mathbb{Z}).$$

Then
$$K_*(A_\theta \rtimes F) \cong K_*(A_0 \rtimes F) \cong K_*(C(\mathbb{T}^2) \rtimes F)$$
.

Idea: Construct a K-fibration B([0,1]) with fibres $A_{\theta} \rtimes F$, $\theta \in [0,1]$.

Problem: Construct a K-fibration B([0,1]) with fibres $A_{\theta} \rtimes F$, $\theta \in [0,1]$.

• Realize $A_{\theta} \rtimes F$ as a twisted group algebra $C^*(\mathbb{Z}^2 \rtimes F, \omega_{\theta})$ for some $\omega_{\theta} \in Z^2(\mathbb{Z}^2 \rtimes F, \mathbb{T})$.

Problem: Construct a K-fibration B([0,1]) with fibres $A_{\theta} \rtimes F$, $\theta \in [0,1]$.

- Realize $A_{\theta} \rtimes F$ as a twisted group algebra $C^*(\mathbb{Z}^2 \rtimes F, \omega_{\theta})$ for some $\omega_{\theta} \in Z^2(\mathbb{Z}^2 \rtimes F, \mathbb{T})$.
- Construct a cocycle $\Omega \in Z^2(\mathbb{Z}^2 \rtimes F, C([0,1],\mathbb{T}))$ with $\Omega(\cdot,\cdot)(\theta) = \omega_{\theta}$ for all $\theta \in [0,1]$.

Problem: Construct a K-fibration B([0,1]) with fibres $A_{\theta} \rtimes F$, $\theta \in [0,1]$.

- Realize $A_{\theta} \rtimes F$ as a twisted group algebra $C^*(\mathbb{Z}^2 \rtimes F, \omega_{\theta})$ for some $\omega_{\theta} \in Z^2(\mathbb{Z}^2 \rtimes F, \mathbb{T})$.
- Construct a cocycle $\Omega \in Z^2(\mathbb{Z}^2 \rtimes F, C([0,1],\mathbb{T}))$ with $\Omega(\cdot,\cdot)(\theta) = \omega_{\theta}$ for all $\theta \in [0,1]$.
- Construct the twisted crossed product $C([0,1]) \rtimes_{\Omega} (\mathbb{Z}^2 \rtimes F)$ with fibres $C^*(\mathbb{Z}^2 \rtimes F, \omega_{\theta})$.

Problem: Construct a K-fibration B([0,1]) with fibres $A_{\theta} \rtimes F$, $\theta \in [0,1]$.

- Realize $A_{\theta} \rtimes F$ as a twisted group algebra $C^*(\mathbb{Z}^2 \rtimes F, \omega_{\theta})$ for some $\omega_{\theta} \in Z^2(\mathbb{Z}^2 \rtimes F, \mathbb{T})$.
- Construct a cocycle $\Omega \in Z^2(\mathbb{Z}^2 \rtimes F, C([0,1],\mathbb{T}))$ with $\Omega(\cdot,\cdot)(\theta) = \omega_{\theta}$ for all $\theta \in [0,1]$.
- Construct the twisted crossed product $C([0,1]) \rtimes_{\Omega} (\mathbb{Z}^2 \rtimes F)$ with fibres $C^*(\mathbb{Z}^2 \rtimes F, \omega_{\theta})$.
- Use $C([0,1]) \rtimes_{\Omega} (\mathbb{Z}^2 \rtimes F) \otimes \mathcal{K} \cong C([0,1],\mathcal{K}) \rtimes (\mathbb{Z}^2 \rtimes F)$. (Packer-Raeburn stabilization trick).

Computation of K-groups.

Problem: Construct a K-fibration B([0,1]) with fibres $A_{\theta} \rtimes F$, $\theta \in [0,1]$.

- Realize $A_{\theta} \rtimes F$ as a twisted group algebra $C^*(\mathbb{Z}^2 \rtimes F, \omega_{\theta})$ for some $\omega_{\theta} \in Z^2(\mathbb{Z}^2 \rtimes F, \mathbb{T})$.
- Construct a cocycle $\Omega \in Z^2(\mathbb{Z}^2 \rtimes F, C([0,1],\mathbb{T}))$ with $\Omega(\cdot,\cdot)(\theta) = \omega_{\theta}$ for all $\theta \in [0,1]$.
- Construct the twisted crossed product $C([0,1]) \rtimes_{\Omega} (\mathbb{Z}^2 \rtimes F)$ with fibres $C^*(\mathbb{Z}^2 \rtimes F, \omega_{\theta})$.
- Use $C([0,1]) \rtimes_{\Omega} (\mathbb{Z}^2 \rtimes F) \otimes \mathcal{K} \cong C([0,1],\mathcal{K}) \rtimes (\mathbb{Z}^2 \rtimes F)$. (Packer-Raeburn stabilization trick).

Result: $K_0(A_\theta \rtimes F) \cong \mathbb{Z}^6$, \mathbb{Z}^8 , \mathbb{Z}^9 , \mathbb{Z}^{10} and $K_1(A_\theta \rtimes F) = \{0\}$ for $F = \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_6 \subseteq SL(2, \mathbb{Z})$.

Application: The K-theory group bundle

Suppose A(X) is a K-fibration. Then the K-theory group bundle consists of the collection

$$\mathcal{K}_*(A(X)) := \{ K_*(A_x) : x \in X \}$$

together with isomorphisms $c_\gamma:K_*(A_x)\to K_*(A_y)$ for every continuous path $\gamma:[0,1]\to X$ from x to y given by the composition

$$c_{\gamma}: K_{*}(A_{x}) \stackrel{ev_{0,*}^{-1}}{\to} K_{*}(\gamma^{*}A[0,1]) \stackrel{\text{ev}_{1,*}}{\to} K_{*}(A_{y}).$$

We then have $c_{\gamma \circ \gamma'} = c_{\gamma} \circ c_{\gamma'}$ and c_{γ} only depends on the homotopy class of γ .

Application: The K-theory group bundle

Suppose A(X) is a K-fibration. Then the K-theory group bundle consists of the collection

$$\mathcal{K}_*(A(X)) := \{ K_*(A_x) : x \in X \}$$

together with isomorphisms $c_{\gamma}: K_*(A_x) \to K_*(A_y)$ for every continuous path $\gamma: [0,1] \to X$ from x to y given by the composition

$$c_{\gamma}: K_{*}(A_{x}) \stackrel{ev_{0,*}^{-1}}{\to} K_{*}(\gamma^{*}A[0,1]) \stackrel{\text{ev}_{1,*}}{\to} K_{*}(A_{y}).$$

We then have $c_{\gamma \circ \gamma'} = c_{\gamma} \circ c_{\gamma'}$ and c_{γ} only depends on the homotopy class of γ .

Proof. If $\Gamma:[0,1]^2\to X$ is a homotopy for γ and γ' , then show that both maps coincide with

$$K_*(A_x) \stackrel{ev_{0,0,*}^{-1}}{\to} K_*(\Gamma^*A([0,1]^2)) \stackrel{\text{ev}_{1,1*}}{\to} K_*(A_y).$$

The K-theory group bundle

Observations.

• If X is simply connected and path connected, and if A(X) is a K-fibration, then $\mathcal{K}_*(A(X))$ is the trivial bundle $X \times K_*(A_x)$. The trivialization map is given by

$$(y, K_*(A_y)) \to (y, K_*(A_x)); (y, \mu) \mapsto (y, c_{y,x}(\mu))$$

where $c_{y,x} = c_{\gamma}$ for any chosen path γ from x to y.

The K-theory group bundle

Observations.

• If X is simply connected and path connected, and if A(X) is a K-fibration, then $\mathcal{K}_*(A(X))$ is the trivial bundle $X \times K_*(A_x)$. The trivialization map is given by

$$(y, K_*(A_y)) \to (y, K_*(A_x)); (y, \mu) \mapsto (y, c_{y,x}(\mu))$$

where $c_{y,x}=c_{\gamma}$ for any chosen path γ from x to y.

• In general, if X is path connected, there is an action of $\pi_1(X)$ on $K_*(A_x)$, and $\mathcal{K}_*(A(X))$ is the trivial bundle if and only if this action is trivial.

Suppose that $X_0 \subseteq X_1 \subseteq \cdots \subseteq X_n = X$ is the sceleton of a finite simplicial complex X. Put $A_p := A(X_p)$, $A_{p,p-1} = A(X_p \setminus X_{p-1})$.

Suppose that $X_0 \subseteq X_1 \subseteq \cdots \subseteq X_n = X$ is the sceleton of a finite simplicial complex X. Put $A_p := A(X_p)$, $A_{p,p-1} = A(X_p \setminus X_{p-1})$. We then have short exact sequences

$$0 \to A_{p,p_1} \to A_p \to A_{p-1} \to 0$$

which gives the long exact sequences

$$K_q(A_{p,p-1}) \xrightarrow{\iota} K_q(A_p) \xrightarrow{j} K_q(A_{p-1}) \xrightarrow{\partial} K_{q+1}(A_{p,p-1}) \rightarrow$$

Suppose that $X_0 \subseteq X_1 \subseteq \cdots \subseteq X_n = X$ is the sceleton of a finite simplicial complex X. Put $A_p := A(X_p)$, $A_{p,p-1} = A(X_p \setminus X_{p-1})$. We then have short exact sequences

$$0 \to A_{p,p_1} \to A_p \to A_{p-1} \to 0$$

which gives the long exact sequences

$$K_q(A_{p,p-1}) \xrightarrow{\iota} K_q(A_p) \xrightarrow{j} K_q(A_{p-1}) \xrightarrow{\partial} K_{q+1}(A_{p,p-1}) \xrightarrow{}$$

Now put $\mathcal{A}^{p,q} = K_q(A_p)$ and $E_1^{p,q} = K_q(A_{p,p-1})$. Then we get the exact couple

Let $\{E_r^{p,q}, dr: E_r^{p,q} \to E_r^{p+r,q+1}\}$ be the spectral sequence derived from the above exact couple. We have

$$d_1: E_1^{pq} = K_q(A_{p,p-1}) \xrightarrow{\iota} K_q(A_p) \xrightarrow{\partial} K_{q+1}(A_{p+1,p}) = E_1^{p+1,q+1}$$

The higher terms are derived from this iteratively by

$$E_{r+1}^{p,q} = (\operatorname{kernel} dr / \operatorname{image} dr)_{p,q}.$$

This process stabilizes eventually with

$$E^{p,p-q}_{\infty} := F^q_p/F^q_{p+1}, \quad \text{for } F^q_p := \text{kernel}\left(K_q(A(X)) \to K_q(A_p)\right)$$

Since $X_n = X$ we obtain a filtration

$$\{0\} = F_n^q \subseteq F_{n-1}^q \subseteq \dots \subseteq F_{-1}^q = K_q(A(X)).$$

Theorem (E-Nest-Oyono) Suppose A(X) is a K-fibration over the finite simplicial complex X. Then the E_2 -term of the above described spectral sequence is given by $E_2^{p,q} \cong H^p(X, \mathcal{K}_q(A))$, the cohomology of X with coefficients in the K-theory group bundle $\mathcal{K}_*(A(X))$.

Theorem (E-Nest-Oyono) Suppose A(X) is a K-fibration over the finite simplicial complex X. Then the E_2 -term of the above described spectral sequence is given by $E_2^{p,q} \cong H^p(X, \mathcal{K}_q(A))$, the cohomology of X with coefficients in the K-theory group bundle $\mathcal{K}_*(A(X))$.

• The case A(X) = C(X) is the classical Atiyah-Hirzebruch spectral sequence for the K-theory of X.

Theorem (E-Nest-Oyono) Suppose A(X) is a K-fibration over the finite simplicial complex X. Then the E_2 -term of the above described spectral sequence is given by $E_2^{p,q} \cong H^p(X, \mathcal{K}_q(A))$, the cohomology of X with coefficients in the K-theory group bundle $\mathcal{K}_*(A(X))$.

- The case A(X) = C(X) is the classical Atiyah-Hirzebruch spectral sequence for the K-theory of X.
- If A(X) is a KK-fibration, then a similar result holds for the K-homology of A(X).

Theorem (E-Nest-Oyono) Suppose A(X) is a K-fibration over the finite simplicial complex X. Then the E_2 -term of the above described spectral sequence is given by $E_2^{p,q} \cong H^p(X, \mathcal{K}_q(A))$, the cohomology of X with coefficients in the K-theory group bundle $\mathcal{K}_*(A(X))$.

- The case A(X) = C(X) is the classical Atiyah-Hirzebruch spectral sequence for the K-theory of X.
- If A(X) is a KK-fibration, then a similar result holds for the K-homology of A(X).
- If $A(X) \sim_{\mathcal{R}KK} B(X)$, then the spectral sequences of A(X) and B(X) coincide, i.e., the spectral sequence is an invariant for $\mathcal{R}KK$ -equivalence.

Let $p: Y \to X$ be a principal \mathbb{T}^n -bundle. Then by Phil Green:

$$C_0(Y) \rtimes \mathbb{T}^n \cong C_0(X, \mathcal{K}) \qquad \mathcal{K} := \mathcal{K}(L^2(\mathbb{T}^n))$$

Let $p: Y \to X$ be a principal \mathbb{T}^n -bundle. Then by Phil Green:

$$C_0(Y) \rtimes \mathbb{T}^n \cong C_0(X, \mathcal{K}) \qquad \mathcal{K} := \mathcal{K}(L^2(\mathbb{T}^n))$$

Definition. A C*-algebra bundle A(X) is a non-commutative principal \mathbb{T}^n -bundle (or NCP \mathbb{T}^n -bundle), if it is equipped with a fibre-wise action $\alpha: \mathbb{T}^n \to \operatorname{Aut}(A(X))$ such that

$$A(X) \rtimes_{\alpha} \mathbb{T}^n \sim_M C(X, \mathcal{K}).$$

Let $p: Y \to X$ be a principal \mathbb{T}^n -bundle. Then by Phil Green:

$$C_0(Y) \rtimes \mathbb{T}^n \cong C_0(X, \mathcal{K}) \qquad \mathcal{K} := \mathcal{K}(L^2(\mathbb{T}^n))$$

Definition. A C*-algebra bundle A(X) is a non-commutative principal \mathbb{T}^n -bundle (or NCP \mathbb{T}^n -bundle), if it is equipped with a fibre-wise action $\alpha: \mathbb{T}^n \to \operatorname{Aut}(A(X))$ such that

$$A(X) \rtimes_{\alpha} \mathbb{T}^n \sim_M C(X, \mathcal{K}).$$

Observation: By Takesaki-Takai duality we get

$$A(X) \sim_M C_0(X, \mathcal{K}) \rtimes_{\widehat{\alpha}} \mathbb{Z}^n$$
 (and vice versa)

All non-commutative principle \mathbb{T}^n -bundles are $\mathcal{R}KK$ -fibrations!

Let $p: Y \to X$ be a principal \mathbb{T}^n -bundle. Then by Phil Green:

$$C_0(Y) \rtimes \mathbb{T}^n \cong C_0(X, \mathcal{K}) \qquad \mathcal{K} := \mathcal{K}(L^2(\mathbb{T}^n))$$

Definition. A C*-algebra bundle A(X) is a non-commutative principal \mathbb{T}^n -bundle (or NCP \mathbb{T}^n -bundle), if it is equipped with a fibre-wise action $\alpha: \mathbb{T}^n \to \operatorname{Aut}(A(X))$ such that

$$A(X) \rtimes_{\alpha} \mathbb{T}^n \sim_M C(X, \mathcal{K}).$$

Observation: By Takesaki-Takai duality we get

$$A(X) \sim_M C_0(X, \mathcal{K}) \rtimes_{\widehat{\alpha}} \mathbb{Z}^n$$
 (and vice versa)

All non-commutative principle \mathbb{T}^n -bundles are $\mathcal{R}KK$ -fibrations! Example. The Heisenberg-algebra $C^*(H_2)(\mathbb{T}) = C^*(U, V, W)$ with respect to the canonical \mathbb{T}^2 -action.

Let H_n be the group generated by $\{f_1, \ldots, f_n, g_{ij}, 1 \le i < j \le n\}$ with relations $f_i f_j = g_{ij} f_j f_i$ and g_{ij} is central for all ij.

Let H_n be the group generated by $\{f_1, \ldots, f_n, g_{ij}, 1 \le i < j \le n\}$ with relations $f_i f_j = g_{ij} f_j f_i$ and g_{ij} is central for all ij.

Then $C^*(H_n) = C^*(U_1, \dots U_n, W_{ij})$, where $U_i = \delta_{f_i}, W_{ij} = \delta_{g_{ij}}$. It has the centre

$$C^*(\{W_{ij} : 1 \le i < j \le n\}) \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}).$$

Let H_n be the group generated by $\{f_1, \ldots, f_n, g_{ij}, 1 \le i < j \le n\}$ with relations $f_i f_j = g_{ij} f_j f_i$ and g_{ij} is central for all ij.

Then $C^*(H_n) = C^*(U_1, \dots U_n, W_{ij})$, where $U_i = \delta_{f_i}, W_{ij} = \delta_{g_{ij}}$. It has the centre

$$C^*(\{W_{ij} : 1 \le i < j \le n\}) \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}).$$

Consider the action $\alpha: \mathbb{T}^n \to \operatorname{Aut}(C^*(H_n))$ given by

$$\alpha_{(z_1,...,z_n)}(U_i) = z_i U_i, \quad \alpha_{(z_1,...,z_n)}(W_{ij}) = W_{ij}.$$

Let H_n be the group generated by $\{f_1, \ldots, f_n, g_{ij}, 1 \le i < j \le n\}$ with relations $f_i f_j = g_{ij} f_j f_i$ and g_{ij} is central for all ij.

Then $C^*(H_n)=C^*(U_1,\ldots U_n,W_{ij})$, where $U_i=\delta_{f_i},W_{ij}=\delta_{g_{ij}}$. It has the centre

$$C^*(\{W_{ij} : 1 \le i < j \le n\}) \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}).$$

Consider the action $\alpha: \mathbb{T}^n \to \operatorname{Aut}(C^*(H_n))$ given by

$$\alpha_{(z_1,...,z_n)}(U_i) = z_i U_i, \quad \alpha_{(z_1,...,z_n)}(W_{ij}) = W_{ij}.$$

One checks that $C^*(H_n) \rtimes_{\alpha} \mathbb{T}^n \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}, \mathcal{K}).$

Let H_n be the group generated by $\{f_1, \ldots, f_n, g_{ij}, 1 \le i < j \le n\}$ with relations $f_i f_j = g_{ij} f_j f_i$ and g_{ij} is central for all ij.

Then $C^*(H_n) = C^*(U_1, \dots U_n, W_{ij})$, where $U_i = \delta_{f_i}, W_{ij} = \delta_{g_{ij}}$. It has the centre

$$C^*(\{W_{ij} : 1 \le i < j \le n\}) \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}).$$

Consider the action $\alpha: \mathbb{T}^n \to \operatorname{Aut}(C^*(H_n))$ given by

$$\alpha_{(z_1,...,z_n)}(U_i) = z_i U_i, \quad \alpha_{(z_1,...,z_n)}(W_{ij}) = W_{ij}.$$

One checks that $C^*(H_n) \rtimes_{\alpha} \mathbb{T}^n \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}, \mathcal{K})$. Thus $C^*(H_n)$ is a NCP \mathbb{T}^n -bundle with base $\mathbb{T}^{\frac{n(n-1)}{2}}$.

Let H_n be the group generated by $\{f_1, \ldots, f_n, g_{ij}, 1 \le i < j \le n\}$ with relations $f_i f_j = g_{ij} f_j f_i$ and g_{ij} is central for all ij.

Then $C^*(H_n) = C^*(U_1, \dots U_n, W_{ij})$, where $U_i = \delta_{f_i}, W_{ij} = \delta_{g_{ij}}$. It has the centre

$$C^*(\{W_{ij} : 1 \le i < j \le n\}) \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}).$$

Consider the action $\alpha: \mathbb{T}^n \to \operatorname{Aut}(C^*(H_n))$ given by

$$\alpha_{(z_1,...,z_n)}(U_i) = z_i U_i, \quad \alpha_{(z_1,...,z_n)}(W_{ij}) = W_{ij}.$$

One checks that $C^*(H_n) \rtimes_{\alpha} \mathbb{T}^n \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}, \mathcal{K})$.

Thus $C^*(H_n)$ is a NCP \mathbb{T}^n -bundle with base $\mathbb{T}^{\frac{n(n-1)}{2}}$. Notice that $C^*(H_2)$ is the Heisenberg group algebra.

Classification of NCP-bundles

Theorem (E-Williams, 1998–2001) Every NCP \mathbb{T}^n -bundle over a given space X is stably isomorphic to one of the form

$$Y * (f^*C^*(H_n))(X)$$

where $f: X \to \mathbb{T}^{\frac{n(n-1)}{2}}$ is a continuous map and $p: Y \to X$ is a (commutative) principal \mathbb{T}^n -bundle over X.

Classification of NCP-bundles

Theorem (E-Williams, 1998–2001) Every NCP \mathbb{T}^n -bundle over a given space X is stably isomorphic to one of the form

$$Y * (f^*C^*(H_n))(X)$$

where $f: X \to \mathbb{T}^{\frac{n(n-1)}{2}}$ is a continuous map and $p: Y \to X$ is a (commutative) principal \mathbb{T}^n -bundle over X.

If A(X) is any NCP \mathbb{T}^n -bundle, we can twist it by a commutative bundle $p:Y\to X$ by defining

$$Y * A(X) = (C_0(Y) \otimes_{C_0(X)} A(X))^{\mathbb{T}^n}$$

where \mathbb{T}^n acts diagonally on the balanced tensor product.

Problems

Question 1 When are two given NCP \mathbb{T}^n -bundles A(X) and B(X) $\mathcal{R}KK$ -equivalent?

Problems

Question 1 When are two given NCP \mathbb{T}^n -bundles A(X) and B(X) $\mathcal{R}KK$ -equivalent?

Question 2 When is a given NCP \mathbb{T}^n -bundles A(X) $\mathcal{R}KK$ -trivial (i.e., $\mathcal{R}KK$ -equivalent to a trivial bundle)?

Problems

Question 1 When are two given NCP \mathbb{T}^n -bundles A(X) and B(X) $\mathcal{R}KK$ -equivalent?

Question 2 When is a given NCP \mathbb{T}^n -bundles A(X) $\mathcal{R}KK$ -trivial (i.e., $\mathcal{R}KK$ -equivalent to a trivial bundle)?

Question 3 When is a given NCP \mathbb{T}^n -bundles A(X) $\mathcal{R}KK$ -equivalent to a commutative principle bundle?

We can explicitly compute the action of $\pi_1(X)$ on the fibre

$$K_*(A_x) \cong K_*(C(\mathbb{T}^n)) \cong \Lambda^*(\mathbb{Z}^n).$$

The key-result is the computation for the Heisenberg-bundle over \mathbb{T} . The fibre at $1 \in \mathbb{T}$ is $C(\mathbb{T}^2)$ and we get

We can explicitly compute the action of $\pi_1(X)$ on the fibre

$$K_*(A_x) \cong K_*(C(\mathbb{T}^n)) \cong \Lambda^*(\mathbb{Z}^n).$$

The key-result is the computation for the Heisenberg-bundle over \mathbb{T} . The fibre at $1 \in \mathbb{T}$ is $C(\mathbb{T}^2)$ and we get

Lemma. Let γ be the positive generator of $\pi_1(\mathbb{T})$. Then

 $c_{\gamma}: K_1(C(\mathbb{T}^2)) \to K_1(C(\mathbb{T}^2))$ is trivial and

 $c_{\gamma}: K_0(C(\mathbb{T}^2)) \to K_0(C(\mathbb{T}^2))$ is given by the matrix

$$\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

with respect to the generators $\{[1], \beta\}$ of $K_0(C(\mathbb{T}^2)) \cong \mathbb{Z}^2$.

Scetch of proof. We have $\gamma:[0,1]\to \mathbb{T}; \gamma(t)=e^{2\pi it}$. Recall that $\gamma^*(C^*(H_2))=C[0,1]\otimes_{\gamma}C^*(H_2)$.

Scetch of proof. We have $\gamma:[0,1]\to \mathbb{T}; \gamma(t)=e^{2\pi it}$. Recall that $\gamma^*(C^*(H_2))=C[0,1]\otimes_{\gamma}C^*(H_2)$. Let

$$U'=1\otimes_{\gamma}U$$
 and $V'=1\otimes_{\gamma}V\in C[0,1]\otimes_{\gamma}C^*(H_2)$

Then [U'], [V'] are elements of $K_1(\gamma^*(C^*(H_2)))$ which restrict to the standard generators [u], [v] of $K_1(C(\mathbb{T}^2))$ at 0 and 1.

Scetch of proof. We have $\gamma:[0,1]\to \mathbb{T}; \gamma(t)=e^{2\pi it}$. Recall that $\gamma^*(C^*(H_2))=C[0,1]\otimes_{\gamma}C^*(H_2)$. Let

$$U'=1\otimes_{\gamma}U$$
 and $V'=1\otimes_{\gamma}V\in C[0,1]\otimes_{\gamma}C^*(H_2)$

Then [U'], [V'] are elements of $K_1(\gamma^*(C^*(H_2)))$ which restrict to the standard generators [u], [v] of $K_1(C(\mathbb{T}^2))$ at 0 and 1.

This implies that $c_{\gamma}([u])=[u]$ and $c_{\gamma}([v])=[v]$ and the action on $K_1(C(\mathbb{T}^2))$ is trivial.

Action on $K_0(C(\mathbb{T}^2))$

For each $\theta \in [0,1]$ the generators of $K_0(A_\theta)$ are given by [1] and the projective module E_θ which is a closure of $C_c(\mathbb{R})$ with respect to a certain A_θ -valued inner product and with right action of A_θ given by

$$(\xi \cdot U_{\theta})(x) = \xi(x + \theta + 1), \quad (\xi \cdot V_{\theta})(x) = e^{2\pi i x} \xi(x).$$

Action on $K_0(C(\mathbb{T}^2))$

For each $\theta \in [0,1]$ the generators of $K_0(A_\theta)$ are given by [1] and the projective module E_θ which is a closure of $C_c(\mathbb{R})$ with respect to a certain A_θ -valued inner product and with right action of A_θ given by

$$(\xi \cdot U_{\theta})(x) = \xi(x + \theta + 1), \quad (\xi \cdot V_{\theta})(x) = e^{2\pi i x} \xi(x).$$

Rieffel computes $\tau([E_{\theta}]) = \theta + 1$, from which we conclude that $[E_{\theta+1}] = [E_{\theta}] + [1]$ for all irrational θ , and hence for all θ . Thus

$$c_{\gamma}([E_0]) = [E_1] = [E_0] + [1]$$

Action on $K_0(C(\mathbb{T}^2))$

For each $\theta \in [0,1]$ the generators of $K_0(A_\theta)$ are given by [1] and the projective module E_θ which is a closure of $C_c(\mathbb{R})$ with respect to a certain A_θ -valued inner product and with right action of A_θ given by

$$(\xi \cdot U_{\theta})(x) = \xi(x + \theta + 1), \quad (\xi \cdot V_{\theta})(x) = e^{2\pi i x} \xi(x).$$

Rieffel computes $\tau([E_{\theta}]) = \theta + 1$, from which we conclude that $[E_{\theta+1}] = [E_{\theta}] + [1]$ for all irrational θ , and hence for all θ . Thus

$$c_{\gamma}([E_0]) = [E_1] = [E_0] + [1]$$

Action on $K_0(C(\mathbb{T}^2))$

For each $\theta \in [0,1]$ the generators of $K_0(A_\theta)$ are given by [1] and the projective module E_θ which is a closure of $C_c(\mathbb{R})$ with respect to a certain A_θ -valued inner product and with right action of A_θ given by

$$(\xi \cdot U_{\theta})(x) = \xi(x + \theta + 1), \quad (\xi \cdot V_{\theta})(x) = e^{2\pi i x} \xi(x).$$

Rieffel computes $\tau([E_{\theta}]) = \theta + 1$, from which we conclude that $[E_{\theta+1}] = [E_{\theta}] + [1]$ for all irrational θ , and hence for all θ . Thus

$$c_{\gamma}([E_0]) = [E_1] = [E_0] + [1]$$

One can check that $[E_0] = -[\beta] + [1]$ and the result then follows from the obvious fact $c_{\gamma}([1]) = [1]$.

Lemma (E-Nest-Oyono) Let $A(X) = Y * f^*(C^*(H_2))(X)$ for some function $f: X \to \mathbb{T}$ and some principal \mathbb{T}^2 -bundle $p: Y \to X$. Assume that $x \in X$ with f(x) = 1. Then the action of $\gamma \in \pi_1(X)$ on $K_1(C(\mathbb{T}^2))$ is trivial and the action on $K_0(C(\mathbb{T}^2))$ is given on the generators $[1], [\beta]$ by the matrix

$$\begin{pmatrix} 1 & -\langle f, \gamma \rangle \\ 0 & 1 \end{pmatrix},$$

where $< f, \gamma >$ is the winding number of $f \circ \gamma : \mathbb{T} \to \mathbb{T}$.

Lemma (E-Nest-Oyono) Let $A(X) = Y * f^*(C^*(H_2))(X)$ for some function $f: X \to \mathbb{T}$ and some principal \mathbb{T}^2 -bundle $p: Y \to X$. Assume that $x \in X$ with f(x) = 1. Then the action of $\gamma \in \pi_1(X)$ on $K_1(C(\mathbb{T}^2))$ is trivial and the action on $K_0(C(\mathbb{T}^2))$ is given on the generators $[1], [\beta]$ by the matrix

$$\begin{pmatrix} 1 & -\langle f, \gamma \rangle \\ 0 & 1 \end{pmatrix},$$

where $< f, \gamma >$ is the winding number of $f \circ \gamma : \mathbb{T} \to \mathbb{T}$.

A similar (but more technical) result also holds for higher dimensional NCP torus bundles.

Lemma (E-Nest-Oyono) Let $A(X) = Y * f^*(C^*(H_2))(X)$ for some function $f: X \to \mathbb{T}$ and some principal \mathbb{T}^2 -bundle $p: Y \to X$. Assume that $x \in X$ with f(x) = 1. Then the action of $\gamma \in \pi_1(X)$ on $K_1(C(\mathbb{T}^2))$ is trivial and the action on $K_0(C(\mathbb{T}^2))$ is given on the generators $[1], [\beta]$ by the matrix

$$\begin{pmatrix} 1 & -\langle f, \gamma \rangle \\ 0 & 1 \end{pmatrix},$$

where $< f, \gamma >$ is the winding number of $f \circ \gamma : \mathbb{T} \to \mathbb{T}$.

A similar (but more technical) result also holds for higher dimensional NCP torus bundles.

Corollary. The K-theory group bundle of A(X) is trivial if and only if f is homotopic to a constant map.

$\mathcal{R}KK$ -triviality for NCP torus bundles

Theorem (E-Nest-Oyono) Let A(X) be any NCP \mathbb{T}^n -bundle. Then A(X) is $\mathcal{R}KK$ -equivalent to a commutative bundle $p: Y \to X$ (or rather $C_0(Y)(X)$) if and only if the K-theory bundle of A(X) is trivial.

$\mathcal{R}KK$ -triviality for NCP torus bundles

Theorem (E-Nest-Oyono) Let A(X) be any NCP \mathbb{T}^n -bundle. Then A(X) is $\mathcal{R}KK$ -equivalent to a commutative bundle $p: Y \to X$ (or rather $C_0(Y)(X)$) if and only if the K-theory bundle of A(X) is trivial.

Proof. If two maps $f_1, f_2: X \to \mathbb{T}^{\frac{n(n-1)}{2}}$ are homotopic, then one can show directly that $f_1^*(C^*(H_n))(X) \sim_{\mathcal{R}KK} f_2^*(C^*(H_n))$. The result then follows from the above and the classification of NCP-bundles.

$\mathcal{R}KK$ -triviality for NCP torus bundles

Theorem (E-Nest-Oyono) Let A(X) be any NCP \mathbb{T}^n -bundle. Then A(X) is $\mathcal{R}KK$ -equivalent to a commutative bundle $p: Y \to X$ (or rather $C_0(Y)(X)$) if and only if the K-theory bundle of A(X) is trivial.

Proof. If two maps $f_1, f_2: X \to \mathbb{T}^{\frac{n(n-1)}{2}}$ are homotopic, then one can show directly that $f_1^*(C^*(H_n))(X) \sim_{\mathcal{R}KK} f_2^*(C^*(H_n))$. The result then follows from the above and the classification of NCP-bundles.

Theorem (E-Nest-Oyono) The NCP-bundle A(X) is $\mathcal{R}KK$ -equivalent to the trivial bundle $X \times \mathbb{T}^n$ if and only if the K-theory group bundle is trivial and the map

$$d_2: H^0(X, K_1(A_x)) \to H^2(X, K_0(A_x))$$

in the Larey-Serre spectral sequence is the trivial map.