Proper infiniteness and K_{1}-injectivity

E. Blanchard
(CNRS)
R. Rohde
M. Rørdam

Infiniteness

Definition. [Cuntz]
$\mathcal{T}_{n}=\left\langle s_{1}, \ldots, s_{n} ; \forall k \leq n, s_{k}^{*} s_{k}=1 \geq \sum_{j=1}^{n} s_{j} s_{j}^{*}\right\rangle$

Infiniteness

Definition. [Cuntz]
$\mathcal{T}_{n}=\left\langle s_{1}, \ldots, s_{n} ; \forall k \leq n, s_{k}^{*} s_{k}=1 \geq \sum_{j=1}^{n} s_{j} s_{j}^{*}\right\rangle$

Definition.

Let A be a C^{*}-algebra and $p \in \mathcal{P}(A)$ a projection.

Infiniteness

Definition. [Cuntz]
$\mathcal{T}_{n}=\left\langle s_{1}, \ldots, s_{n} ; \forall k \leq n, s_{k}^{*} s_{k}=1 \geq \sum_{j=1}^{n} s_{j} s_{j}^{*}\right\rangle$

Definition.

Let A be a C^{*}-algebra and $p \in \mathcal{P}(A)$ a projection.

- p infinite $\quad \Leftrightarrow \exists \mathcal{T}_{1}=\left\langle s_{1}\right\rangle \hookrightarrow p A p$ unital $*$-homom.
$-p$ finite $\quad \Leftrightarrow p$ is not infinite
- p properly infinite $\Leftrightarrow \exists \mathcal{T}_{2}=\left\langle s_{1}, s_{2}\right\rangle \hookrightarrow p A p$ unital $*$-homom.

Infiniteness

Definition. [Cuntz]
$\mathcal{T}_{n}=\left\langle s_{1}, \ldots, s_{n} ; \forall k \leq n, s_{k}^{*} s_{k}=1 \geq \sum_{j=1}^{n} s_{j} s_{j}^{*}\right\rangle$

Definition.

Let A be a C^{*}-algebra and $p \in \mathcal{P}(A)$ a projection.

- p infinite $\quad \Leftrightarrow \exists \mathcal{T}_{1}=\left\langle s_{1}\right\rangle \hookrightarrow p A p$ unital $*$-homom.
$-p$ finite $\quad \Leftrightarrow p$ is not infinite
- p properly infinite $\Leftrightarrow \exists \mathcal{T}_{2}=\left\langle s_{1}, s_{2}\right\rangle \hookrightarrow p A p$ unital $*$-homom.

Definition.
A unital C*-algebra A is properly infinite iff
1_{A} is properly infinite in A

Infiniteness

Definition. [Cuntz]
$\mathcal{T}_{n}=\left\langle s_{1}, \ldots, s_{n} ; \forall k \leq n, s_{k}^{*} s_{k}=1 \geq \sum_{j=1}^{n} s_{j} s_{j}^{*}\right\rangle$

Definition.

Let A be a C^{*}-algebra and $p \in \mathcal{P}(A)$ a projection.

- p infinite $\quad \Leftrightarrow \exists \mathcal{T}_{1}=\left\langle s_{1}\right\rangle \hookrightarrow p A p$ unital $*$-homom.
$-p$ finite $\quad \Leftrightarrow p$ is not infinite
- p properly infinite $\Leftrightarrow \exists \mathcal{T}_{2}=\left\langle s_{1}, s_{2}\right\rangle \hookrightarrow p A p$ unital $*$-homom.

Definition.

A unital \mathbf{C}^{*}-algebra A is properly infinite iff

$$
1_{A} \text { is properly infinite in } A
$$

Proposition. [Cuntz]
If there exists a full prop. inf. proj. $p \in \mathcal{P}_{\text {full prop.inf. }}(A)$,
$-\forall g \in K_{0}(A), \exists q \in \mathcal{P}_{\text {full prop.inf. }}(A)$ with $[q]=g$

- If $p, q \in \mathcal{P}_{\text {full prop.inf. }}(A), p \sim q \Leftrightarrow[p]=[q]$ in $K_{0}(A)$

Deformation of C*-algebras

Definition. [Kasparov]
A unital $\mathbf{C}(\mathbf{X})$-algebra is a unital C^{*}-algebra A endowed with a unital morphism

$$
C(X) \longrightarrow \mathcal{Z}(A)
$$

Deformation of C*-algebras

Definition. [Kasparov]
A unital $\mathbf{C}(\mathbf{X})$-algebra is a unital C^{*}-algebra A endowed with a unital morphism

$$
C(X) \longrightarrow \mathcal{Z}(A)
$$

$\forall x \in X, \quad C_{x}(X)=\{f \in C(X) \mid f(x)=0\}$

$$
\mathbf{A}_{\mathbf{x}}:=\mathbf{A} /\left[\mathbf{C}_{\mathbf{x}}(\mathbf{X}) \cdot \mathbf{A}\right] \quad \text { and } \quad a \in A \longmapsto \mathbf{a}_{\mathbf{x}} \in \mathbf{A}_{\mathbf{x}}
$$

Deformation of C^{*}-algebras

Definition. [Kasparov]
A unital $\mathbf{C}(\mathbf{X})$-algebra is a unital C^{*}-algebra A endowed with a unital morphism

$$
C(X) \longrightarrow \mathcal{Z}(A)
$$

$$
\begin{aligned}
& \forall x \in X, \quad C_{x}(X)=\{f \in C(X) \mid f(x)=0\} \\
& \mathbf{A}_{\mathbf{x}}:=\mathbf{A} /\left[\mathbf{C}_{\mathbf{x}}(\mathbf{X}) \cdot \mathbf{A}\right] \text { and } a \in A \longmapsto \mathbf{a}_{\mathbf{x}} \in \mathbf{A}_{\mathbf{x}} \\
& \begin{aligned}
& x \mapsto\left\|a_{x}\right\|=\left\|a+C_{x}(X) A\right\| \\
&=\inf \{\|[1-f+f(x)] a\|, f \in C(X)\} \\
& \text { upper semi-continuous (u.s.c.) }
\end{aligned}
\end{aligned}
$$

Deformation of C^{*}-algebras

Definition. [Kasparov]
A unital $\mathbf{C}(\mathbf{X})$-algebra is a unital C^{*}-algebra A endowed with a unital morphism

$$
C(X) \longrightarrow \mathcal{Z}(A)
$$

$$
\begin{aligned}
& \forall x \in X, \quad C_{x}(X)=\{f \in C(X) \mid f(x)=0\} \\
& \mathbf{A}_{\mathbf{x}}:=\mathbf{A} /\left[\mathbf{C}_{\mathbf{x}}(\mathbf{X}) \cdot \mathbf{A}\right] \text { and } a \in A \longmapsto \mathbf{a}_{\mathbf{x}} \in \mathbf{A}_{\mathbf{x}} \\
& x \mapsto\left\|a_{x}\right\| \\
& =\left\|a+C_{x}(X) A\right\| \\
& \\
& \\
& \\
& =\inf \{\|[1-f+f(x)] a\|, f \in C(X)\} \\
& \text { upper semi-continuous (u.s.c.) }
\end{aligned}
$$

Definition. The $C(X)$-algebra A is continuous (or is a continuous \mathbf{C}^{*}-bundle over X with fibres A_{x}) iff
$\forall a \in A$, the function $x \mapsto\left\|a_{x}\right\|$ is continuous.

Stability under deformation of proper infiniteness

Stability under deformation of proper infiniteness

Let A be a unital continuous $C(X)$－algebra．
－A properly infinite（prop．inf．）$\Rightarrow A_{x}$ prop．inf．$(x \in X)$

Stability under deformation of proper infiniteness

Let A be a unital continuous $C(X)$-algebra.

- A properly infinite (prop. inf.) $\Rightarrow A_{x}$ prop.inf. $(x \in X)$

Q1 $\left(\forall x \in X, A_{x}\right.$ prop. inf. $) \Rightarrow A$ prop. inf.?

Stability under deformation of proper infiniteness

Let A be a unital continuous $C(X)$-algebra.

- A properly infinite (prop. inf.) $\Rightarrow A_{x}$ prop.inf. $(x \in X)$

Q1 $\left(\forall x \in X, A_{x}\right.$ prop. inf. $) \Rightarrow A$ prop. inf.?

- A_{x} prop. inf. $\Rightarrow \exists F \in \mathcal{V}(x)$ s.t. $A_{\mid F}$ prop. inf.
(by semi-proj. of \mathcal{T}_{3})

Stability under deformation of proper infiniteness

Let A be a unital continuous $C(X)$-algebra.

- A properly infinite (prop. inf.) $\Rightarrow A_{x}$ prop.inf. $(x \in X)$

Q1 ($\forall x \in X, A_{x}$ prop. inf.) $\Rightarrow A$ prop. inf.?

- A_{x} prop. inf. $\Rightarrow \exists F \in \mathcal{V}(x)$ s.t. $A_{\mid F}$ prop. inf.
(by semi-proj. of \mathcal{T}_{3})
- Let
(\%)
 with D_{1}, D_{2} unital prop. inf. C*-alg.

Stability under deformation of proper infiniteness

Let A be a unital continuous $C(X)$-algebra.

- A properly infinite (prop. inf.) $\Rightarrow A_{x}$ prop.inf. $(x \in X)$

Q1 ($\forall x \in X, A_{x}$ prop. inf.) $\Rightarrow A$ prop. inf.?

- A_{x} prop. inf. $\Rightarrow \exists F \in \mathcal{V}(x)$ s.t. $A_{\mid F}$ prop. inf.
(by semi-proj. of \mathcal{T}_{3})
- Let
(\%)
 with D_{1}, D_{2} unital prop. inf. C*-alg.

Q2 Is $D=D_{1} \oplus_{B} D_{2}$ prop. inf. if D_{1}, D_{2} prop. inf.?

Stability under deformation of proper infiniteness

Let A be a unital continuous $C(X)$-algebra.

- A properly infinite (prop. inf.) $\Rightarrow A_{x}$ prop.inf. $(x \in X)$

Q1 ($\forall x \in X, A_{x}$ prop. inf.) $\Rightarrow A$ prop. inf.?

- A_{x} prop. inf. $\Rightarrow \exists F \in \mathcal{V}(x)$ s.t. $A_{\mid F}$ prop. inf.
(by semi-proj. of \mathcal{T}_{3})
- Let
(\%)
 with D_{1}, D_{2} unital prop. inf. C*-alg.

Q2 Is $D=D_{1} \oplus_{B} D_{2}$ prop. inf. if D_{1}, D_{2} prop. inf.?
Note that $\mathbf{Q} 2 \Rightarrow \mathbf{Q 1}$

Stability of proper infiniteness under deformation (2)

Let $\sigma_{1}: \mathcal{T}_{3} \rightarrow D_{1}$ and $\sigma_{2}: \mathcal{T}_{3} \rightarrow D_{2} \quad$ be unital $*$-homom.
Then $v=\sum_{j=1}^{2}\left(\pi_{1} \sigma_{1}\right)\left(s_{j}\right)\left(\pi_{2} \sigma_{2}\right)\left(s_{j}\right)^{*}$ partial isom. in B
s.t. $\left(\pi_{1} \sigma_{1}\right)\left(s_{j}\right)=v\left(\pi_{2} \sigma_{2}\right)\left(s_{j}\right)$

Stability of proper infiniteness under deformation (2)

Let $\sigma_{1}: \mathcal{T}_{3} \rightarrow D_{1}$ and $\quad \sigma_{2}: \mathcal{T}_{3} \rightarrow D_{2} \quad$ be unital $*$-homom.
Then $\begin{aligned} v=\sum_{j=1}^{2}\left(\pi_{1} \sigma_{1}\right)\left(s_{j}\right)\left(\pi_{2} \sigma_{2}\right)\left(s_{j}\right)^{*} & \text { partial isom. in } B \\ & \text { s.t. }\left(\pi_{1} \sigma_{1}\right)\left(s_{j}\right)=v\left(\pi_{2} \sigma_{2}\right)\left(s_{j}\right)\end{aligned}$
Lemma.
Let $v \in B$ partial isom. s.t. $1-v v^{*}$ and $1-v^{*} v$ are full + prop. inf.

$$
\begin{array}{ll}
\text { Then } \exists u \in \mathcal{U}(B) & \text { s.t. } \\
& \left.\left.\begin{array}{l}
\text { a) } v=u v^{*} v \quad \text { and } \\
\\
\\
\\
\\
\end{array}\right] u\right]=0 \text { in } K_{1}(B) .
\end{array}
$$

Stability of proper infiniteness under deformation (2)

Let $\sigma_{1}: \mathcal{T}_{3} \rightarrow D_{1}$ and $\sigma_{2}: \mathcal{T}_{3} \rightarrow D_{2} \quad$ be unital $*$-homom.
Then $v=\sum_{j=1}^{2}\left(\pi_{1} \sigma_{1}\right)\left(s_{j}\right)\left(\pi_{2} \sigma_{2}\right)\left(s_{j}\right)^{*}$ partial isom. in B s.t. $\left(\pi_{1} \sigma_{1}\right)\left(s_{j}\right)=v\left(\pi_{2} \sigma_{2}\right)\left(s_{j}\right)$

Lemma.
Let $v \in B$ partial isom. s.t. $1-v v^{*}$ and $1-v^{*} v$ are full + prop. inf.

$$
\begin{array}{ll}
\text { Then } \exists u \in \mathcal{U}(B) & \text { s.t. } \\
& \begin{array}{l}
\text { a) } v=u v^{*} v \quad \text { and } \\
\text { b) }[u]=0 \text { in } K_{1}(B) .
\end{array}
\end{array}
$$

Suppose that there exists $w \in \mathcal{U}\left(D_{2}\right)$ s.t. $\pi_{2}(w)=u$.

Stability of proper infiniteness under deformation (2)

Let $\sigma_{1}: \mathcal{T}_{3} \rightarrow D_{1}$ and $\sigma_{2}: \mathcal{T}_{3} \rightarrow D_{2} \quad$ be unital $*$-homom.
Then $v=\sum_{j=1}^{2}\left(\pi_{1} \sigma_{1}\right)\left(s_{j}\right)\left(\pi_{2} \sigma_{2}\right)\left(s_{j}\right)^{*}$ partial isom. in B s.t. $\left(\pi_{1} \sigma_{1}\right)\left(s_{j}\right)=v\left(\pi_{2} \sigma_{2}\right)\left(s_{j}\right)$

Lemma.
Let $v \in B$ partial isom. s.t. $1-v v^{*}$ and $1-v^{*} v$ are full + prop. inf.

$$
\begin{array}{ll}
\text { Then } \exists u \in \mathcal{U}(B) & \text { s.t. } \\
& \begin{array}{l}
\text { a) } v=u v^{*} v \quad \text { and } \\
\text { b) }[u]=0 \text { in } K_{1}(B) .
\end{array}
\end{array}
$$

Suppose that there exists $w \in \mathcal{U}\left(D_{2}\right)$ s.t. $\pi_{2}(w)=u$.
$\ln (\boldsymbol{\&})$, define $\sigma_{2}^{\prime}: \mathcal{T}_{2} \rightarrow D_{2}$ by $\quad \sigma_{2}^{\prime}\left(s_{j}\right)=w \sigma_{2}\left(s_{j}\right)$

Stability of proper infiniteness under deformation (2)

Let $\sigma_{1}: \mathcal{T}_{3} \rightarrow D_{1}$ and $\sigma_{2}: \mathcal{T}_{3} \rightarrow D_{2} \quad$ be unital $*$-homom.
Then $v=\sum_{j=1}^{2}\left(\pi_{1} \sigma_{1}\right)\left(s_{j}\right)\left(\pi_{2} \sigma_{2}\right)\left(s_{j}\right)^{*}$ partial isom. in B s.t. $\left(\pi_{1} \sigma_{1}\right)\left(s_{j}\right)=v\left(\pi_{2} \sigma_{2}\right)\left(s_{j}\right)$

Lemma.
Let $v \in B$ partial isom. s.t. $1-v v^{*}$ and $1-v^{*} v$ are full + prop. inf.

$$
\begin{array}{ll}
\text { Then } \exists u \in \mathcal{U}(B) & \text { s.t. } \\
& \begin{array}{l}
\text { a) } v=u v^{*} v \quad \text { and } \\
\text { b) }[u]=0 \text { in } K_{1}(B) .
\end{array}
\end{array}
$$

Suppose that there exists $w \in \mathcal{U}\left(D_{2}\right)$ s.t. $\pi_{2}(w)=u$.
$\ln (\boldsymbol{\&})$, define $\sigma_{2}^{\prime}: \mathcal{T}_{2} \rightarrow D_{2}$ by $\quad \sigma_{2}^{\prime}\left(s_{j}\right)=w \sigma_{2}\left(s_{j}\right)$

$$
\Rightarrow \exists \widetilde{\sigma}=\left(\sigma_{1}, \sigma_{2}^{\prime}\right): \mathcal{T}_{2} \rightarrow D=D_{1} \oplus_{B} D_{2}
$$

Stability of proper infiniteness under deformation (3)

What we know:
\qquad

Stability of proper infiniteness under deformation (3)

What we know:
Lemma. [B., Rohde, Rørdam]
Let B be a unital C^{*}-algebra.

$$
\text { If } \begin{array}{lll}
-u \in \mathcal{U}(B) & \text { s.t. } & \text { b) }[u]=0 \text { in } K_{1}(B) \\
& -p \in \mathcal{P}(B) & \\
& \text { c) } p \text { very full } \\
& \text { d) }\|p u-u p\|<1
\end{array}
$$

Stability of proper infiniteness under deformation (3)

What we know:
Lemma. [B., Rohde, Rørdam]
Let B be a unital C^{*}-algebra.

If	$-u \in \mathcal{U}(B)$	s.t.
	b) $[u]=0$ in $K_{1}(B)$	then $u \in \mathcal{U}^{0}(B)$.

- Under the assumptions of (\%), put:
$\widetilde{u}=\left(\begin{array}{ll}u & \\ & u\end{array}\right) \in \mathcal{U}\left(M_{2}(B)\right)$ and $\widetilde{p}=\left(\begin{array}{ll}1 & \\ & 0\end{array}\right) \in \mathcal{P}\left(M_{2}(B)\right)$.

Stability of proper infiniteness under deformation (3)

What we know:
Lemma. [B., Rohde, Rørdam]
Let B be a unital C^{*}-algebra.

If	$-u \in \mathcal{U}(B)$	s.t.
	b) $[u]=0$ in $K_{1}(B)$	
	$-p \in \mathcal{P}(B)$	
	c) p very full	
d) $\\|p u-u p\\|<1$		

- Under the assumptions of ($\boldsymbol{(})$, put:
$\widetilde{u}=\left(\begin{array}{ll}u & \\ & u\end{array}\right) \in \mathcal{U}\left(M_{2}(B)\right)$ and $\widetilde{p}=\left(\begin{array}{cc}1 & \\ & 0\end{array}\right) \in \mathcal{P}\left(M_{2}(B)\right)$.
Then $\widetilde{u} \in \mathcal{U}^{0}\left(M_{2}(B)\right)$ by the above Lemma.

Stability of proper infiniteness under deformation (3)

What we know:
Lemma. [B., Rohde, Rørdam]
Let B be a unital C^{*}-algebra.

If	$-u \in \mathcal{U}(B)$	s.t.
	b) $[u]=0$ in $K_{1}(B)$	
	$-p \in \mathcal{P}(B)$	
		c) p very full
d) $\\|p u-u p\\|<1$		

- Under the assumptions of (\%), put:
$\widetilde{u}=\left(\begin{array}{ll}u & \\ & u\end{array}\right) \in \mathcal{U}\left(M_{2}(B)\right)$ and $\widetilde{p}=\left(\begin{array}{cc}1 & \\ & 0\end{array}\right) \in \mathcal{P}\left(M_{2}(B)\right)$.
Then $\widetilde{u} \in \mathcal{U}^{0}\left(M_{2}(B)\right)$ by the above Lemma.
$\Rightarrow \exists w \in \mathcal{U}^{0}\left(M_{2}\left(D_{2}\right)\right)$ s.t. $\left(i d \otimes \pi_{2}\right)(w)=\widetilde{u}$

Stability of proper infiniteness under deformation (3)

What we know:
Lemma. [B., Rohde, Rørdam]
Let B be a unital C^{*}-algebra.

If	$-u \in \mathcal{U}(B)$	s.t.
	b) $[u]=0$ in $K_{1}(B)$	
	$-p \in \mathcal{P}(B)$	
	c) p very full	
d) $\\|p u-u p\\|<1$		

- Under the assumptions of (\%), put:
$\widetilde{u}=\left(\begin{array}{ll}u & \\ & u\end{array}\right) \in \mathcal{U}\left(M_{2}(B)\right)$ and $\widetilde{p}=\left(\begin{array}{cc}1 & \\ & 0\end{array}\right) \in \mathcal{P}\left(M_{2}(B)\right)$.
Then $\widetilde{u} \in \mathcal{U}^{0}\left(M_{2}(B)\right)$ by the above Lemma.
$\Rightarrow \exists w \in \mathcal{U}^{0}\left(M_{2}\left(D_{2}\right)\right)$ s.t. $\left(i d \otimes \pi_{2}\right)(w)=\widetilde{u}$
$\Rightarrow M_{2}(D)$ prop. inf.

Stability of proper infiniteness under deformation (3)

What we know:
Lemma. [B., Rohde, Rørdam]
Let B be a unital C^{*}-algebra.

If	$-u \in \mathcal{U}(B)$	s.t.
	b) $[u]=0$ in $K_{1}(B)$	
	$-p \in \mathcal{P}(B)$	
	c) p very full	
d) $\\|p u-u p\\|<1$		

- Under the assumptions of (\%), put:
$\widetilde{u}=\left(\begin{array}{ll}u & \\ & u\end{array}\right) \in \mathcal{U}\left(M_{2}(B)\right)$ and $\widetilde{p}=\left(\begin{array}{cc}1 & \\ & 0\end{array}\right) \in \mathcal{P}\left(M_{2}(B)\right)$.
Then $\widetilde{u} \in \mathcal{U}^{0}\left(M_{2}(B)\right)$ by the above Lemma.
$\Rightarrow \exists w \in \mathcal{U}^{0}\left(M_{2}\left(D_{2}\right)\right)$ s.t. $\left(i d \otimes \pi_{2}\right)(w)=\widetilde{u}$
$\Rightarrow M_{2}(D)$ prop. inf.
\rightsquigarrow If A unital continuous $C(X)$-algebra with prop. inf. fibres,
$\exists n \geq 1$ s.t. $\quad M_{2^{n}}(A)$ prop. inf.

K_{1}-injectivity

Notations. Let B be a unital C^{*}-algebra.
$\mathcal{U}(B), \mathcal{U}_{n}(B)=\mathcal{U}\left(M_{n}(B)\right)$,
$\mathcal{U}^{0}(B), \mathcal{U}_{n}^{0}(B)$
$\begin{array}{cll}\mathcal{U}_{n}(B) & \rightarrow & \mathcal{U}_{n+1}(B) \\ u & \mapsto & u \oplus 1\end{array} \quad$ and
$K_{1}(B)=\lim _{n} \mathcal{U}_{n}(B) / \mathcal{U}_{n}^{0}(B)$

K_{1}-injectivity

Notations. Let B be a unital C^{*}-algebra.
$\mathcal{U}(B), \mathcal{U}_{n}(B)=\mathcal{U}\left(M_{n}(B)\right)$,
$\mathcal{U}^{0}(B), \mathcal{U}_{n}^{0}(B)$
$\begin{array}{clc}\mathcal{U}_{n}(B) & \rightarrow & \mathcal{U}_{n+1}(B) \\ u & \mapsto & u \oplus 1\end{array} \quad$ and $\quad K_{1}(B)=\lim _{n} \mathcal{U}_{n}(B) / \mathcal{U}_{n}^{0}(B)$
Proposition. [Cuntz]
The $\operatorname{map} \mathcal{U}(B) \rightarrow K_{1}(B)$ is surjective
if B is prop. inf.

K_{1}-injectivity

Notations. Let B be a unital C^{*}-algebra.
$\mathcal{U}(B), \mathcal{U}_{n}(B)=\mathcal{U}\left(M_{n}(B)\right)$,
$\mathcal{U}^{0}(B), \mathcal{U}_{n}^{0}(B)$
$\begin{array}{ccc}\mathcal{U}_{n}(B) & \rightarrow & \mathcal{U}_{n+1}(B) \\ u & \mapsto & u \oplus 1\end{array} \quad$ and $\quad K_{1}(B)=\lim _{n} \mathcal{U}_{n}(B) / \mathcal{U}_{n}^{0}(B)$
Proposition. [Cuntz]
The map $\mathcal{U}(B) \rightarrow K_{1}(B)$ is surjective if B is prop. inf.
Q3 Are all unital prop. inf. C*-algebras K_{1}-injective?

K_{1}-injectivity

Notations. Let B be a unital C^{*}-algebra.
$\mathcal{U}(B), \mathcal{U}_{n}(B)=\mathcal{U}\left(M_{n}(B)\right)$, $\mathcal{U}^{0}(B), \mathcal{U}_{n}^{0}(B)$

$$
\begin{array}{clc}
\mathcal{U}_{n}(B) & \rightarrow & \mathcal{U}_{n+1}(B) \\
u & \mapsto & u \oplus 1
\end{array} \quad \text { and } \quad K_{1}(B)=\lim _{n} \mathcal{U}_{n}(B) / \mathcal{U}_{n}^{0}(B)
$$

Proposition. [Cuntz]
The $\operatorname{map} \mathcal{U}(B) \rightarrow K_{1}(B)$ is surjective
if B is prop. inf.
Q3 Are all unital prop. inf. C*-algebras K_{1}-injective?

- In diagramme (\%), $B K_{1}$-injective $\Rightarrow D$ prop.inf. Hence Q3 \Rightarrow Q2

Equivalence (1)

Proposition. Let B be a unital prop. inf. C*-algebra and $v \in \mathcal{U}(B)$ a unitary s.t. $\left(\begin{array}{ll}v & 0 \\ 0 & 1\end{array}\right) \sim_{h}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ in $\mathcal{U}_{2}(B)$
i.e. $\exists u \in C\left([0,1], \mathcal{U}_{2}(B)\right)$ with $u(0)=\left(\begin{array}{ll}v & 0 \\ 0 & 1\end{array}\right), u(1)=1_{2}$.

Equivalence (1)

Proposition. Let B be a unital prop. inf. C*-algebra
and $v \in \mathcal{U}(B)$ a unitary s.t. $\left(\begin{array}{ll}v & 0 \\ 0 & 1\end{array}\right) \sim_{h}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ in $\mathcal{U}_{2}(B)$
i.e. $\exists u \in C\left([0,1], \mathcal{U}_{2}(B)\right)$ with $u(0)=\left(\begin{array}{ll}v & 0 \\ 0 & 1\end{array}\right), u(1)=1_{2}$.

Then $u\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) u^{*} \sim\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ in $C\left(\mathbb{T} ; M_{2}(B)\right)$.

Proof. Put $w_{t}=u_{t}\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \quad(0 \leq t \leq 1)$

Equivalence (1)

Proposition. Let B be a unital prop. inf. C*-algebra and $v \in \mathcal{U}(B)$ a unitary s.t. $\left(\begin{array}{ll}v & 0 \\ 0 & 1\end{array}\right) \sim_{h}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ in $\mathcal{U}_{2}(B)$ i.e. $\exists u \in C\left([0,1], \mathcal{U}_{2}(B)\right)$ with $u(0)=\left(\begin{array}{ll}v & 0 \\ 0 & 1\end{array}\right), u(1)=1_{2}$.

Then $u\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) u^{*} \sim\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ in $C\left(\mathbb{T} ; M_{2}(B)\right)$.

Proof. Put $w_{t}=u_{t}\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \quad(0 \leq t \leq 1)$

Hence $p:=u\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) u^{*}$ is stably equivalent to $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.

Equivalence (1)

Proposition. Let B be a unital prop. inf. C*-algebra and $v \in \mathcal{U}(B)$ a unitary s.t. $\left(\begin{array}{ll}v & 0 \\ 0 & 1\end{array}\right) \sim_{h}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ in $\mathcal{U}_{2}(B)$ i.e. $\exists u \in C\left([0,1], \mathcal{U}_{2}(B)\right)$ with $u(0)=\left(\begin{array}{ll}v & 0 \\ 0 & 1\end{array}\right), u(1)=1_{2}$.

Then $u\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) u^{*} \sim\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ in $C\left(\mathbb{T} ; M_{2}(B)\right)$.

Proof. Put $w_{t}=u_{t}\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \quad(0 \leq t \leq 1)$

Hence $p:=u\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) u^{*}$ is stably equivalent to $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
But are these projections equivalent in $C\left(\mathbb{T} ; M_{2}(B)\right)$?

Equivalence (2)

Proposition. Let B be a unital prop. inf. C*-algebra and $v \in \mathcal{U}(B)$ a unitary s.t. $\left(\begin{array}{ll}v & 0 \\ 0 & 1\end{array}\right) \sim_{h}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ in $\mathcal{U}_{2}(B)$

Equivalence (2)

Proposition. Let B be a unital prop. inf. C*-algebra
and $v \in \mathcal{U}(B)$ a unitary s.t. $\left(\begin{array}{ll}v & 0 \\ 0 & 1\end{array}\right) \sim_{h}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ in $\mathcal{U}_{2}(B)$

$$
\text { i.e. } \exists u \in C\left([0,1], \mathcal{U}_{2}(B)\right) \text { with } u(0)=\left(\begin{array}{ll}
v & 0 \\
0 & 1
\end{array}\right), u(1)=1_{2} .
$$

Equivalence (2)

Proposition. Let B be a unital prop. inf. C*-algebra
and $v \in \mathcal{U}(B)$ a unitary s.t. $\left(\begin{array}{ll}v & 0 \\ 0 & 1\end{array}\right) \sim_{h}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ in $\mathcal{U}_{2}(B)$

$$
\text { i.e. } \exists u \in C\left([0,1], \mathcal{U}_{2}(B)\right) \text { with } u(0)=\left(\begin{array}{ll}
v & 0 \\
0 & 1
\end{array}\right), u(1)=1_{2} .
$$

(i) $p=u\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) u^{*} \sim\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ in $C\left(\mathbb{T} ; M_{2}(B)\right)$.

॥
(ii) p is prop. inf. in $C\left(\mathbb{T} ; M_{2}(B)\right)$

I
(iii) $v \sim_{h} 1$ in $\mathcal{U}(B)$

Equivalence (2)

Proposition. Let B be a unital prop. inf. C*-algebra
and $v \in \mathcal{U}(B)$ a unitary s.t. $\left(\begin{array}{ll}v & 0 \\ 0 & 1\end{array}\right) \sim_{h}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ in $\mathcal{U}_{2}(B)$

$$
\text { i.e. } \exists u \in C\left([0,1], \mathcal{U}_{2}(B)\right) \text { with } u(0)=\left(\begin{array}{ll}
v & 0 \\
0 & 1
\end{array}\right), u(1)=1_{2} .
$$

(i) $p=u\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) u^{*} \sim\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ in $C\left(\mathbb{T} ; M_{2}(B)\right)$.

॥
(ii) p is prop. inf. in $C\left(\mathbb{T} ; M_{2}(B)\right)$
\Uparrow
(iii) $v \sim_{h} 1$ in $\mathcal{U}(B)$
N.B. $\quad \forall x \in \mathbb{T}, \quad\left(p C\left(\mathbb{T} ; M_{2}(B)\right) p\right)_{x} \cong B$

Equivalence (2)

Proposition. Let B be a unital prop. inf. C*-algebra
and $v \in \mathcal{U}(B)$ a unitary s.t. $\left(\begin{array}{ll}v & 0 \\ 0 & 1\end{array}\right) \sim_{h}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ in $\mathcal{U}_{2}(B)$

$$
\text { i.e. } \exists u \in C\left([0,1], \mathcal{U}_{2}(B)\right) \text { with } u(0)=\left(\begin{array}{ll}
v & 0 \\
0 & 1
\end{array}\right), u(1)=1_{2} .
$$

(i) $p=u\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) u^{*} \sim\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ in $C\left(\mathbb{T} ; M_{2}(B)\right)$.

॥
(ii) p is prop. inf. in $C\left(\mathbb{T} ; M_{2}(B)\right)$
\Uparrow
(iii) $v \sim_{h} 1$ in $\mathcal{U}(B)$
N.B. $\quad \forall x \in \mathbb{T}, \quad\left(p C\left(\mathbb{T} ; M_{2}(B)\right) p\right)_{x} \cong B \quad$ Hence $\mathbf{Q 1} \Rightarrow \mathbf{Q 3}$

Universal example

Universal example

$$
\text { Let } \mathcal{A}=\left\{f \in C\left([0,1], \mathcal{O}_{\infty} * \mathcal{O}_{\infty}\right), f(0) \in \imath_{0}\left(\mathcal{O}_{\infty}\right) \text { and } f(1) \in \imath_{1}\left(\mathcal{O}_{\infty}\right)\right\}
$$

Universal example

$$
\text { Let } \mathcal{A}=\left\{f \in \mathcal{C}\left([0,1], \mathcal{O}_{\infty} * \mathcal{O}_{\infty}\right), f(0) \in \imath_{0}\left(\mathcal{O}_{\infty}\right) \text { and } f(1) \in \imath_{1}\left(\mathcal{O}_{\infty}\right)\right\}
$$

Proposition. TFAE
a) \mathcal{A} is prop. inf.

Universal example

$$
\text { Let } \mathcal{A}=\left\{f \in \mathcal{C}\left([0,1], \mathcal{O}_{\infty} * \mathcal{O}_{\infty}\right), f(0) \in \imath_{0}\left(\mathcal{O}_{\infty}\right) \text { and } f(1) \in \imath_{1}\left(\mathcal{O}_{\infty}\right)\right\}
$$

Proposition. TFAE

a) \mathcal{A} is prop. inf.
b) All unital pullback of prop. inf. C*-alg. are prop.inf.

Universal example

$$
\text { Let } \mathcal{A}=\left\{f \in \mathcal{C}\left([0,1], \mathcal{O}_{\infty} * \mathcal{O}_{\infty}\right), f(0) \in \imath_{0}\left(\mathcal{O}_{\infty}\right) \text { and } f(1) \in \imath_{1}\left(\mathcal{O}_{\infty}\right)\right\}
$$

Proposition. TFAE

a) \mathcal{A} is prop. inf.
b) All unital pullback of prop. inf. C*-alg. are prop.inf.
c) All unital cont. $C(X)$-alg. with prop. inf. fibres are prop. inf.

Universal example

$$
\text { Let } \mathcal{A}=\left\{f \in C\left([0,1], \mathcal{O}_{\infty} * \mathcal{O}_{\infty}\right), f(0) \in \iota_{0}\left(\mathcal{O}_{\infty}\right) \text { and } f(1) \in \iota_{1}\left(\mathcal{O}_{\infty}\right)\right\}
$$

Proposition. TFAE

a) \mathcal{A} is prop. inf.
b) All unital pullback of prop. inf. C*-alg. are prop.inf.
c) All unital cont. $C(X)$-alg. with prop. inf. fibres are prop. inf.
d) All unital prop. inf. C^{*}-alg. are K_{1}-injective.
e) $\mathcal{O}_{\infty} * \mathcal{O}_{\infty}$ is K_{1}-injective

Concluding remarks

Proposition. [Cuntz]

Every purely infinite simple unital C^{*}-algebra is K_{1}-injective.

Concluding remarks

Proposition．［Cuntz］

Every purely infinite simple unital C^{*}－algebra is K_{1}－injective．

Proposition．

Let－X be a contractible compact Hausdorff space，
－D a C＊－algebra，
－$p \in \mathcal{P}(C(X, D))$ a projection and
$-x_{0} \in X$ a point．

Concluding remarks

Proposition．［Cuntz］

Every purely infinite simple unital C^{*}－algebra is K_{1}－injective．

Proposition．

Let－X be a contractible compact Hausdorff space，
－D a C＊－algebra，
－$p \in \mathcal{P}(C(X, D))$ a projection and
$-x_{0} \in X$ a point．
Then p is prop．inf．$\Leftrightarrow p_{x_{0}}$ is prop．inf．

