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Introduction Unital Free Products Group C*-Algebras

Standing convention:

All C*-algebras, C*-subalgebras, homomorphisms, and free
products will be unital.

Exceptions: hereditary C*-subalgebras (including ideals), stable
algebras
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Nonstable K -Theory

Nonstable K0: If A is a C*-algebra and p, q projections in A with
[p] = [q] in K0(A), is p ∼ q? Is p ∼u q? Is p ∼h q?

Nonstable K1: If u ∈ U(A) and [u] = 0 in K1(A), is u ∈ U(A)o?

Bruce Blackadar Nonstable K -Theory for Free Products



Introduction Unital Free Products Group C*-Algebras

Nonstable K -Theory

Nonstable K0: If A is a C*-algebra and p, q projections in A with
[p] = [q] in K0(A), is p ∼ q? Is p ∼u q? Is p ∼h q?

Nonstable K1: If u ∈ U(A) and [u] = 0 in K1(A), is u ∈ U(A)o?

Bruce Blackadar Nonstable K -Theory for Free Products



Introduction Unital Free Products Group C*-Algebras

The Unitary Path Group

The group UP(A) = U(A)/U(A)o is called the unitary path group
of A.

A 7→ UP(A) is functorial, and there is a natural homomorphism γ
from UP(A) to K1(A) which is neither injective nor surjective in
general.

A is K1-injective [resp. K1-surjective] if γ is injective [resp.
surjective].
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Properly Infinite C*-Algebras

A (unital) C*-algebra is properly infinite if it contains two
isometries with orthogonal ranges.

A properly infinite C*-algebra contains a (unital) copy of O∞.

A projection in a (unital) C*-algebra is very full if it contains a
subprojection equivalent to 1.

p is splitting if both p and 1− p are very full.

A contains a splitting projection if and only if A is properly infinite.
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Theorem (Cuntz):

In a properly infinite C*-algebra, very full projections in the same
K0-class are equivalent.

Very full projections in the same K0-class are not necessarily
unitarily equivalent (e.g. 1 and the range projection of an
isometry). However:

Corollary:

Splitting projections in the same K0-class are unitarily equivalent.
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The Main Questions

Question 1.

If p and q are splitting projections in a (properly infinite)
C*-algebra A with [p] = [q] in K0(A), are p and q homotopic in A?

Question 1 is equivalent to

Question 2.

Is every properly infinite C*-algebra K1-injective?

It is easy to see that a properly infinite C*-algebra is K1-surjective:
if p is a splitting projection in A, then the (nonunital) embedding
of pAp into A extends to an embedding of the (nonunital)
C*-algebra pAp ⊗K into A.
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Proposition:

If u is a unitary in A with [u] = 0 in K1(A) (i.e. γ(u) = 0), and if u
commutes with a splitting projection, then u ∈ U(A)o.

From this, it follows easily that a purely infinite (simple unital)
C*-algebra is K1-injective, since by functional calculus every
unitary is homotopic to a unitary which commutes with a splitting
projection.
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The condition can be relaxed to approximate commutativity:

Proposition (Kirchberg, Blanchard–Rohde–Rørdam):

If u is a unitary in A with [u] = 0 in K1(A) (i.e. γ(u) = 0), and if
there is a splitting projection p in A with ‖up − pu‖ < 1, then
u ∈ U(A)o.

Under the hypotheses, x = pup + (1− p)u(1− p) is invertible, and
the unitary in the polar decomposition of x is homotopic to u and
commutes with p.

In particular, if A has a central sequence of splitting projections,
then A is K1-injective.
O∞ has such a central sequence (O∞ is isomorphic to an infinite
tensor product of copies of itself), as does A⊗ O∞ for any A, so
A⊗ O∞ is K1-injective for any (unital) A.
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Equivalence of Questions 1 and 2

Theorem (Blanchard-Rohde-Rørdam):

Let A be a properly infinite (unital) C*-algebra. The following are
equivalent:

(1) Whenever p and q are splitting projections in A with [p] = [q]
in K0(A), then p and q are homotopic in A.

(1′) Whenever p and q are splitting projections in A with
[p] = [q] = [1] in K0(A), then p and q are homotopic in A.

(2) A is K1-injective.

(2) ⇒ (1): If p and q are splitting projections in a properly infinite
C*-algebra A, with the same K0-class, they are unitarily equivalent
via a unitary with trivial K1-class (correct using a unitary in pAp.)

So if A is properly infinite and K1-injective, and p and q are
splitting projections with the same K0-class, then p and q are
unitarily equivalent via a unitary in U(A)o, hence homotopic.
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(1) ⇒ (1′) is trivial.

(1′) ⇒ (2): If u is a unitary in A with trivial K1-class, let p be a
splitting projection equivalent to 1 and set q = u∗pu. If p and q
are homotopic, then u is homotopic to a unitary commuting with
p, hence is in U(A)o.

Thus Question 1 and Question 2 are equivalent.

In Question 1, we may also assume that p ∼ q ∼ 1.
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There are, roughly speaking, three possibilities for the outcomes of
these Questions (and ones to be discussed later too):

1. The answers are negative in the sense that any possible
pathology occurs.

2. Some pathology is ruled out by simple general arguments we
have not yet found.

3. Some pathology is nonexistent for subtle and deep reasons.

Outcome (3) seems the most unlikely, but would be the most
interesting one if it happens.

In the spirit of M. Gromov’s famous principle that there is no
nontrivial statement which is true for all groups, my feeling is that
outcome (1) is the most likely for these Questions.
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Unital Free Products

If A and B are unital C*-algebras, let A ∗C B be the unital free
product.

Free products behave quite differently from tensor products in
many ways, including nonstable K -theory.

Example:

O2 ∗C O2
∼= O2 ∗C C (T). (O2 can be replaced by On for any

n <∞, but not by O∞.)
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To define a specific isomorphism, let {s1, s2, t1, t2} be the standard
generators of O2 ∗C O2 and {s1, s2, u} the standard generators of
O2 ∗C C (T). Define

φ : O2 ∗C O2 → O2 ∗C C (T)

φ(si ) = si , φ(ti ) = usi

ψ : O2 ∗C C (T)→ O2 ∗C O2

ψ(si ) = si , ψ(u) = t1s∗1 + t2s∗2

Since C (T) ∗C C (T) ∼= C ∗(F2), we get

O2 ∗C O2 ∗C O2
∼= O2 ∗C C ∗(F2)
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The C*-algebra O∞ ∗C O∞ is a “universal test algebra” for
Questions 1 and 2.

Let p1 and q1 be range projections of some generators in the two
copies of O∞. If p1 and q1 are homotopic in O∞ ∗C O∞, and
A, p, q are as in Question 1, using (1′) we can reduce to the case
where p and q are equivalent to 1A, i.e. range projections of
isometries. Since 1− p and 1− q are very full, there is then a
(unital) homomorphism φ from O∞ ∗C O∞ to A with φ(p1) = p
and φ(q1) = q , and the homotopy of p1 and q1 gives a homotopy
of p and q.
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Interesting alternate point of view:

Example (Blanchard-Rohde-Rørdam):

Let A and B be the two natural copies of O∞ in O∞ ∗C O∞, and
let D be the set of continuous functions from [0, 1] to O∞ ∗C O∞
such that f (0) ∈ A, f (1) ∈ B. D is a continuous field of properly
infinite C*-algebras over [0, 1].

Is D properly infinite? Does D contain any nontrivial projections?
Is D K1-injective?
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K -Theory of Unital Free Products

The exact sequence of E. Germain and K. Thomsen for
amalgamated free products gives the following exact sequence for
unital free products of C*-algebras:

K0(C) ∼= Z −−−−→ K0(A⊕ B) −−−−→ K0(A ∗C B)x y
K1(A ∗C B) ←−−−− K1(A⊕ B) ←−−−− K1(C) = 0

Thus the map K1(A⊕ B)→ K1(A ∗C B) is injective. This map is
induced by the natural inclusions from A and B into A ∗C B.
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In particular:

Corollary.

If A and B are (unital) C*-algebras, then the inclusion from A into
A ∗C B induces an injective map from K1(A) to K1(A ∗C B).

The corresponding statement for K0 is false in general.

Incidentally, the exact sequence shows that K1(O2 ∗C O2) is
nontrivial! (∼= Z)
The isomorphism O2 ∗C O2

∼= O2 ∗C C (T) “explains” this.
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What about a nonstable version:

Question 3.

If A and B are (unital) C*-algebras, does the inclusion of A into
A ∗C B induce an injective map from UP(A) to UP(A ∗C B)?

A bolder version would ask whether the map from the free product
UP(A) ∗ UP(B) to UP(A ∗C B) is always injective.

If this is true, then
UP(C ∗(F2)) = UP(C (T) ∗C C (T)) = Z ∗ Z = F2.
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Free Group C*-Algebras

What is UP(C ∗(F2))? We don’t know, but we know something
about it.

Let u and v be the canonical unitary generators of C ∗(F2), and
w = uvu−1v−1.

Theorem:

The class of w in UP(C ∗(F2)) is nontrivial (i.e. UP(C ∗(F2)) is
nonabelian.)

Question 4.

Is the class of w in UP(C ∗(F2) ∗C B) nontrivial for every B? (Is
UP(C ∗(F2) ∗C B) nonabelian for every B?)

True for at least many B.

Bruce Blackadar Nonstable K -Theory for Free Products
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Question 4 is roughly the special case of Question 3 where
A = C ∗(F2) (it is actually weaker). So if Question 3 has a positive
answer, so does question 4.

If Question 4 has a positive answer, then Questions 1 and 2 have a
negative answer:

C ∗(F2) ∗C O∞ would be a properly infinite C*-algebra with
nonabelian unitary path group, hence not K1-injective.
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Proof of Theorem

A topological group G is homotopy abelian if the maps

f (x , y) = xy and g(x , y) = yx

are homotopic as maps from G × G to G .

Any abelian group is homotopy abelian, as is any group which is
contractible as a topological space.

Theorem (Araki, James, Thomas, 1960):

A compact connected Lie group which is homotopy abelian is
actually abelian.
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Apply this theorem to U(n). Let

A = C (U(n)× U(n),Mn)

Then U(A) can be identified with the set of continuous functions
from U(n)× U(n) to U(n), so the functions f and g can be
regarded as unitaries in A, as can u(x , y) = x and v(x , y) = y ;
f = uv and g = vu; uvu∗v∗ = fg∗ is not in U(A)o by the theorem.

The unitaries u and v define a homomorphism φ from C ∗(F2) to
A; φ(w) = fg∗. Since φ(w) /∈ U(A)o, w /∈ U(C ∗(F2))o.
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The proof shows more: there is a (unital) homomorphism from Mn

to A as constant functions. Thus there is a homomorphism ψ from
C ∗(F2) ∗C Mn to A, and as above ψ(w) /∈ U(A)o, so
w /∈ U(C ∗(F2) ∗C Mn)o for any n. Thus Question 4 is true for
B = Mn.

This is in stark contrast to tensoring with Mn, which can collapse
the unitary path group.
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Let B be the class of all C*-algebras B for which Question 4 is
true. B has the following properties:

(i) Mn ∈ B.

(ii) B is closed under direct sums and inductive limits (with
injective connecting maps). So every AF algebra is in B.

(iii) If B ∈ B, then any (unital) subalgebra of B is also in B.

(iv) If some quotient of A is in B, then A ∈ B. In particular,
T ∈ B.

So any (unital) C*-algebra with a quotient that is AF-embeddable
is in B. In particular, any (unital) Type I C*-algebra is in B.

Question 5.

Is there a properly infinite C*-algebra in B? Equivalently, is
O∞ ∈ B?

A positive answer to Question 5 gives a negative answer to
Questions 1 and 2.

Bruce Blackadar Nonstable K -Theory for Free Products



Introduction Unital Free Products Group C*-Algebras

Let B be the class of all C*-algebras B for which Question 4 is
true. B has the following properties:

(i) Mn ∈ B.

(ii) B is closed under direct sums and inductive limits (with
injective connecting maps). So every AF algebra is in B.

(iii) If B ∈ B, then any (unital) subalgebra of B is also in B.

(iv) If some quotient of A is in B, then A ∈ B. In particular,
T ∈ B.

So any (unital) C*-algebra with a quotient that is AF-embeddable
is in B. In particular, any (unital) Type I C*-algebra is in B.

Question 5.

Is there a properly infinite C*-algebra in B? Equivalently, is
O∞ ∈ B?

A positive answer to Question 5 gives a negative answer to
Questions 1 and 2.

Bruce Blackadar Nonstable K -Theory for Free Products



Introduction Unital Free Products Group C*-Algebras

Let B be the class of all C*-algebras B for which Question 4 is
true. B has the following properties:

(i) Mn ∈ B.

(ii) B is closed under direct sums and inductive limits (with
injective connecting maps). So every AF algebra is in B.

(iii) If B ∈ B, then any (unital) subalgebra of B is also in B.

(iv) If some quotient of A is in B, then A ∈ B. In particular,
T ∈ B.

So any (unital) C*-algebra with a quotient that is AF-embeddable
is in B. In particular, any (unital) Type I C*-algebra is in B.

Question 5.

Is there a properly infinite C*-algebra in B? Equivalently, is
O∞ ∈ B?

A positive answer to Question 5 gives a negative answer to
Questions 1 and 2.

Bruce Blackadar Nonstable K -Theory for Free Products



Introduction Unital Free Products Group C*-Algebras

By the same argument as with U(n), if B is a C*-algebra whose
unitary group is not homotopy abelian, there is a homomorphism ψ
from C ∗(F2) ∗C B to the C*-algebra A of bounded continuous
functions from U(B)× U(B) to B with ψ(w) /∈ U(A)o, so B ∈ B.

This suggests a possible approach to Question 5:

Question 6.

Is there a properly infinite C*-algebra whose unitary group is not
homotopy abelian?

A positive answer to Question 6 implies that O∞ ∈ B, and thus a
positive answer to Question 5 and negative answers to Questions 1
and 2.
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It could be that the unitary group of any properly infinite
C*-algebra is homotopy abelian. But note that the condition that
U(B) not be homotopy abelian is far from necessary for B to be in
B (the unitary group of C is homotopy abelian!) It is sufficient, for
example, that B be embeddable in a C*-algebra whose unitary
group is not homotopy abelian.

A result of James and Thomas seems to suggest that a group like
U(O∞) is not homotopy abelian:

Theorem:

Let G be a path-connected topological group. If G is a countable
CW-complex with finitely generated integral homology, and G is
homotopy abelian, then G is homotopy equivalent to a torus
(product of circles). In particular, if G is simply connected, it is
contractible.
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U(O∞) is not homotopy equivalent to a torus. Perhaps a better
candidate would be U(P∞), where P∞ is the Kirchberg algebra
with K0(P∞) = 0, K1(P∞) = Z. Then U(P∞)o is simply
connected but not contractible.

But U(O∞) or U(P∞) does not satisfy the hypotheses of the
theorem, since its homology is not finitely generated. (The unitary
group of a separable C*-algebra is homotopy equivalent to a
countable CW-complex.)

Unitary groups of C*-algebras are not the kind of topological
groups topologists normally like to think about!
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To see this, use the following result of S. Zhang:

Theorem.

If A is a purely infinite (simple unital) C*-algebra, then, for all
n ≥ 0,

πn(U(A)o) ∼= Kn+1(A)

This result is reasonable since, for example, π1(U(A)) is the set of
homotopy classes of loops of unitaries in A, which is the unitary
path group of (SA)+. This is roughly K1(SA) ∼= K2(A) = K0(A).
But pure infiniteness is needed to destabilize.

Thus, π1(U(P∞)) = 0 and π2(U(P∞)) ∼= Z.
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However, N. C. Phillips has obtained the following result:

Theorem:

The unitary group of any purely infinite C*-algebra is homotopy
abelian.

An analysis of Zhang’s proof shows that these are infinite loop
spaces. The result also applies to the tensor product of a
commutative C*-algebra and a purely infinite C*-algebra.

The finite generation hypothesis in the result of James and
Thomas thus cannot be removed.

So the Question 6 approach to obtaining negative solutions to
Questions 1 and 2 does not look promising. But it still could very
well be true that some nonsimple properly infinite C*-algebras such
as C ∗(F2) ∗C O∞ or O∞ ∗C O∞ have unitary groups which are not
homotopy abelian, or nonabelian unitary path groups.
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For another approach to Question 5, consider examples like the
following:

Example:

Let A =
⊗

F2
O∞ ∼= O∞. Let F2 act on A by permuting the tensor

product factors by translating the indices. The full crossed product
B = A oσ F2 is properly infinite, a quotient of C ∗(F2) ∗C O∞.

The natural map from C ∗(F2) to B is injective, since A has an
F2-invariant state. The relative commutant of the image is just the
scalars.

Is the image of w in U(B)o? If not, the answer to Question 5 is
yes.

One could also let A be the infinite unital free product of copies of
O∞.
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Unitary Path Groups of Group C*-Algebras

If G is a discrete group, there is a natural embedding of G into
U(C ∗(G )) which drops to a homomorphism

σ : G → UP(C ∗(G ))

If G = F2, the kernel of σ is contained in the commutator
subgroup, since the kernel of

γ ◦ σ : G → K1(C ∗(G ))

is exactly the commutator subgroup. By Araki-James-Thomas, the
kernel of σ is a proper subgroup of the commutator subgroup since
w = [u, v ] is not in the kernel.

It seems likely that σ is injective if G is a free group. If not, there
is a universal relation holding in UP(A) for every C*-algebra A.
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If s(u, v) is a (reduced) word in F2, then for any topological group
H there is an induced continuous map

f : H × H → H f (x , y) = s(x , y)

and one can ask whether f is homotopic to the constant function
eH . The set of words homotopic to the constant function form a
normal subgroup of F2 we will call the homotopy kernel of H.

The kernel of σ for F2 is exactly the homotopy kernel of
U(C ∗(F2)), and by universality is the intersection of the homotopy
kernels for U(A) for all (unital) C*-algebras A.

The Araki-James-Thomas result says that if H is a nonabelian
compact connected Lie group (e.g. U(n) for n ≥ 2), then
s(u, v) = uvu−1v−1 is not in the homotopy kernel of H.
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It follows from known results in topology that the homotopy kernel
of U(n) is nontrivial for each n (in fact, the quotient of F2 by the
homotopy kernel is nilpotent).

Question 7.

Is the intersection of the homotopy kernels of U(n) for all n trivial?

This seems reasonable since the intersection of the lower central
series in a free group is trivial (Magnus 1935).

A positive answer would show that the homotopy kernel of
U(C ∗(F2)) is trivial, and hence that σ : F2 → UP(C ∗(F2)) is
injective.

The techniques of Araki-James-Thomas do not seem to yield much
information on this problem, but there is some evidence for a
positive answer from other topological results.
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Question A:

If G is a (reasonable) torsion-free discrete group, is
σ : G → UP(C ∗(G )) injective? an isomorphism (i.e. also
surjective)?

The answer to Question A is no if G is not torsion-free: any
torsion element of G is in the kernel of σ.

If the full C*-algebra is replaced by the reduced C*-algebra, the
answer is no for G a free group; in fact
(Dykema-Haagerup-Rørdam):

UP(C ∗r (F2)) = K1(C ∗r (F2)) ∼= Z2 = F2/[F2,F2]
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Question B:

If G is a (reasonable) torsion-free discrete group, does
σ : G → UP(C ∗r (G )) induce an injective map [isomorphism] from
G/[G ,G ] to UP(C ∗r (G ))?

These questions are a sort of nonstable version of a special case of
the Baum-Connes Conjecture: if G is a (reasonable) torsion-free
discrete group, then K1(C ∗r (G )) should be the odd homology of
G/[G ,G ], and in particular the natural map from
G/[G ,G ] = H1(G/[G ,G ]) to K1(C ∗r (G )) should be injective. (It
will not be surjective in general, e.g. if G = Z3.)

The answer to both A and B is yes if G is abelian (and
torsion-free). Question A should be true for free groups.
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However, Questions A and B are incompatible for a torsion-free
nonabelian group which is amenable. Which one fails? (Maybe
both!)

Example.

Let G be the semidirect product Z o Z, where Z = 〈v〉 acts on
Z = 〈u〉 by inversion (vuv−1 = u−1).

G has an abelian subgroup of index 2 (generated by u and v2).
Thus, by the Mackey Machine, all irreducible representations of G
are of dimension ≤ 2, and they can all be written down. For
0 ≤ s, t ≤ 2, let

πs,t(u) =

[
eπis 0

0 e−πis

]
, πs,t(v) =

[
0 eπit

eπit 0

]
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Changing basis, these become

πs,t(u) =

[
cosπs i sinπs
i sinπs cosπs

]
, πs,t(v) =

[
eπit 0

0 −eπit

]

π1+s,t ∼ π(1− s, t) via conjugation by

[
1 0
0 −1

]
, so only need

0 ≤ s ≤ 1.

πs,t+1 ∼ π(s, t) via conjugation by

[
0 1
1 0

]
, so only need

0 ≤ t ≤ 1.
If 0 < s < 1, πs,t is irreducible; if s = 0, 1, it is a sum of two
1-dimensional representations.
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So C ∗(G ) = C ∗r (G ) is isomorphic to the set of continuous
functions f from [0, 1]2 to M2 such that

(1) f (0, t) and f (1, t) are diagonal for all t

(2) f (s, 1) = ad

([
0 1
1 0

])
· f (s, 0) for all s.

The primitive ideal space of C ∗(G ) is thus a cylinder with points
on the end circles doubled (non-Hausdorff). But the joining of top
and bottom has a twist, so there is only one circle at each end,
going twice around.
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The C*-subalgebra B of functions which are scalars at the left and
right endpoints is isomorphic to C (T)⊗ D, where D is the 2× 2
dimension drop algebra

D = {f : [0, 1]→M2|f (0), f (1) scalars }

The unitary u is in this subalgebra B, and is 1⊗ w , where w is a
generator for K1(D) ∼= Z2. Thus u2 is in the connected component
of U(C ∗(G )), and Question A fails for G .

It can be shown that u is not in the connected component of
U(C ∗(G )). The map from 〈v〉 to UP(C ∗(G )) is injective, so
UP(C ∗(G )) ∼= Z2 ⊕ Z ∼= G/[G ,G ] since [G ,G ] = 〈u2〉.
Thus Question B has a positive answer for G .

The exact kernel of σ appears to be quite subtle in general.
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Summarizing:

G −−−−→ U(C ∗(G )) −−−−→ U(C ∗r (G ))y y y
G

σ−−−−→ UP(C ∗(G ))
π∗−−−−→ UP(C ∗r (G ))y γ

y γr

y
G/[G ,G ] −−−−→ K1(C ∗(G ))

π∗−−−−→ K1(C ∗r (G ))

The diagram commutes, and the composite map across the
bottom row is injective for reasonable G by Baum-Connes.

If G is K -amenable, the π∗ on the bottom row is an isomorphism.
There is no obvious reason why π∗ in the bottom row cannot be an
isomorphism even if G is not K -amenable.

The composite map π∗ ◦ σ in the middle row is not injective in
general.
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