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Numbers

In the beginning there were the natural numbers N : 1, 2, 3, ...
Then came fractions : 1/2, 2/3, 4/3, ... etc..
It took awhile, but eventually, the integers

Z : ...,−3,−2,−1, 0, 1, 2, 3, ...

and the rational numbers

Q : −4/3,−1,−2/3, 0, 2/3, 1, 4/3, ...

were also understood. The Archimedean absolute value | |∞
converts a negative number to a positive number: |a|∞ = a if
a ≥ 0 and |a|∞ = −a if a ≤ 0.
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As our ancestors started measuring distance, relationship
among numbers began to emerge. Among these is the
Pythagorean Theorem, relating the length c of the
hypothenuse of a right-angled triangle with the lengths of the
two legs, a and b, of a right-angled triangle:

c2 = a2 + b2.

Taking a = b = 1 results in the equation:

c2 = 2.

Soon it was realized that the solution c does not behave like
any rational numbers. That is, it cannot be represented as a
fraction. Euclid, for example, gave a completely rigorous
proof of this. This marks the discovery of irrational numbers.
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Other irrational numbers were also discovered, among these,
the number π is probably the most important. This, no
doubt, came with the invention of the wheels. However, it
was not until 1776 that Lambert (and Lagrange) gave a proof
that π is indeed an irrational number. It took even longer
(Lindemann 1882) for mathematicians to realize that π
belongs to a different category of numbers known as the
transcendental numbers.

Definition

A number is said to be an algebraic number if it is the
solution of a monic polynomial with integer coefficients. A
number is said to be transcendental if it is not algebraic.

For example the solution x =
√

2 of the equation x2 = 2 is an
algebraic number.
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For many years (more than two thousand years)
mathematicians pondered the question whether one can
square a circle? What it means is this. The area of a circle of
radius r is πr2; so the area of a circle of radius 1 is π. The
area of a square (with each side equals x) is x2. The equation
we are dealing with is x2 = π and the question is:

Is it possible to construct, using only straight edge and
compass, the solution x =

√
π?

Note that this is possible (indeed very easy) for the algebraic
number

√
2. Lindemann’s work showed that this is not

possible for
√
π, hence it cannot be algebraic.
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With the advances in Calculus, mathematicians understood
the concept of limit and the real numbers R are just the
limits, with respect to the Archimedean absolute value, of the
rational numbers. We say that R is the completion of Q with
respect to | |∞. This coupled with the imaginary number√
−1, namely, solution of the equation x2 = −1, lead us to

the complex numbers C. The rational and irrational, algebraic
or transcendental, numbers together constitute the complex
numbers C.
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Over time more and more transcendental numbers were
discovered. Here is a very brief history:

Lambert (1766) (building upon earlier work by Euler) :
The number π is transcendental. The natural number e
is transcendental (the proof that we frequently see
nowadays in ‘elementary’ textbooks is due to Fourier
(1815)).

Liouville (1840): The number 1/e is transcendental.

Hermite (1873): The number eπ is transcendental.
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Lindemann (1882) If α 6= 0 is an algebraic number then

eα (e.g., e, e2,
√

e, e
√

2) is transcendental. If a non-zero
number is the logarithmic of an algebraic number then it
is transcendental (e.g., π = 1√

−1
ln(−1)).

Hilbert (1900): Hilbert’s 7-th problem raised the
question whether αβ is transcendental for algebraic
numbers α and β (e.g., (−1)−

√
−1, 2

√
2). (Hilbert

proposed 23 problems in the Second International
Congress of Mathematicians in 1900.) It was reported
that Hilbert thought that this problem is harder than
Fermat’s last theorem and the Riemann hypothesis.
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A. O. Gelfond (1929): αβ is transcendental for any
algebraic number α( 6= 0, 1) and β any imaginary

quadratic irrational; e. g., (−1)−
√
−1 is transcendental.

Kuzmin (1930): αβ is transcendental for any algebraic
number α(6= 0, 1) and β any quadratic irrational; e.g.,

2
√

2 is transcendental.

Hilbert’s 7-th problem was solved, in the affirmative, in
1934 by A. O. Gelfond and Th. Schneider independently.
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Shortly after that Siegel began to look at the the problem
through function theory. He looked at a transcendental
function f : C→ C ∪ {∞} and an algebraic number field
Kand asked how big is the set f −1(K)? He showed that, for
many explicit transcendental functions, the set of algebraic
values f −1(K) is finite.

Siegel’s work were reformulated and extended by Lang. The
most general form at this time is due to Bombieri. It takes
the following form:
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Theorem

Let K be an algebraic number field and f1, . . . , fn be
meromorphic functions of finite order defined on Cm

considered as a map F = (f1, ..., fn) : Cm → Cn. Assume that
the transcendence degree of K(f1, ..., fn) is at least n + 1 and

∂

∂zi
: K(f1, ..., fn)→ K(f1, ..., fn)

for 1 ≤ i ≤ n. Then there exists a polynomial P such that
F−1(Kn) ⊂ {P = 0}.

For m = 1 a polynomial of one variable can only have a finite
number of roots so F−1(Kn) is finite, recovering the results of
Siegel.
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Bombieri’s proof of this theorem is a master piece! He looked
at the problem first from the number theoretic point of view
and then he brought in complex analysis (the deep and
powerful theory of L2-estimate of Hörmander for complex
analytic functions) and magically, the two theory begin to
merge in front of your eyes and the theorem falls onto your
lap naturally.
Notice that Bombieri’s result did not claim finiteness in higher
dimension (m ≥ 2). One of the problem that we propose for
our program is to find natural conditions so that we do get
finiteness.
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Fix a prime number p. Every rational number x can be
factorize as x = psa/b where s, a and b are integers with a
and n relatively prime to p. The p-adic absolute value |x |p is
defined to be

|x |p = p−r .

These are non-Archimedean absolute values. They behave like
the usual Archimedean absolute value but satisfied a stronger
form of the triangle inequality:

|a + b|p ≤ max{|a|p, |b|p}.
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Analogous to the construction of the field of real numbers R
from the rational numbers via the Archimedean absolute
value, we get from the p-adic absolute value the field Rp.
The complex number field C is the algebraic closure of R.
The Archimedean absolute extends to C and (C, | |∞) is a
complete metric space. Analogously, we take the algebraic
closure of Rp with the extended p-adic absolute value. It
turns out that this is not complete as a metric space. Thus
we must take the completion, the resulting field is
algebraically closed and complete as a metric space. This
field, Cp, is the field of p-adic numbers.
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Diophantine Equations and Diophantine Approximation

The basic problem in Diophantine Equations is the
investigation of whether an equation, say defined over
integers, admits any integer solutions? This seemingly
innocent problem turns out to be very difficult in general. As
a first step, we ask an easier question. Does the equation
admit only a finite number of integer solutions?

Example

Consider the equation

x3 − 2y3 = 1.

If y = 0 then the equation is reduced to x3 − 1 = 0. The left
hand side factorize into (x − 1)(x − θ)(x − θ2) where

θ = e2π
√
−1/3 and we get 3 roots, x = 1, x = θ and x = θ2.

Only one of them is an integer.
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For the general case we divide the original equation by y3

x3

y3
− 2 =

1

y3

and factorize the left hand side:

(
x

y
− 21/3)(

x

y
− 21/3θ)(

x

y
− 21/3θ2) =

1

y3
.

From this one deduces that

|x
y
− 21/3| ≤ C

|y |3
.

Thus the problem is reduced to a problem in approximation of
the number 21/3 by rational numbers x/y , namely how many
rational numbers x/y satisfy the inequality? The answer is
provided by the famous Roth’s Lemma.
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Theorem (Roth)

Let r be an irrational algebraic number. Then for any ε > 0,
there exists a constant C > 0 such that there only finitely
many rational numbers x/y , x , y ∈ Z satisfying the estimate

|x
y
− r | ≤ C

|y |2+ε
.

Roth’s theorem applied to the preceding example shows that
there are only finitely many integer solutions to the equation
x3 − 2y3 = 1.
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It is convenient to express Roth’s theorem in logarithmic form:

Theorem (Roth)

Let r be an irrational algebraic number. Then for any ε > 0,
the estimate

log
1

| xy − r |
≤ (2 + ε)h(

x

y
) + O(1)

holds for all but finitely many rational numbers x/y where
h(x/y) = log |y | is the height of x/y.

In this form Roth’s theorem looks very much like the Second
Main Theorem in Nevanlinna theory to be introduced in the
next section.
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The problem can be formulated geometrically. The equation
in the example can be written in terms of homogeneous
coordinates:

x3 − 2y3 = z3.

This is an equation in the projective 2-space P2. Thus
C = {[x , y , z ] | x3 − 2y3 = z3} is a curve of degree 3 in P2.
There is a very important invariant, known as the genus
(denoted by g), attached to a curve. A curve of genus zero
(resp. one) is called a rational curve (resp. an elliptic curve).
Curves of genus greater than one are called general type. The
genus formula on P2 asserts that, for a smooth curve of
degree d

g =
(d − 1)(d − 2)

2
.
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For the curve C the genus is one, i.e., it is an elliptic curve.
The curve L = {[x , y , z ] | z = 0} is a line (degree one) so the
genus is zero, i.e., a rational curve (the curve at infinity). The
example we examined is in C \ L (as we have z = 1). The
implication of Roth’s Theorem asserts that the number of
integer points on C \ L is finite. It is known that

Theorem (Siegel)

(a) Let L be a rational curve. Then

L \ {three distinct points on L}

has finitely many integer points.
(b) Let E be an elliptic curve. Then

E \ {one point on E}

has finitely many integer points.
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Theorem (Faltings)

Let C be a projective curve of genus g ≥ 2. Then C has only
finitely many rational points.

The preceding theorem was first conjectured by Mordell.
The proof of these theorems are not effective in the sense
that no bound of the number of points (solutions) are given.
A breakthrough on the effective aspect of Roth’s Theorem is
due to Baker, for example, he showed that

|x
y
− 21/3| > 10−6

1

|y |2.955
.

With this all solutions of the equation of the example were
found.
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Roth’s Theorem was extended to higher dimension (multiple
variables, simultaneous Diophantine approximation) by
Schmidt and is known as Schmidt’s Subspace Theorem:

Theorem (Schmidt)

Let L0, L1, ..., Ln be homogeneous linear forms in x1, ..., xn

with algebraic coefficients, linearly independent over Q. Then,
for any ε > 0, there exists a finite number of hyperplanes
H1, ...,HN in P(Q)n and a constant C > 0 such that all
integer solutions of the inequality

|L0(
x

|x|
) · · · Ln(

x

|x|
)| ≤ C

|x|n+1+ε

are contained in ∪N
i=1Hi .
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We prefer the logarithmic version of Schmidt’s theorem:

Theorem (Schmidt)

Let L0, L1, ..., Ln be homogeneous linear forms in x1, ..., xn

with algebraic coefficients, linearly independent over Q. Then,
for any ε > 0, there exists a finite number of hyperplanes
H1, ...,HN in P(Q)n such that all integer solutions of the
inequality

n∑
i=0

log
1

|Li (x)|
≤ (n + 1 + ε)h(x) + C

holds provided that x 6∈ ∪N
i=1Hi .



Numbers Diophantine Equations and Diophantine Approximation Nevanlinna Theory Diophantine Geometry vs Hyperbolic Geometry Open Problems Special Program in AG/HG at Fields

Nevanlinna Theory

We now turn our attention to function theory, more precisely,
the theory of holomorphic (complex analytic) functions. We
are also interested in solutions of equations, just that we are
now seeking solutions in functions spaces. In the 1920’s,
Nevanlinna introduced a theory, now known as Nevanlinna
theory to deal with such problems. For example
x = sin θ, y = cos θ is a solution of the equation:

x2 + y2 = 1.

It can also be shown that the only holomorphic solutions to
the equation

x3 − 2y3 = 1

are constants.
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Definition

A complex space X is said to be hyperbolic if every
holomorphic map f : C→ X is a constant.

The following results in hyperbolic geometry are classical:

Theorem

(a) Let L be a rational curve. Then

L \ {three distinct points on L}

is hyperbolic.
(b) Let E be an elliptic curve. Then

E \ {one point on E}

is hyperbolic.
(c) Every projective (or compact) curve of genus g ≥ 2 is
hyperbolic.

This implies that the curve defined by the equation
x3 − 2y3 = 1 is hyperbolic.
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There are various different proofs of the preceding classical
theorem. One of the proof is based on the Second Main
Theorem (abbrev. SMT) of Nevanlinna Theory:

Theorem (SMT, n = 1)

Let f : C→ C be a non-algebraic meromorphic function.
Then, for any q distinct points a1, ..., aq ∈ P1,

q∑
i=1

∫ 2π

0
log+ 1

|f (re
√
−1θ)− ai |

dθ

2π
≤ (2 + ε)Tf (r) + O(log r)

where the estimate holds for all r outside an exceptional set
of finite Lebesgue measure.

This is the analogue of Roth’s theorem. The LHS is known as
the proximity function and Tt(r) is called the characteristic
function. It is the analogue of the height function in number
theory.
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The SMT can be generalized to higher dimension:

Theorem (SMT, n ≥ 2)

Let L1, ..., Lq be q hyperplanes in general position in Pn.
Then, for any linearly non-degenerate holomorphic map
f : C→ Pn,

q∑
i=1

∫ 2π

0
log+ 1

|Li (f (re
√
−1θ))|

dθ

2π

≤ (n + 1 + ε)Tf (r) + O(log r)

where the estimate holds for all r outside an exceptional set
of finite Lebesgue measure.

This is the analogue of Schmidt’s subspace theorem.
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Diophantine Geometry vs Hyperbolic Geometry

The resemblance of the Roth-Schmidt’s theorem with the
SMT is quite striking. It certainly suggest a deeper
relationship between Diophantine geometry and hyperbolic
geometry. Vojta is the first to introduce a dictionary between
the two theories. Using the dictionary, an assertion in
Diophantine approximation can be translated to an assertion
in Nevanlinna theory and vice versa. However, at this time,
the correspondence is at the ‘formal’ level; no one has been
able to rigorously unify the two theories. What we do have
are many results form each theory which corresponds to each
other in a very precise manner.
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Even more striking is that many of the proofs can be
translated from one theory to the other via the following
Principle:

If a statement in hyperbolic geometry can be proved
using only the SMT then the corresponding statement in
Diophantine geometry can be proved in the same manner
using only Roth-Schmidt’s theorem. The same is true the
other way around.
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For example:

It was discovered that the SMT of Nevanlinna implies
that the space

Pn \ {2n + 1 hyperplanes in general position}

is hyperbolic. It was observed that the proof carries over
to Diophantine geometry and yields the higher
dimensional analogue of Siegel’s theorem in dimension
one. Namely, the complement of 2n + 1 hyperplanes,
defined over Q, in Pn admits only finitely many integral
points.

Corvaja and Zannier extends Schmidt’s subspace theorem
for hyperplanes to the case of hypersurfaces of degree d .
The proof is translated by Ru and yields the SMT for
hypersurfaces.
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Essentially all of the corresponding results whose proofs,
though not directly translatable at this time, are quite similar
in spirit. Among these are the following results, considered to
be major milestones:

(Hyperbolic Geometry) Bloch’s Theorem (Bloch 1926)
Let X be a subvariety of an abelian variety. Assume that
X is not a translate of an abelian subvariety. Then every
holomorphic map f : C→ X is algebraically degenerate.

(Hyperbolic Geometry) Lang’s Conjecture (established in
the affirmative by Siu and Yeung) Let A be an abelian
variety and D an ample divisor in A. Then A \ D is
hyperbolic.

(Arithmetic Geometry) The arithmetic analogues of both
Bloch’s and Siu-Yeung’s theorems are due to Faltings.
(These are the generalization of the classical results
about elliptic curves mentioned earlier.)
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Open Problems

The higher dimensional extension of Faltings Theorem.
To formulate this precisely we need the following
terminology. A projective variety X is said to be
Mordellic if the number of K rational points is finite for
an algebraic number field K. A variety X is said to be
algebraically hyperbolic if every rational map f from a
group variety into X is constant. The following
conjecture is due to Lang:

Let X be a projective variety. Then X is
Mordellic if and only if X is algebraically
hyperbolic if and only if every subvariety of X is
of general type.
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The SMT in Nevanlinna Theory mentioned earlier is
actually a weak version. A stronger version, due to
Ahlfors, known as the Ramified Second main Theorem
asserts that

Theorem (Ahlfors)

Let L1, ..., Lq be q hyperplanes in general position in Pn.
Then, for any linearly non-degenerate holomorphic map
f : C→ Pn,

N(Ram f , r) +

q∑
i=1

∫ 2π

0

1

|L(f (re
√
−1θ))|

dθ

2π

≤ (n + 1 + ε)Tf (r) + O(log r)

where the estimate holds for all r outside an exceptional set
of finite Lebesgue measure.
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Roughly speaking the term N(Ram f , r) counts the number of
tangents to the image of f with order of contact exceeding
the dimension n. For example when n = 1 this counts the
number of points of inflection.

At this time it is not known how exactly to extend
Roth-Schmidt’s theorem in an analogous fashion. Some
formulation of the analogue of the ramified term were
proposed by Lang and Vojta. However, there has been no
substantial progress so far.

Some of the results in hyperbolic geometry can only be
established with the stronger form of SMT. The arithmetic
analogues of all of these remain open.
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For p-adic numbers the concept of holomorphic functions
also makes sense; namely, convergent power series with
coefficients in Cp:

∞∑
n=0

anzn, an ∈ Cp, |an|p → 0.

There is a well-developed p-adic Nevanlinna Theory and
p-adic hyperbolic geometry. In general, the results in the
p-adic case are at least as strong, and often stronger,
than the complex analogue. The relationship between
p-adic Diophantine geometry and hyperbolic geometry
remains, to my knowledge, relatively unexplored.
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Complex hyperbolic geometry plays an important role in
the theory of complex dynamics, currently a very active
field in complex analysis. Recently, p-adic dynamics has
also received much attention as it has a p-adic
hyperbolicity as well as an arithmetic component. The
exploration of the arithmetic aspect of complex dynamics
is, at this time, still at the beginning stage. Hopefully
this will also receives the attention it deserves.
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Special Program in AG/HG at Fields

The purpose of the special program “Arithmetic Geometry
and Hyperbolic Geometry” in the coming semester, sponsored
by the Fields Institute, is to bring researchers in these two
area together providing them opportunities for interactions.
The following organized activities are scheduled:

Two major workshops, one in Arithmetic Geometry and
one in Hyperbolic Geometry. Lectures will be delivered by
some of the leading researchers in the respective fields.

Distinguished Lecture Series, by Y.-T. Siu (Harvard) in
Complex geometry and Coxeter Lecture Series by S.
Zhang (Columbia) in Arithmetic geometry.

Two mini-workshops, one in complex dynamics and one
in p-adic dynamics.
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We’ll also have many distinguished short term visitors from
around the world, who will be giving many seminar talks
during their visit here in the Fall.

We believe strongly that a research program should include an
educational component. This is a very substantial part of our
program. We offer

Three mini-courses for graduate students:
Arithmetic Geometry (Gillet),
Diophantine Approximation and Nevanlinna Theory (Ru),
Hyperbolic Geometry (Wong).
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THANK YOU!
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