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Some (Related!) Questions

� Medicine: How to make inferences from complicated
medical studies involving many parameters (age, blood
pressure, medical history, toxin levels, etc. for each pa-
tient, both before and after treatment)?

� Physics: How to understand models for physical sys-
tems involving thousands of interacting particles?

� Mathematics: How to numerically compute a very
high-dimensional complicated integral?

� Why do casinos always make money?

(1/15)



Repeated gambling

Example: \craps". Probability of winning = 49.29%.

What happens in the long run? [APPLET]

Probability of doubling your fortune before going broke,
with repeated $10 bets at craps:

Start with $100: 42.98%

Start with $1,000: 5.58% (1 chance in 18)

Start with $10,000: 1 chance in ten million billion

\Law of Large Numbers" { order from chaos.
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Law of Large Numbers

Over time, slight edge leads to guaranteed victory.

Under repetition, averages converge to expected values.

Formally: if Xi is amount won/lost on ith bet, then

lim
n!1

1

n

nX

i=1
Xi = E(Xi)

so if lose money on average (E(Xi) < 0), then will lose
all in the long run (Pni=1Xi � nE(Xi)! �1).

Applies to gambling, investing, games, polls / surveys,
\luck", tra�c lights, . . .
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Markov chain Monte Carlo (MCMC)

Applied to complicated models / computations.

Analogy: Find average altitude of huge mountain range.

Systematic sampling of entire range too time-consuming.

Instead: explore randomly, to conduct a \mini-poll" of
altitudes. Then take the sample average.

\Markov chain Monte Carlo"

# Google hits: 775,000.
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How does it work?

Have a target distribution �(�) that we want to sample
from (e.g. uniform over a mountain range).

Starting from a state (position) Xn, we propose a new
state Yn+1, and then either accept it with probability
�, or reject it with probability 1� �, where

� = min[1; �(Yn+1) = �(Xn)] :

Over time, it should converge . . . [APPLET]
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Why Does it Work?

Key: �(�) is stationary distribution:
X

x
�(x)P (x; y) = �(y) :

If start in �(�) then stay; otherwise converge to �(�).

Above equation holds since for x 6= y,

�(x)P (x; y) = �(x)Q(x; y)�(x; y)
= �(x)Q(x; y) min[1; �(y)=�(x)]
= Q(x; y) min[�(x); �(y)]
= �(y)P (y; x) (symmetric)

and P
xP (y; x) = 1.
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Example: Computing Integrals

Suppose want to compute I � R
X h(x) f (x) dx, where

X high-dimensional, and f is probability density (i.e.,
f � 0 and R

X f (x) dx = 1).

Run an MCMC algorithm having stationary distribu-
tion �(dx) = f (x) dx.

Then, for large B and M , Xi � �(�) for i � B, so

I �
1

M �B

MX

i=B+1
h(Xi)

by the Law of Large Numbers.
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Example: Particle System

Suppose particle pairs contribute energy h(dist).

System's overall energy is H(x) = P

i<j
h(dist(xi; xj)).

Probability of con�guration x is proportional to e�H(x)=� .

How to sample from this con�guration?

Run MCMC for �(dx) = C e�H(x)=� dx.

Works even with thousands of particles, provides samples.

Then can estimate mean inter-particle distance, etc.
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Example: Medical Inference

Suppose have K patients, and J observations for each
patient. Want to measure overall e�ect of treatment.

Use a complicated statistical model, e.g.

�
. # &

�1 : : : : : : �K �i � N(�;A)
. # # &

Y11; : : : ; Y1J : : : : : : YK1; : : : ; YKJ Yij � N(�i; V )

RunMCMC algorithm with �(�) = corresponding \pos-
terior", then can estimate E(�), etc.
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About MCMC

� It converges over the long run, just like for gambling,
i.e. the Law of Large Numbers is crucial.

� MCMC only needed when more direct methods (e.g.
numerical integration) infeasible due to complicated
model / high dimension / limited computer speed.

� (historical) MCMC developed c. 1953, to study phys-
ical systems with many particles, using very slow com-
puters. Then, became hugely more popular c. 1990 to
study high-dimensional, complicated statistical models
(esp. for medical studies).
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How quickly does it converge?

To use MCMC, need time to convergence, i.e. how long
to run it before black bars converge to blue bars?

Typically: Use \convergence diagnostics", to determine
heuristically if MCMC has converged. For example,
see if chain values appear \stationary", or if get same
answer from di�erent starting values. Problematic!

Better: Use mathematical theory to prove that, say,
jP(XB 2 A)� �(A)j < 0:01 for some explicit B.

But can be tricky. [Major research area . . . ]
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A Multitude of MCMC Algorithms

In applet example, with proposal distribution

UniformfXn � 
; : : : ; Xn � 1; Xn + 1; : : : ; Xn + 
g ;

which 
 results in the \best" algorithm? [APPLET]

� If 
 too small (say, 
 = 1), then usually accept, but
move very slowly { bad.

� If 
 too large (say, 
 = 50), then usually �(Yn+1) =
0, i.e. hardly ever accept { bad.

� Best is a \moderate" value of 
, like 3 or 4.
[\Goldilocks principle"]
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Computer Learning: Adaptive MCMC

Suppose we don't know which 
 is best. What to do?

Idea: Adapt, i.e. let the computer modify 
 as it goes
and \learn" the good values. In applet example:

Start with 
 = 2 (say).

Each time proposal is accepted, increase 
.

Each time proposal is rejected, decrease 
 (to min of 1).

Logical, natural adaptive scheme, which uses the com-
puter to perform a \search" for a good 
, on the 
y.

But does it work?? [APPLET]
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About Adaptive MCMC

� We see that naive adaption can ruin the algorithm,
and fail to converge to �(�).

� Hence, even obvious-seeming extensions of computer
algorithms can go horribly wrong in the absence of the-
oretical justi�cation; theory is important.

� Theorem: Adaptive MCMC will converge to �(�) pro-
vided it satis�es the Diminishing Adaptation property,
e.g. only adapt with probability p(n)! 0.

� So, can use adaption as long as your careful. Some
successes on high-dimensional problems. Hopefully more
in future as computers get faster (probability.ca/amcmc).
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Summary

Law of Large Numbers creates order from chaos: aver-
ages converge to their expected values (e.g. gambling).

Can use this for scienti�c computation: MCMC.

MCMC runs a Markov chain (random process) which
converges to the distribution of interest.

Can then use samples to draw inferences.

Time to convergence is a major research area.

Adaptive MCMC tries to get computer to help choose.

� Papers, applets, software: probability.ca
(15/15)


