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Quantitative Portfolio Management

A quantitative portfolio manager seeks to find the optimal
trade-off among three competing concerns:

Maximize expected portfolio return

Minimized portfolio risk (in absolute or relative terms)

Minimize trading costs (t-costs, from now on)

Trading costs can be a significant part of a large manager’s
utility. Different approaches to managing trading costs carefully
will be the main focus of this talk.
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Generic Portfolio Optimization Problem

Usual framework: n securities, expected returns given by µ
and covariance matrix Σ. A portfolio of the available
securities is denoted by the vector x = (x1, x2, . . . , xn).

Let x0 denote the initial portfolio and let t = |x − x0|
denote the trade vector. Representing portfolio constraints
in the generic form x ∈ X , we can formulate a simple
optimization problem:

max µT x − λxTΣx − φTC (t)T t
s.t. x ∈ X .

Above λ and φ represent the risk and t-cost aversion
respectively and TC represents the unit t-cost function.
This is one of the three alternative formulations of
Markowitz’ mean-variance optimization (MVO) problem.
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Typical portfolio constraints

Compliance and client constraints–e.g., a “restricted trade list”

Exposure constraints–e.g., limits on active bets on securities,
industries, sectors, etc.

Trade constraints–e.g., limit trades to x% of the average daily
volume (ADV)

Cardinality constraints–e.g., limits on the number of trades or
holdings

Threshold constraints–e.g., do not hold a position smaller than
x% of the portfolio

Others–e.g., limit “distance” to a model portfolio

However, “Constraints . . . accumulate like useless items in a closet

until their cumulative effect is too large to ignore.” (R. Grinold)
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Trading costs

Trading costs typically have two distinct components:

Commissions and bid-ask spread (linear in trade size)
Market impact (superlinear in trade size)
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3/2-power market impact function

A conic representation for the convex non-linear market impact
function improves solver performance. This requires a simple
conversion:

min
n∑

k=1

qkt
3/2
k ≡

min
∑n

k=1 qkuk

s.t. t
3/2
k ≤ uk , forallk.

We now make the following simple observation:

t
3/2
k ≤ uk ⇔

∃vks.t.
t2
k ≤ uk · vk ,

v2
k ≤ tk · 1.

Both inequalities on the RHS are rotated quadratic cone
inequalities. Hence the 3/2-power market impact function can
be optimized using standard conic optimization software.
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Separately Managed Accounts (SMAs)

Most clients prefer to “own” an SMA rather than shares
of a mutual fund

This gives them flexibility to customize their portfolio
according to their investment goals and concerns

Larger asset managers manage hundreds of SMAs. As a
result, on any given day, multiple accounts must be
optimized/rebalanced.

The complication arises from the fact trading these
accounts together generates a nonlinear cumulative market
impact.

Accounts that are traded together can not be truly
optimized in isolation. This also brings up issues of bias
and fairness.
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Optimizing Independently

For account j , we optimize

max (µj)T x j − λj(x j)TΣjx j − φjTC (t j)T t j

s.t. x j ∈ X j .

However, the “true” objective value is

(µj)T x j
∗ − λj(x j

∗)
TΣjx j

∗ − φjTC (
∑

i

t i
∗)

T t j
∗.

So, the objective function above under-estimates the total market
impact and results in too much trading. The effect can be severe
when t j

∗ is much smaller than
∑

i t
i
∗.

This approach also creates a size bias–smaller accounts are

disadvantaged.
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Collusive Approach

The idea is to optimize all accounts jointly, using a total welfare
objective function (O’Cinneide, Scherer, Xu, JPM, Summer
2006.)

The optimization problem

max
∑

j(µ
j)T x j −

∑
j λj(x j)TΣjx j − φTC (

∑
j t j)T (

∑
j t j)

s.t. x j ∈ X j , ∀j .

Stubbs (2007) shows that this approach is not “fair”–some
accounts may have to sacrifice themselves for the benefit of the
group. They can improve their utility by acting unilaterally.

Theoretically, the unfairness issue can be overcome by
“equitably distributing” the objective function improvements.
However, this is practically impossible to implement.
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An equilibrium approach

When optimizing account j , assume that accounts i 6= j will
have trades t i

∗ and then optimize

max (µj)T x j − λj(x j)TΣjx j − φjTC (t j +
∑

i 6=j t i
∗)

T t j

s.t. x j ∈ X j .

Let us call this problem CNP(j).

If there exists t j
∗, j = 1, . . . , n such that for each j , t j

∗ solves
CNP(j), then we have an equilibrium solution. This would be a
fair solution in the sense that unilateral deviation from this
solution would not benefit anybody.

In other words, we are seeking a (Cournot-)Nash equilibrium
point. It must exist because of the concavity of the objective
functions. How do we find it?

While the equilibrium solution is inferior to the collusive solution
in terms of the total welfare function, it is easier to justify and
implement.
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Representing the shifted market impact function

When TC(x) = x1/2, the market impact term in the objective function of
CNP(j) can be handled as follows. We want to:

min
nX

k=1

qkt
j
k ·
s

t j
k +

X
i 6=j

(t i
∗)k

Let’s simplify:

min
nX

k=1

tk
√

tk + ak ≡
min

Pn
k=1 uk

s.t. ∀k tk
√

tk + ak ≤ uk

≡
min

Pn
k=1 uk

s.t. ∀k (tk + ak)
3/2

≤ uk + ak

√
tk + ak

≡

min
Pn

k=1 uk

s.t. ∀k v
3/2
k ≤ yk

vk = tk + ak

yk = uk + zk

zk ≤
√

tk + ak

All the inequalities can be written using rotated second order cone

constraints.
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Solution Strategy

A simple idea: Generate some initial trade estimates, solve
each CNP(j) with the corresponding estimates, update the
estimates and iterate.

Convergence can be difficult. An obvious problem is
“zig-zagging”. Can be partly remedied by fictitious play:

To generate the trade size estimate for iteration k + 1, use
a convex combination of the trade size estimate for
iteration k and the optimal trades computed for problem
CNP(j) in iteration k.
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Other ideas

Find “better” estimates of the equilibrium trades, e.g.,
from a combined account optimization. There are some
difficulties with this approach–for example, different
benchmarks, risk appetites, constraints among different
accounts.

Try an all-at-once approach instead of solving
account-by-account and iterating. Axioma (Ceria, Stubbs,
Schmieta, etc.) is working on this solution. This approach
can easily handle cumulative constraints, e.g., do not trade
more than x% of average daily volume in any name.

But, it is much easier to parallellize the
account-by-account approach.
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Challenges for the iterative approach

Is the existence of equilibrium guaranteed given that there
are non-convex constraints/costs in most problems?

Also, can there be multiple equilibria? If so, how can we
ensure we converge to the “best” one?

How do we recognize that we are close enough to the
equilibrium? In other words, what is a good termination
criterion?

How do we deal with cumulative constraints?
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A Factor Model of Returns

Most quantitative portfolio construction approaches describe the return
and risk characteristics of securities using factor models.

Asset and portfolio returns and risks can be decomposed into two parts:
those which are due to factors prevalent throughout the market and those
which are specific to asset or the securities in the porfolio. A multiple
factor model tries to capture this decomposition. Its advantages are:

A thorough breakdown of risk

Incorporates economic logic

Robust to outliers

Adapts to macro movements

Realistic, flexible, tractable and easy to understand
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Multiple Factor Models

The decomposition of the return in asset i:

ri (t) =
X

k

Fi,k(t) · bk(t) + ui (t)

where

ri (t) = excess return of asset i in period t

Fi,k(t) = exposure of asset i to factor k in period t

bk(t) = factor return in period t

ui (t) = specific return of asset i in period t.

Matrix form:2
6664

r1
r2
...
rn

3
7775 =

2
6664

f11 · · · f1m

f21 · · · f2m

...
. . .

...
fn1 · · · fnm

3
7775
2
6664

b1

b2

...
bm

3
7775+

2
6664

u1

u2

...
un

3
7775



Mean Reversion

Recall the factor decomposition of the excess returns:

rt = Ftbt + ut

From this decomposition it follows that

µt = E[rt ] = FtE[bt ] + E[ut ].

Model assumption: E[ut ] ≡ 0 and E[bt ] is stationary. As a
result expected returns move with the movements in the factor
exposures (F ).

Empirical observation: Exposures mean revert. Consequently,
expected returns also mean revert.
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Information Decay



Dynamic Portfolio Selection

Consider the following infinite horizon utility maximization problem:

max
{xt}t=0,...

E

"
∞X
t=0

γtu(µt , xt)

#

where γ is a discount factor, and u(·) is the utility function we have seen
before:

u(µ, x) = µT x − λxTΣx − φTC(t)T t.

For simplicity, we assume TC(t) = Λt and ignore constraints for now.

Also assume the following mean-reverting model for expected returns:

µt = (I− β)µt−1 + βµ̄ + εt

where β is a diagonal matrix of mean reversion coefficients and µ̄ is the
vector of average expected returns. ε is white noise. Σ and Λ are
time-invariant.

Different factors will have different mean reversion rates. This is important

for trading costs.
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Finite Horizon Formulation

The finite-horizon recursion for the problem is given by:

JN (µN , xN−1) = max
tN

(x ′NµN − λx ′NΣxN − φt ′NΛtN)

Jt (µt , xt−1) = max
tt

E [x ′tµt − λx ′tΣxt − φt ′tΛtt + γJt+1 (µt+1, xt)]

Period N problem is a simple QP. Solving it, we obtain:

tN =
1

2
(λΣ + φΛ)−1

µN − (λΣ + φΛ)−1 (λΣ) xN−1
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The Value Function

Define the following matrices:

AN = 1
2
(λΣ + φΛ)−1

BN = (λΣ + φΛ)−1 (λΣ)

so that
tN = ANµN − BNtN−1

Then,

JN (µN , tN−1) = µ′NMNµN + x ′N−1NNxN−1 + x ′N−1PNµN

where

MN =
1

2
AN

NN = −φΛBN

PN = 2φΛAN
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Recursion

Given the shape of JN(·), we hypothesize that Jt(·) will be quadratic
and try to solve for the coefficients of this quadratic model. Indeed,

Jt(·) = µ′tMtµt + x ′t−1Ntxt−1 + x ′t−1Ptµt + q′tµt + r′txt−1 + ft
τt = Atµt − Btxt−1 + ct

for certain parameters At , Bt , etc., derived from Σ, Λ, β, etc.

An infinite horizon extension is relatively straight-forward and

requires the solution of a fixed-point problem.
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How do we use this for constrained problems?

We use our knowledge of J(·) to set up a quadratic program which will
approximate the optimal solution to the constrained multi-period
rebalancing problem. The QP is then given by:

max
tt

�
x ′tµt − λx ′tΣxt − φt′tΛtt + γE [J (µt−1, xt−1 + tt)]

�
s.t. xt = xt−1 + tt ∈ X

which is equivalent to

max
tt

�
− t′t

�
λΣ + φΛ− γN

�
tt +

�
µt + 2 (λΣ− γN) xt−1+

γP ((I− β)µt + βµ̄) + γr
�
tt

�
s.t. xt = xt−1 + tt ∈ X



Alternatives

Can we construct one-period problems that partially capture
the dynamics of the inputs?

For example, incorporate the decay rate into the expected
returns used in optimizations.

One critical issue is the selection of the t-cost aversion
parameter φ. It needs to balance the expected return rates
with the trading costs, so the aversion parameter must ensure
that these terms are in the “same units”. But this creates a
chicken-and-egg problem.
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“Consistent” t-cost aversion

u(µ, x) = µT x − λxTΣx − φTC (t)T t.

If µ is an annualized return estimate, and TC (t)T t is a
one-time trading-cost, to bring these two terms to comparable
units, φ must correspond to the expected number of trades per
year for the securities in the portfolio.

The problem is, for lower φ, we have higher turnover and
higher expected number of trades per year–perhaps inconsistent
with the φ we used. Similar problem for φ that is too high.

How do we find the “right” value of this parameter? Iterate to
achieve “consistency”...
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Recap

Trading costs are important considerations for asset
managers. Optimization tools are crucial in managing
these costs carefully.

Trading multiple accounts simultaneously poses a difficult
question of balancing optimality and fairness. An
equilibrium approach seems best suited for this situation.
Conic optimization tools are essential.

Dynamic programming and optimal control techniques are
useful in addressing the multi-period portfolio selection
models. However, computational burden is still too high
for a “true” solution of this problem. Instead, we focus on
informed heuristics.
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Additional information

1 This material is provided for educational purposes only and should not be construed as investment
advice or an offer or solicitation to buy or sell securities.

2 THIS MATERIAL DOES NOT CONSTITUTE AN OFFER OR SOLICITATION IN ANY
JURISDICTION WHERE OR TO ANY PERSON TO WHOM IT WOULD BE UNAUTHORIZED
OR UNLAWFUL TO DO SO.

3 These examples are for illustrative purposes only and are not actual results. If any assumptions used
do not prove to be true, results may vary substantially.

4 The opinions expressed in this research paper are those of the authors, and not necessarily of GSAM.
The investments and returns discussed in this paper do not represent any Goldman Sachs product.
This research paper makes no implied or express recommendations concerning how a clients account
should be managed. This research paper is not intended to be used as a general guide to investing or
as a source of any specific investment recommendations.

5 Opinions expressed are current opinions as of the date appearing in this material only. No part of
this material may, without GSAMs prior written consent, be (i) copied, photocopied or duplicated in
any form, by any means, or (ii) distributed to any person that is not an employee, officer, director, or
authorised agent of the recipient.

6 Copyright c© 2007, Goldman, Sachs Co. All rights reserved.
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