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Outline

✦ Quick explanation of laminar flow and transition 
prediction

✦ Design of various laminar flow experiments
• small blade under F-15

• airfoils for lengthened blade

• rocket-propelled sled test

✦ Full aircraft configuration aerodynamic 
optimization
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Supersonic Business Jet

✦ Conventional supersonic 
designs minimize wave drag
• wing/body shaping (traditional 

“area ruling”)

• propulsion integration

✦ Alternately can minimize skin 
friction
• natural laminar flow

• Aerion Corporation (Richard 
Tracy)
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www.aerioncorp.com

http://www.aerioncorp.com
http://www.aerioncorp.com
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Laminar to Turbulent Transition

✦ Viscous boundary layer near 
surface begins in laminar state

✦ Laminar flow becomes unstable
• initially instabilities behave as linear 

waves

• various types of instabilities exist

✦ Turbulent flow bad for drag
• skin friction increases 5 to 10-fold 

(depending on flight conditions)

• very little laminar flow in today’s jet 
aircraft
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Design for Laminar Flow

✦ Current aviation industry practice very limited
• 2-D airfoil section design based on pressure distribution

• Beech did 3-D inverse design to a specified pressure 
distribution (Alonso & Reuther SYN-107)

• interest in laminar flow increasing for transonic aircraft

✦ For Aerion, laminar flow drives entire 
configuration
• strong coupling between supersonic wave drag and laminar 

flow

• need transition modeling for conceptual design
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Modeling Transition

✦ Direct computation of transition still not 
practical

✦ Relatively high-fidelity transition 
prediction available since the ‘80s
• computationally intensive, even the semi-empirical 

“eN” method

• human intervention required: “massaging” and 
“baby sitting”

• not suited for numerical optimization

✦ Database or parametric models used 
instead
• very fast

• less accurate, but

• can be focused around particular characteristics of 
aircraft of interest
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Aerion Concept
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✦ Supersonic flight stabilizes laminar flow
✦ Low wing sweep

• delay crossflow transition

✦ Sharp leading edge
• decrease wave drag

• eliminate attachment line transition

• favorable pressure gradient delays TS 
transition

✦ Thin wing
• minimize wave drag

• fuselage area ruling

• structural and fuel volume trade

✦ Optimization necessary
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Does it Really Work?

✦ V-2 nose cone in 1950
• Demonstrated 90 million Retr at 

Mach 2.7

✦ F104 test in 1959
• Demonstrated 8 million Retr at 

Mach 2

• Difficult to analyze due to lack of 
geometry model

✦ Most other tests on high 
Mach reentry bodies
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Does it really work?

✦ Flight test under F-15B
✦ Aerion-like wing

• Span: 80 cm

• Sweep: 30° or 15°

• Thickness: 3.5% root, 2.5% tip
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Does it Really Work?
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Mach 1.8

white: 
turbulent flow

colors: 
laminar flow deliberate trips
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Does it Really Work?
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Mach 1.55
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Early Design with Transition

✦ Proposed flight test article 
• fuselage half-body added to previous test article

• Designed for Mach 1.8 at 40,000 feet

✦ Addition of half-body spoils laminar flow
• Mach wave from wing leading-edge intersection

• perhaps shaping can recover laminar flow?
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Early Design with Transition

✦ Shape optimization for laminar flow
• quadratic response surface + trust region

• 3 design variables initially

✦ Laminar flow increased 
• nearly to trailing edge

• “hot spots” very close to transition
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Early Design with Transition

✦ Final design iteration 
• increased to five design points on fuselage

• transition margins increased
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Early Design with Transition

✦ Fuselage reshaping is 
subtle

✦ Implies that design 
for laminar flow can 
be somewhat 
independent of area 
ruling
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✦ Quadratic response surface 
with trust region algorithm

✦ Simplex-based point stencil
• symmetric in design space

• can sometimes reflect simplex to 
move trust region, re-using some 
old points

✦ 7 iterations
• took advantage of reflection to 

save function evaluations

• trust region updates by hand

Details of Optimization
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Airfoil Design for Laminar Flow

✦ Minimize N-factor on 2D airfoil at Mach 1.8
✦ 6 shape variables
✦ Thickness constrained to not more than 3% t/c
✦ Starting shape: parabolic biconvex
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Airfoil Design for Laminar Flow
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Airfoil Design for Laminar Flow

✦ Original N-factor fits too approximate
✦ Final design

• flat N-factor aft of 20% chord

• high-fidelity instability analysis in reasonable agreement

• section maximum thickness slightly forward
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Airfoil Design for Laminar Flow
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Details of Optimization

✦ Gradient-based sequential-quadratic optimization
✦ Complex-step derived gradients
✦ Maximum N-factor splined with Akima algorithm
✦ Issues when multiple maxima in N-factor arise

• maximum location jumps between different peaks

• optimizer sees inaccurate gradients near optimum

• tried reformulated objective using norms of discrete N-
factors
- smooth objective near optimum
- does not improve convergence rate
- regions of airfoil with control over maxima still moves around
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Rocket-Sled Test

✦ Rocket-propelled sled accelerated to 
Mach 1.5 - 1.6
• Test blade representative of Aerion wing 

planform and airfoils

• 30 million + Reynolds number

✦ Main issues
• Structural vibration from sled runners and 

pusher rockets

• Very high Reynolds/foot ~ 5x flight scale
- Laminar stability requires higher surface quality 

(more polished)
- IR requires high emissivity coating  (less polished)

• Heating from rocket plume destabilizes laminar 
flow

✦ Testing to determine feasibility is on-
going
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Rocket-Sled Test

Complex geometry necessary for aerodynamic 
analysis and design of test article
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Rocket-Sled Test
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CFD-ready 
geometries analyzed 

with Cart3D
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Rocket-Sled Test

✦ Settled on monorail sled 
design

✦ Minimizes flow 
disturbances on test 
surface

✦ Allows more flexibility for 
avoiding choking and 
excessive forces due to 
flow in channel between 
rails

✦ Good spread of shoes to 
react forces and moments
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Rocket-Sled Test

✦ Typical Euler solutions on 
full geometry
• test wing

• sled fairing and outrigger

• rails

• track bed

26



Desk top
Aeronautics

Rocket-Sled Test

✦ Baseline sled design still 
not ideal for laminar flow

✦ Increase in boundary-layer 
crossflow compared 
symmetry plane
• similar to half-wing

• nose shock and other pressure 
disturbances bounce around

27



Desk top
Aeronautics

Rocket-Sled Test

✦ Sled fairing modified to 
lower maximum N-factor
• Cart3D coupled with transition 

design code

• nonlinear simplex optimization

✦ Airfoil modifications also 
effective
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Rocket-Sled Test
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✦ Objective is linear 
combination of 
laminar extent at 
two Mach numbers

✦ Widens useful 
Mach number range

✦ Allows more design 
variables

Dual-point
optimizations
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Optimization

✦ Two-part optimization
• inviscid full-configuration 

drag minimization

• viscous wing/body drag 
minimization

✦ Due to supersonic cones 
of influence
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45.2 m

19.6 m

7.1 m
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Geometry Generation

✦ CAD-based
• labor-intensive, time-consuming

• geometric instead of aircraft design parameters
- control points
- trimming surfaces

• not practical for trade studies, optimization

✦ Perturbation method
• modifications to a baseline geometry model

• powerful when making small local changes

• impractical when making gross changes

✦ Parametric geometry
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Optimization
✦ Rapid Aerospace Geometry 

Engine (RAGE)
✦ Axially splined bodies

• fuselages

• nacelles

✦ Lofted stack of airfoils
• wings

• tails

• pylons
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Optimization
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Inviscid Drag Minimization of Full Configuration

✦ Geometry
• wing, strake, fuselage, canopy, 

inlet, nozzle, diverter, empennage

• fix portions of fuselage, strake 
and wing to maintain laminar 
flow

✦ Optimization
• nonlinear simplex

• geometric constraints

• inlet and nozzle flow constraints

• lift constrained
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Inviscid Optimization

✦ Cart3D inviscid Euler solver
✦ Minimize drag and maximize 

thrust
✦ Off-design constraints
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inlet

nozzle
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Inlet Optimization at Mach 1.5

✦ 4.6% increase in pressure recovery
✦ 4.8% increase in aircraft drag
✦ Stable inlet throughout mission profile
✦ 5.8% decrease in objective function

35

Initial geometry by
“stream tracing”

ample spillage

external
shock system

swallowed
normal shock

plotting artifacts

Optimized Geometry
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Inlet Optimization Details

✦ Minimize weighted sum of 
aircraft drag and pressure 
recovery at Mach 1.5

✦ Constrain inlet lip Mach 
number to force ample 
spillage region at Mach 1.5 
and Mach 1.6

✦ Constrain lift coefficient
✦ Vary all geometric 

parameters plus angle of 
attack
• 100 distinct design variables

• 15-20 at a time
36

manual
restart

simplex contractions
with violated constraint

constrained Nelder-Mead
nonlinear simplex method
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Nozzle Optimization

✦ Similar optimization techniques as inlet design
✦ 10% thrust improvement
✦ Less than 1% increase in airframe wave drag
✦ Currently also using takeoff condition constraint
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Optimization
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✦ Geometry
• simplified nacelles, wing, strake, 

fuselage

• fix aft portions to avoid interfering 
with propulsion integration

• approximate canopy area

✦ Optimization
• genetic algorithm

- erratic jumps in transition front
- occasional bad points from flow 

solver

• geometric and lift constraints

fuselage widths, 
upper and lower

airfoil shapes,
twist

camber, twist,
leading-edge droop

Optimization for Laminar Extent
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Early Difficulties

✦ White areas indicate 
turbulent flow

✦ Difficulties in 
obtaining adequate 
laminar flow due to 
addition of strake
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Key Elements

40

✦ Upper/lower fuselage width split
✦ Airfoil nose droop
✦ The notch

Cp
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Typical Result

✦ Less than 100% laminar 
fraction due to wave drag 
trade

✦ Optimization 
“encouraged” to favor 
lower surface due to 
nacelle and spoiler 
placement

41



Desk top
Aeronautics

Details of Optimization

✦ Genetic Algorithm
• real-valued crossover, 

mutation

• least-squares Lagrange 
multiplier estimate for 
constraint penalty

• Highly parallelizable

✦ 10 to 25 variables
✦ 400 to 2000 population 

members
✦ A502 panel method used 

insead of Euler solver
42

P1

P2
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Details of Optimization

43

✦ Example convergence 
history
• 24 design variables

• population: 2304

• 16 cpu-weeks
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Sensitivity to Mach

✦ Long-range cruise at 
Mach 1.4

✦ High-speed cruise at 
Mach 1.6

✦ Laminar extent poor 
at Mach 1.6

44



Desk top
Aeronautics

Multi-Objective Optimization

✦ Optimized at both 
Mach 1.4 and 1.6 
simultaneously

✦ Pareto-optimal set
✦ Population-based 

optimization (GA)
• ranking and niching 

per book by Deb
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Drag at Mach 1.4
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initial population

iteration 180

optimal trade
between performance
at Mach 1.4 and 1.6

seeded with relatively
good designs at various

angles of attack

random initial
population
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Multi-Objective Optimization

✦ Shows tradeoff between 
drag at two cruise 
speeds

✦ Found better Mach 1.6 
result than single-point 
optimization
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lower
surface

upper
surface
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Multi-Objective Optimization
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Multi-Objective Optimization
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Multi-Objective Optimization
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Multi-Objective Optimization
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Conclusions

✦ Optimization is key to Aerion natural laminar flow 
design
• achieving laminar extent with minimal wave drag penalty

• propulsion integration with 3D intakes and nozzles

✦ Simple optimization algorithms can be quite useful
✦ Robustness more important than fast convergence
✦ Some improvement more important than a 

provable optimum
• “An optimal airplane is one that is out on the ramp ready 

to fly a mission.” C. L. Johnson
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Conclusion
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Before After


