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Actual Initial Condition

0 /2 3 /2 2

x

I Objectives:
I Control fluid flow with the least

amount of energy possible
I Estimate flow based on incomplete

and/or noisy measurements

I The Navier–Stokes system

8>>>>><>>>>>:

∂v

∂t
+ (v ·∇)v + ∇p − µ∆v = φ, in Ω× (0, T )

∇ · v = 0, in Ω× (0, T )

Initial condition on Γ× (0, T )

Boundary condition in Ω at t = 0

I Inverse problems
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Statement of the Problem I

I Flow Domain

infV

V(t)
τ

��
(t)ϕ

Y

X

Ω

O

Γ

D

I Assumptions:
I viscous, incompressible flow
I plane, infinite domain
I Re = 150
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Statement of the Problem II

I Find ϕ̇opt = argminϕ̇ J (ϕ̇) , where

J (ϕ̇) =
1

2

∫ T

0

{[
power related to
the drag force

]
+

[
power needed to
control the flow

]}
dt

=
1

2

∫ T

0

∮
Γ0

{[p(ϕ̇)n− µn ·D(v(ϕ̇))] · [ϕ̇ (ez × r) + v∞]} dσdt

I Subject to:
[

∂v
∂t + (v ·∇)v − µ∆v + ∇p

∇ · v

]
=

[
0
0

]
in Ω× (0,T ),

v = 0 at t = 0,

v = ϕ̇optτ on Γ
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Flow Optimization Example
∇J via Adjoint System
Preconditioning

Abstract Framework I

I Constrained optimization problem min
(x ,ϕ)

J̃ (x , ϕ)

S(x(ϕ), ϕ) = 0

I Equivalent unconstrained optimization problem (note that
x = x(ϕ) )

min
ϕ
J̃ (x(ϕ), ϕ) = min

ϕ
J (ϕ)

I First–Order Optimality Conditions (U - Hilbert space of
controls) ∀ϕ′∈U J ′(ϕ;ϕ′) =

(
∇J , ϕ′

)
U = 0,

with the Gâteaux differential
J ′(ϕ;ϕ′) = limε→0

1
ε [J (ϕ + εϕ′)− J (ϕ)].
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Abstract Framework II

I Minimization of J (ϕ) with a descent algorithm in U
=⇒ solution to a steady state of the ODE in U8<:

dϕ

dτ
= −Q∇ϕJ (ϕ) on τ ∈ (0,∞) (pseudo–time),

ϕ = ϕ0 at τ = 0.

I Typically well–behaved (quadratic) cost functionals
I Typically ill–behaved constraints: the Navier–Stokes

system
I nonlinear, nonlocal, multiscale, evolutionary PDE,

I Dimensions:
I state: 106 — 107 DoF × 102 — 103 time levels
I control: 104 — 105 DoF × 102 — 103 time levels

I No hope of using “matrix” formulation ...
I Formulation equivalent to Lagrange Multipliers
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Differential of the Cost Functional

I The cost functional:

J (ϕ̇) =
1

2

∫ T

0

{[
power related to
the drag force

]
+

[
power needed to
control the flow

]}
dt

=
1

2

∫ T

0

∮
Γ0

{[p(ϕ̇)n− µn ·D(v(ϕ̇))] · [ϕ̇ (ez × r) + v∞]} dσdt,

I Expression for the Gâteaux differential:

J ′(ϕ̇; h) =
1

2

∫ T

0

∮
Γ0

{
[p′(h)n− µn ·D (v′(h))] · [ϕ̇ (ez × r) + v∞] +

[p(ϕ̇)n− µn ·D(v(ϕ̇))] · (ez × r) h
}

dσ dt = B1

= (∇J (t), h)L2([0,T ])

The fields {v′(h), p′(h)} solve the linearized perturbation system.

I How to calculate the Gradient ∇J ?
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Sensitivities and Adjoint States

I The linearized perturbation system8>>>><>>>>:
N

»
v′

p′

–
=

»
∂v′

∂t
+ (v ·∇)v′ + (v′ ·∇)v − µ∆v′ + ∇p′

−∇ · v′

–
=

»
0
0

–
in Ω× (0, T ),

v′ = 0 at t = 0,

v′ = hτ on Γ× (0, T )

I Duality pairing defining the adjoint operator*
N

»
v′

p′

–
,

»
v∗

p∗

– +
L2(0,T ;L2(Ω))

=

* »
v′

p′

–
,N ∗

»
v∗

p∗

– +
L2(0,T ;L2(Ω))

+ B1 + B2

I The adjoint system ( terminal value problem !! )8>>><>>>:
N ∗

»
v∗

p∗

–
=

»
− ∂v∗

∂t
− v ·

ˆ
∇v∗ + (∇v∗)T

˜
− µ∆v∗ + ∇p∗

−∇ · v∗

–
=

»
0
0

–
in Ω× (0, T ),

v∗ = 0 at t = T ,

v∗ = r × (ϕ̇ez ) + v∞ on Γ× (0, T )

Bartosz Protas Adjoint–Based Optimization in Fluid Mechanics



Agenda
Introduction

PDE–Constrained Optimization
Optimization of Free–Boundary Problems

Conclusions

Flow Optimization Example
∇J via Adjoint System
Preconditioning

Sensitivities and Adjoint States

I The linearized perturbation system8>>>><>>>>:
N

»
v′

p′

–
=

»
∂v′

∂t
+ (v ·∇)v′ + (v′ ·∇)v − µ∆v′ + ∇p′

−∇ · v′

–
=

»
0
0

–
in Ω× (0, T ),

v′ = 0 at t = 0,

v′ = hτ on Γ× (0, T )

I Duality pairing defining the adjoint operator*
N

»
v′

p′

–
,

»
v∗

p∗

– +
L2(0,T ;L2(Ω))

=

* »
v′

p′

–
,N ∗

»
v∗

p∗

– +
L2(0,T ;L2(Ω))

+ B1 + B2

I The adjoint system ( terminal value problem !! )8>>><>>>:
N ∗

»
v∗

p∗

–
=

»
− ∂v∗

∂t
− v ·

ˆ
∇v∗ + (∇v∗)T

˜
− µ∆v∗ + ∇p∗

−∇ · v∗

–
=

»
0
0

–
in Ω× (0, T ),

v∗ = 0 at t = T ,

v∗ = r × (ϕ̇ez ) + v∞ on Γ× (0, T )

Bartosz Protas Adjoint–Based Optimization in Fluid Mechanics



Agenda
Introduction

PDE–Constrained Optimization
Optimization of Free–Boundary Problems

Conclusions

Flow Optimization Example
∇J via Adjoint System
Preconditioning

Sensitivities and Adjoint States

I The linearized perturbation system8>>>><>>>>:
N

»
v′

p′

–
=

»
∂v′

∂t
+ (v ·∇)v′ + (v′ ·∇)v − µ∆v′ + ∇p′

−∇ · v′

–
=

»
0
0

–
in Ω× (0, T ),

v′ = 0 at t = 0,

v′ = hτ on Γ× (0, T )

I Duality pairing defining the adjoint operator*
N

»
v′

p′

–
,

»
v∗

p∗

– +
L2(0,T ;L2(Ω))

=

* »
v′

p′

–
,N ∗

»
v∗

p∗

– +
L2(0,T ;L2(Ω))

+ B1 + B2

I The adjoint system ( terminal value problem !! )8>>><>>>:
N ∗

»
v∗

p∗

–
=

»
− ∂v∗

∂t
− v ·

ˆ
∇v∗ + (∇v∗)T

˜
− µ∆v∗ + ∇p∗

−∇ · v∗

–
=

»
0
0

–
in Ω× (0, T ),

v∗ = 0 at t = T ,

v∗ = r × (ϕ̇ez ) + v∞ on Γ× (0, T )

Bartosz Protas Adjoint–Based Optimization in Fluid Mechanics



Agenda
Introduction

PDE–Constrained Optimization
Optimization of Free–Boundary Problems

Conclusions

Flow Optimization Example
∇J via Adjoint System
Preconditioning

Cost Functional Gradient

I The adjoint state and duality pairing can now be used
to re–express the cost functional differential as:

J ′(ϕ̇; h) =
1

2

∫ T

0

∮
Γ
{µRn ·D(v∗) · τ + µn ·D(v(ϕ̇)) · (ez × r)} h dσ dt

I Identification of the cost functional gradient

J ′(ϕ̇; h) = (∇J (t), h)L2([0,T ]) =

∫ T

0

∇J (t) h dt

∇J (t) =
1

2

∮
Γ

{µRn ·D(v∗) · τ + µn ·D(v(ϕ̇)) · (ez × r)} dσ
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Preconditioning

Optimality (KKT) system

I Complete optimality system for ϕ̇opt , [vopt , popt ], and [v∗, p∗]8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

1

2

I
Γ
{µRn ·D(v∗) · τ + µn ·D(v(ϕ̇opt)) · (ez × r)} dσ = 08>>><>>>:

»
∂v
∂t

+ (v ·∇)v − µ∆v + ∇p
∇ · v

–
=

»
0
0

–
in Ω× (0, T ),

v = 0 at t = 0,

v = ϕ̇optτ on Γ8>>><>>>:
N ∗

»
v∗

p∗

–
=

»
− ∂v∗

∂t
− v ·

ˆ
∇v∗ + (∇v∗)T

˜
− µ∆v∗ + ∇p∗

−∇ · v∗

–
=

»
0
0

–
in Ω× (0, T ),

v∗ = 0 at t = T ,

v∗ = r × (ϕ̇optez ) + v∞ on Γ

I A counterpart of the Euler–Lagrange equation
I Solved with an iterative Gradient Algorithm

(e.g., Conjugate Gradients, quasi–Newton, etc.)
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»
∂v
∂t

+ (v ·∇)v − µ∆v + ∇p
∇ · v

–
=

»
0
0

–
in Ω× (0, T ),

v = 0 at t = 0,

v = ϕ̇optτ on Γ8>>><>>>:
N ∗

»
v∗

p∗

–
=

»
− ∂v∗

∂t
− v ·

ˆ
∇v∗ + (∇v∗)T

˜
− µ∆v∗ + ∇p∗

−∇ · v∗

–
=

»
0
0

–
in Ω× (0, T ),

v∗ = 0 at t = T ,

v∗ = r × (ϕ̇optez ) + v∞ on Γ

I A counterpart of the Euler–Lagrange equation

I Solved with an iterative Gradient Algorithm
(e.g., Conjugate Gradients, quasi–Newton, etc.)
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An Iterative Optimization Procedure

0. provide initial guess ϕ̇0

1. Solve for
{
v(ϕ̇i ); p(ϕ̇i )

}
on [0,T ]

2. Solve for
{
v∗(ϕ̇i ); p∗(ϕ̇i )

}
on [0,T ]

3. Use
{
v(ϕ̇i ); p(ϕ̇i )

}
and

{
v∗(ϕ̇i ); p∗(ϕ̇i )

}
to compute ∇J i (t) on [0,T ]

4. update control according to ϕ̇i+1(t) = ϕ̇i (t)− αiγi (∇J (t))

5. iterate 1. through 4. until convergence, i.e. until ∇J i (t) ' 0
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Primal and Adjoint Simulations
for Cylinder Rotation as Control
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Results

I No Control

I Flow Pattern Modifications due to Control (T = 6)

I Optimal Control ϕ̇opt , drag coefficient cD , transverse velocity v
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Conditioning and Preconditioning

I Rate of convergence in a NLP depends on Conditioning of
the Problem

I Conditioning determined by the reduced Hessian

∇2
(ϕ)F = Lϕϕ + Lϕu

„
du

dϕ

«
+

„
du

dϕ

«∗

Luϕ +

„
du

dϕ

«∗

Luu

„
du

dϕ

«
where (via the implicit function theorem)

L(u, ϕ, λ) = f (u, ϕ) + 〈λ, S(u(ϕ), ϕ)〉 du

dϕ
= −S−1

u Sϕ

I Preconditioning via “Sobolev Gradients” [Neuberger (1997)]8<:
dϕ

dτ
= −∇QJ (ϕ) on τ ∈ (0,∞) (pseudo–time),

ϕ = ϕ0 at τ = 0.

where (∇QJ , ϕ′)Q = (∇L2J , ϕ′)L2 and Q ⊂ U
I Variable Preconditioning: Q = Q(τ)
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An Illuminating Example: Ritz–Galerkin Method for the
Poisson equation I

I Solve {
∆u = g , u ∈ H1

per (Ω), g ∈ H−1
per (Ω)

u
∣∣
x

= u
∣∣
x+2π

, ∆ : H1
per (Ω) → H−1

per (Ω)

by minimizing the functional J : H1
per (Ω) → R,

J (Φ) =

∫
Ω
[(1/2)(∇Φ)2 + gΦ] dΩ

I The Gâteaux differential (the optimality condition)

J (Φ; Φ′) =

∫
Ω
[−∆Φ + g ]Φ′ dΩ = 0
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An Illuminating Example: Ritz–Galerkin Method for the
Poisson equation II

I Gradient in L2(Ω): ∇L2J = −∆Φ + g ∈ L2(Ω)
I Hessian eigenvalues (Fourier space): {k2

1 , k2
2 , . . . , k2

N}
I The condition number: κ =

k2
N

k2
1
→∞ for kN →∞

I Gradient in H1
0 (Ω): ∇H1J = −∆−1

0 [∆Φ−g ] ∈ H1(Ω)
I Hessian eigenvalues (Fourier space): {1, 1, . . . , 1}
I The condition number: κ = 1 independent of kN
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Reconstruction of a Turbulent Channel Flow I

Wall shear — the “footprint” of streaky structures in the
boundary layer

Simulation: T. Bewley
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Reconstruction of a Turbulent Channel Flow II

I Flow domain

I wall shear and wall pressure
measurements

I Navier–Stokes system:

N (q) =

(
∂uj

∂xj
∂ui

∂t
+

∂ujui

∂xj

− ν
∂ui

∂xj

+
∂p

∂xi

)
= 0

u|t=0 = Φ in Ω,

u(0, y , z) = u(2πLx , y , z);
u(x , y , 0) = u(x , y , 2πLz)
u(x ,±1, x) = 0

I constant mass flux

I turbulent flow at Reτ = 100

J (Φ) =
1

2

Z T

0

"
α1

‚‚‚‚ ∂u1

∂x2
−m1

‚‚‚‚2

Γ±2

+ α2

‚‚‚‚p −m2

‚‚‚‚2

Γ±2

+ α3

‚‚‚‚ ∂u3

∂x2
−m3

‚‚‚‚2

Γ±2

#
dt,
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Different strategies for gradient extraction

I L2 Gradient Extraction
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Z

Ω
u∗
∣∣∣
t=0

· h dΩ =

(
∇J L2(Ω), h

”
L2(Ω)

=⇒ ∇J L2(Ω) = −u∗
˛̨̨
t=0

I H1 Gradient Extraction
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“
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”
dΩ

=⇒

8>>>><>>>>:
Helmholtz operatorz }| {

1

1 + l21
[1 + l21 ∆] ∇J H1

= −u∗
˛̨̨
t=0

∇J H1
˛̨̨
Γ

= 0
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Gradient Extraction in Banach Spaces — Theory (I)

I Consider a Banach space X (without Hilbert structure!)

J ′(ϕ; ϕ′) =

Z 2π

0

ϕ′ v∗
˛̨
t=0

dx =
˙
∇XJ , ϕ′

¸
X∗×X

, =⇒ ∇XJ ∈ X∗

Note that X∗ (the dual space) is usually “bigger” than X
Hence ∇XJ /∈ X is not an acceptable descent direction !!!
No Riesz Theorem in Banach spaces ...

I Alternative definition of the descent direction g ensuring that g ∈ X

g = argmax‖ϕ′‖X=1

˙
∇XJ , ϕ′

¸
X∗×X

= argmaxϕ′

»Z 2π

0

ϕ′ v∗
˛̨
t=0

dx + µ‖ϕ′‖X

–
I For instance, when X = W p,q(Ω) with ‖z‖W p,q =

∫ 2π

0
|z |q + lqp |∂p

x u|q dx ,8<: p|g |(p−2)g + p∂q
x

“
|∂q

x g |(p−2)∂q
x g

”
= −v∗

˛̨
t=0

∂m
x g

˛̨
x=0

= ∂m
x g

˛̨
x=2π

= 0
p–Laplace equation
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Gradient Extraction in Banach Spaces — Theory (II)

I ϕ ∈ X, but due to “Bumpy Landscape” in X, descent may be
slow

I Try to smooth out the landscape via a change of variables
(topology), but one change of variables may not work well for
all iterates

I Shorten the path ϕ(τ) by confining it to a Family of Nested
Spaces

Q(0) ⊆ Q(1) ⊆ · · · ⊆ Q(k) ⊆ · · · ⊆ U .

I Preconditioned Gradients ensure that ϕk ∈ Qk

I Example choice of nested spaced (Lebesgue spaces):

Lp1 ⊆ Lp2 ⊆ · · · ⊆ Lpk
⊆ · · · ⊆ L2,

where p1 > p2 > · · · > pk > · · · > 2.
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Gradient Extraction in Banach Spaces — Results

Results for the Kuramoto–Sivashinsky Equation: tough problem
with very long optimization horizon

I ∇L2J
(classical gradients)

I ∇L10J −→
k→∞

∇L2J
(Lebesgue gradient)

I ∇Bs
p.qJ −→

k→∞
∇L2J

(Besov gradients)
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Free–Surface Flows in a Weld Pool (I)

I Motivation: Welding in Automotive Industry
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Free–Surface Flows in a Weld Pool (II)

I Goal: Optimize Shape of Free Surface During Solidification
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Stefan Problem in the Presence of Contact Points (I)

I Domain
LG

Γ

Γ
SL

Ω
L

Ω
S

B A’A

C C’

B’

n

n

n

I Governing Equations

−∇ · (kS ∇T ) = 0 in ΩS ,

−∇ · (kL ∇T ) = 0 in ΩL.

I Interface Conditions

I (conservation of energy)[
k

∂T

∂n

]L

S

= 0 on ΓSL,

I (second principle of thermodynamics)

T = Tm on ΓSL.
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Stefan Problem in the Presence of Contact Points (II)

I Domains with “corners”
θ

+
θ

−

θ
−n(    )

θ
+n(    )

ΓSL

B

α

s

I The temperature interface condition corresponds to an
inequality, and hence is nonunique

L
T − Tm

Tm
= κ

[
f (θ) +

d2f (θ)

dθ2

]
on the smooth part of ΓSL,

C(θ+) = C(θ−) at the contact points B and B ′,

The interfacial free energy f (θ) and capillary force C(θ) determined
at the microscopic level and not available ...
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Stefan Problem in the Presence of Contact Points (III)

I Stefan Problem as an PDE Optimization (inverse) problem

min
ΓSL

J (ΓSL), where

J (ΓSL) ,
1

2

∫
ΓSL

[T (ΓSL)− Tm] 2 ds+
`

2
[cos(α(ΓSL))− cos(αm)]2

∣∣∣
B,B′

The contact angle αm is a constitutive property of the
material.

I Shape Optimization problem
I Parametrization of geometry

x(t,Z) = x + tZ for x ∈ ΓSL(0),

where Z : ΩSL → R2 is the perturbation “velocity” field.
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Stefan Problem in the Presence of Contact Points (III)

I Gâteaux shape differential

J ′(ΓSL(0);Z) , lim
t→0

J (ΓSL(t,Z))− J (ΓSL(0))

t
.

I L2 gradient ∇L2J not smooth enough

∇L2

J =

" »
k

∂T

∂s

∂T ∗

∂s

–L

S

−
»
k

∂T

∂n

∂T ∗

∂n

–L

S

+ κ (T − Tm)2

2

#
n+

h
T ∗ `

ϕLG − ϕSG ) ex +
(T − Tm)2

2
τ+

+ κ ` [cos(α)− cos(αm)] sin(α) τ
i
[δ(s − sB′)− δ(s − sB)]+

` [cos(α)− cos(αm)] sin(α)
h
δ̇(s − sB′)− δ̇(s − sB)

i
n on ΓSL,

I Must work with smoother H1/H2 gradients.
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Bartosz Protas Adjoint–Based Optimization in Fluid Mechanics



Agenda
Introduction

PDE–Constrained Optimization
Optimization of Free–Boundary Problems

Conclusions

Motivation
Stefan Problem
Optimization of Problems in Moving Domains
Non–Cylindrical Calculus

Simple Model Problem

I 
∂tu −∆u = 0 in Ω(φ) = [a(φ), b(φ)],

∂xu
∣∣
a(φ)

= φ, ∂xu
∣∣
b(φ)

= 0,

u
∣∣
a(φ)

= u
∣∣
b(φ)

= ub,

+ Initial Condition

where:

I the control variable: φ = φ(t)
I the cost functional: J (φ) =

∫ T

0
[b(φ)− b]2 dt

I solution: u = u(Ω(φ))

I Note that the model problem is geometrically
nonlinear
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Two Options

1. Optimization after transformation to a Fixed Domain

Ω
∼Ω( )t

t

T

ξ

a(t) b(t)

t

T

x 1−1

W(t)

L(t) , b(t)− a(t), x0(t) ,
a(t) + b(t)

2
,

x = x(t, ξ) =
L(t)

2
ξ + x0(t), ũ(t, ξ) = u(t, x(t, ξ))

2. Optimization in a Variable Domain
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Optimization in Fixed Domains (I)

I Geometric vs. Algebraic nonlinearity

I The Governing System {ũ, L, x0}

∂ũ

∂t
− ∂ũ

∂ξ

2ẋ0 + ξL̇

L
− 4ν

L2

∂2ũ

∂ξ2
= 0 in (0,T ]× [−1, 1],

∂ũ

∂ξ

∣∣∣∣
−1

=
L

2
φ,

∂ũ

∂ξ

∣∣∣∣
1

=
L

2
w in (0,T ],

ũ
∣∣
−1

= ũ
∣∣
1

= ub in (0,T ],

ũ
∣∣
t=0

= ũ0 in [−1, 1],

I The Cost Functional

J (φ) =
1

2

∫ T

0

[
x0(t) +

L(t)

2
− b(t)

]2

dt.
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Optimization in Fixed Domains (II)

I Adjoint System for The Model Problem {ũ∗, ã∗, b̃∗}

−
∂ũ∗

∂t
+

L̇

L
ũ∗ +

∂ũ∗

∂ξ

2ẋ0 + ξL̇

L
−

4ν

L2

∂2 ũ∗

∂ξ2
= 0 in (0, T ]× [−1, 1],

ũ∗
˛̨
−1

= −
L2

4ν
ã∗, ũ∗

˛̨
1

= −
L2

4ν
b̃∗ in (0, T ],

Z 1

−1

"
d

dt

„
ξ

L

∂ũ

∂ξ
ũ∗

«
+

2ẋ0 + ξL̇

L2

∂ũ

∂ξ
ũ∗ +

8ν

L3

∂2 ũ

∂ξ2
ũ∗

#
dξ −

φ

2
ã∗ =

=
1

2

„
x0 +

L

2
− b

«
in (0, T ],Z 1

−1

d

dt

„
2

L

∂ũ

∂ξ
ũ∗

«
dξ = x0 +

L

2
− b in (0, T ],

ũ∗
˛̨
t=T

= 0 in [−1, 1],

ã∗
˛̨
t=T

= 0, b̃∗
˛̨
t=T

= 0

Note the presence of Nonlocal Constraint

I Cost Functional Gradient for the Model Problem

∇J =
L

2
ã∗ in [0,T ]
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Optimization in Variable Domains (I)

I Space–Time Tube: Q ,
⋃

t∈[0,T ]{t} × Ω(t)

I Flow Map T (t) characterizes domain evolution Ω(t) = T (t)Ω0

I Parameterize the Flow Map using Velocity Field V
∂T (t, x)

∂t
= V (t, T (t, x)), t ∈ (0,T ],

T (0, x) = x , in Ω(0).

I Differentiation of functions w. r. t. to evolution of the domain
parameterized by velocity V , i.e., Ω = Ω(V (t)) in the direction of
velocity W (t)

u′(V ; W ) ,

u̇(V ;W )z }| {
d

dε
[u(V + ρW ) ◦ Tρ]

˛̨
ρ=0

−(∇u)Z(W ), where

Tρ — the transverse map, Z (W ) — the transverse variable
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Optimization in Variable Domains (II)

I Adjoint System for the Model Problem

− ∂tu
∗ −∆u∗ = 0 in Ω(φ) = [a(φ), b(φ)],

∂xu
∗ = 0 at x = a(φ),

∂xu
∗ =

[b(φ)− b]

∂xu
at x = b(φ),

u∗ = 0 at t = T

II Cost Functional Gradient for the Model Problem

∇J (φ) = u∗|a

I Remarks

I the same gradient direction, but a different expression, as for
the adjoint obtained in a fixed domain

I transformation to a fixed domain and derivation of the adjoint
system do not commute
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Optimization in Variable Domains (III) — Results

Reference u, perturbation u′ and adjoint u∗ fields
(Computations performed with the variable–domain adjoint)
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Optimization in Variable Domains (IV) — Results

Consistency of the gradients
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Optimization in Variable Domains (V) — Results

Cost Functional J , Control φ and Output b(φ)
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I Formulation of PDE control and estimation problems as
constrained optimization

I PDE–constrained gradients via Adjoint Equations

I Preconditioning: linear and nonlinear

I Optimization of PDEs in Variable Domains

I Free–boundary (Stefan) problem as an optimization problems

I Time–Dependent variable domains
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