Numerical Methods for Image Registration

Jan Modersitzki

Department of Computing and Software

McMaster University, Hamilton, Canada

http://www.cas.mcmaster.ca/~modersit

Motivation

Image Registration

Given a reference image \mathcal{R} and a template image \mathcal{T} , find a reasonable transformation *y*, such that

the transformed image $\mathcal{T}[y]$ is similar to \mathcal{R}

transformed template $\mathcal{T}[y]$

template T

Titlepag

Motivation

Outline

Motivation

Image Registration

Given a reference image ${\mathcal R}$ and a template image ${\mathcal T},$

find a reasonable transformation y, such that

the transformed image $\mathcal{T}[y]$ is similar to \mathcal{R}

Questions:

- What is a transformed image T[y]?
- What is similarity of $\mathcal{T}[y]$ and \mathcal{R} ?
- What is reasonability of y?

Image Registration: Variational Problem

$$\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \min,$$

$$y_{\rm reg}(x) = x$$

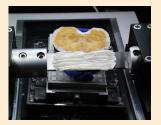
Outline

- Applications
- ▶ Variational formulation $\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \mathcal{S}[y] \xrightarrow{y} \min$
 - image models T[y]
 - distance measures $\mathcal{D}[T[y], R]$
 - regularizer $\mathcal{S}[y]$
- Numerical methods
- Constrained image registration
- Conclusions

Applications

HNSP: Sectioning

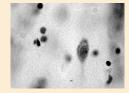
with Oliver Schmitt, Institute of Anatomy, University Rostock, Germany



- sliced
- flattened
- stained
- mounted
- ▶ ...
- digitized

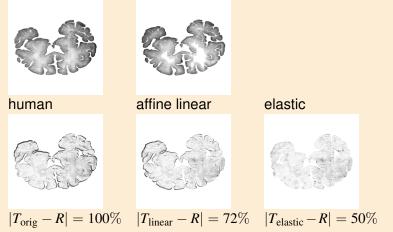
large scale digital images, up to 10.000×20.000 pixel

HNSP: Microscopy



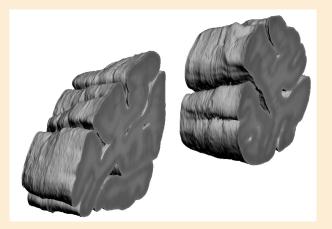
HNSP: Deformed Images

sections 3.799 and 3.800 out of about 5.000

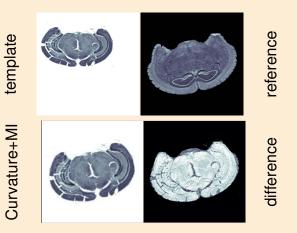


HNSP: Results

3D elastic registration of a part of the visual cortex (two hemispheres; 100 sections á 512×512 pixel)



Multi-Modal Registration with Stefan Heldmann, SAFIR, University of Lübeck

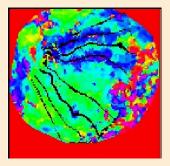


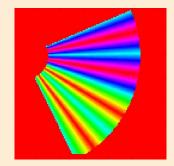
Registration of *Sprague-Dawley* Brain with Stefan Wirtz, SAFIR, University of Lübeck

McMaster

Neuroimaging (fMRI)

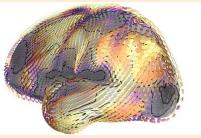
with Brian A. Wandell, Department of Psychology, Stanford Vision Science and Neuroimaging Group



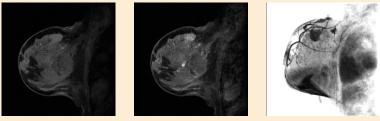


"flattened visual cortex"

DTI: Diffusion Tensor Imaging with Brian A. Wandell, Department of Psychology, Stanford Vision Science and Neuroimaging Group



MR-mammography, biopsy (open MR) with Bruce L. Daniel, Department of Radiology, Stanford University

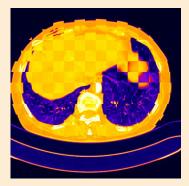


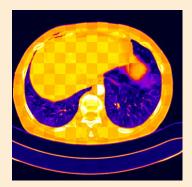
pre contrast

post contrast

3D

Liver Registration with Stefan Wirtz, SAFIR, University of Lübeck & Siemens Erlangen, Germany





Virtual Surgery Planning

S. Bommersheim & N. Papenberg, SAFIR, BMBF/FUSION Future Environment for Gentle Liver Surgery Using Image-Guided Planning and Intra-Operative Navigation

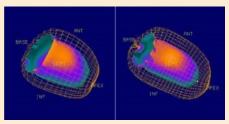
Results for 3D US/CT



McMaster

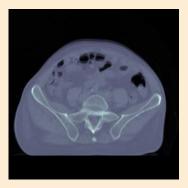
Cardiac Images

with Tracy Faber, Department of Radiology, Emory University, Atlanta,USA



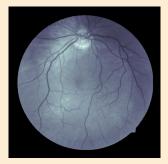
Virtual Surgery Planning

from Jan Ehrhardt, Medical Computer Science, University of Hamburg





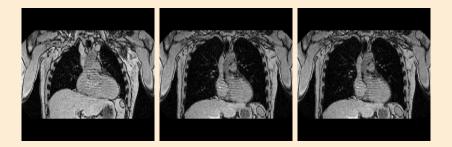
Laser Surgery from Joachim Noack, Medical Laser Center Lübeck



(Macula pucker, warped retina)

Motion Correction

from Thomas Netsch, Philips Research, Hamburg, Germany



Human Knee, 3D

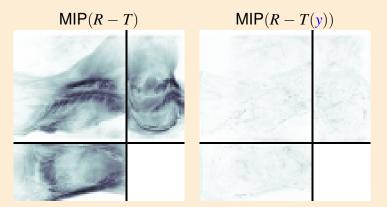
from Astrid Franz, Philips Research, Hamburg, Germany

reference template $T(\mathbf{y})$ B 2D slice

McMaster

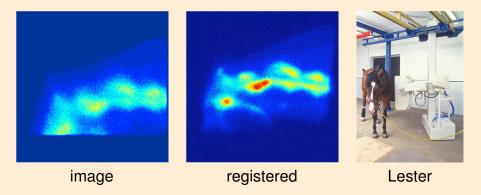
Human Knee, 3D

Maximum Intensity Projections



McMaster

SPECT: Single Photon Emissions CT with Oliver Mahnke, SAFIR, University of Lübeck & MiE GmbH, Seth, Germany



Registration in Medical Imaging

- Comparing/merging/integrating images from different
 - ► times, e.g., pre-/post surgery
 - devices, e.g., CT-images/MRI
 - perspectives, e.g., panorama imaging
 - objects, e.g., atlas/patient mapping
- Template matching, e.g., catheter in blood vessel
- Atlas mapping, e.g., find 2D view in 3D data
- Serial sectioning, e.g., HNSP

Registration is not restricted to medical applications

▶ ...

Classification of Registration Techniques

- feature space
- search space
- search strategy
- distance measure
- dimensionality of images (d = 2, 3, 4, ...)
- modality (binary, gray, color, ...)
- mono-/multimodal images
- acquisition (photography, FBS, CT, MRI, ...)
- inter/intra patient

Image Registration

Transforming Images

$\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \min$

Variational Approach for Image Registration

 $\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \min$

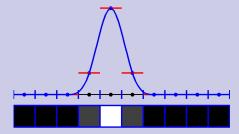
 \blacktriangleright Continuous models \mathcal{R}, \mathcal{T} for reference and template:

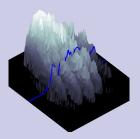
discrete data X, T \rightsquigarrow $\mathcal{T}(x) = interpolation(X, T, x)$

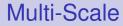
• Transformation $y : \mathbb{R}^d \to \mathbb{R}^d$

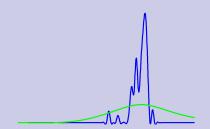
 $\mathcal{T}[y](x) = \mathcal{T}(y(x)) = \text{interpolation}(X, T, y(x))$

Interpolation



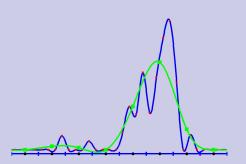






McMaster

Multilevel



McMaster

Transforming Images

$$\mathcal{T}[\mathbf{y}](\mathbf{x}) = \mathcal{T}(\mathbf{y}(\mathbf{x})) = \text{interpolation}(\mathbf{X}, \mathbf{T}, \mathbf{y}(\mathbf{x}))$$

non-linear

McMaster

Distance Measures

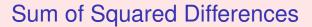
$\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \min$

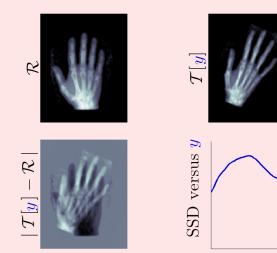
Distance Measures

Feature Based

(Markers / Landmarks / Moments / Localizer)

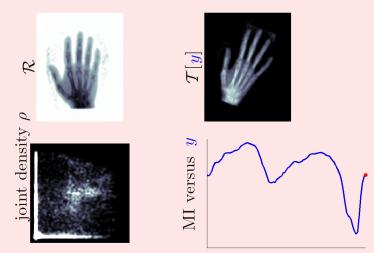
- ► *L*₂-norm, *Sum of Squared Differences (SSD)* $\mathcal{D}^{\text{SSD}}[\mathcal{T}[y], \mathcal{R}] = \frac{1}{2} \int_{\Omega} [\mathcal{T}(y(x)) - \mathcal{R}(x)]^2 dx,$
- correlation
- Mutual Information (multi-modal images)
- Normalized Gradient Fields





McMaster

Mutual Information



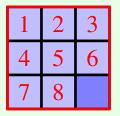
McMaster

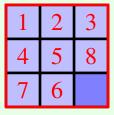
Regularization

$\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \min$

FIELDS

Transformation y





- Registration is severely ill-posed
- Restrictions onto the transformation y needed
- Goal: implicit physical restrictions

Implicit versus Explicit Regularization ...

Registration is ill-posed ~ requires regularization

- Parametric Registration
 - restriction to (low-dimensional) space (rigid, affine linear, spline,...)
 - regularized by properties of the space (implicit)
 - not physical or model based
- Non-parametric Registration
 - regularization by adding penalty or likelihood (explicit)
 - allows for a physical model
 - ► ~→ y is no longer parameterizable

... implicit versus explicit regularization

registration is ill-posed \rightsquigarrow requires regularization

parametric registration

parametric registration

 $\mathcal{D}[R,T;y] \stackrel{y}{=} \min$ s.t. $y \in \mathcal{Q} = \{x + \sum w_j q_j, w \in \mathbb{R}^m\}$

non-parametric registration

non-parametric registration

$$\mathcal{D}[R,T;y] + \alpha \mathcal{S}[y-y_{\text{reg}}] \stackrel{y}{=} \min$$

References for Well-Posedness

- M. Droske and M. Rumpf.
 A variational approach to non-rigid morphological registration. SIAM Appl. Math., 64(2):668–687, 2004.
- B. Fischer and J. Modersitzki.

A unified approach to fast image registration and a new curvature based registration technique.

Linear Algebra and its Applications, 380:107–124, 2004.

J. Weickert and C. Schnörr.

A theoretical framework for convex regularizers in PDE-based computation of image motion.

Int. J. Computer Vision, 45(3):245-264, 2001.

Regularizer S

y(x) = x + u(x), displacement $u : \mathbb{R}^d \to \mathbb{R}^d$

- "elastic registration" $S^{elas}[u] = elastic potential of u$
- "fluid registration" $S^{\text{fluid}}[u] = \text{elastic potential of } \partial_t u$
- "diffusion registration" $S^{\text{diff}}[u] = \frac{1}{2} \sum_{\ell=1}^{d} \int_{\Omega} \|\nabla u_{\ell}\|_{\mathbb{R}^2}^2 dx$
- "curvature registration" $S^{\text{curv}}[u] = \frac{1}{2} \sum_{\ell=1}^{d} \int_{\Omega} (\Delta u_{\ell})^2 dx$

> . . .

Elastic Registration

Transformation/displacement, y(x) = x + u(x)

$$S^{\text{elas}}[u] = \text{elastic potential of } u$$
$$= \int_{\Omega} \frac{\lambda + \mu}{2} \|\nabla \cdot u\|^2 + \frac{\mu}{2} \sum_{i=1}^d \|\nabla u_i\|^2 dx$$

image painted on a rubber sheet

C. Broit. *Optimal Registration of Deformed Images.* PhD thesis, University of Pensylvania, 1981.

Bajcsy & Kovačič 1986, Christensen 1994, Bro-Nielsen 1996, Gee et al. 1997, Fischer & M. 1999, Rumpf et al. 2002, ...

Fluid Registration

Transformation/displacement, y(x, t) = x + u(x, t)

 $S^{\text{fluid}}[u] = \text{elastic potential of } \partial_t u$

image painted on honey

GE. Christensen.

Deformable Shape Models for Anatomy. PhD thesis, Sever Institute of Technology, Washington University,

1994.

Bro-Nielsen 1996, Henn & Witsch 2002, ...

Diffusion Registration

Transformation/displacement, y(x) = x + u(x)

 $\mathcal{S}^{\text{diff}}[u] = \text{oszillations of } u$ $= \frac{1}{2} \sum_{\ell=1}^{d} \int_{\Omega} \|\nabla u_{\ell}\|_{\mathbb{R}^{2}}^{2} dx$

heat equation

2003....

 B. Fischer and J. Modersitzki. Fast diffusion registration. AMS Contemporary Mathematics, Inverse Problems, Image Analysis, and Medical Imaging, 313:117–129, 2002.
 Horn & Schunck 1981, Thirion 1996, Droske, Rumpf & Schaller

Curvature Registration

Transformation/displacement, y(x) = x + u(x)

$$\mathcal{S}^{\text{curv}}[\boldsymbol{u}] = \text{oscillations of } \boldsymbol{u} \\ = \frac{1}{2} \sum_{\ell=1}^{d} \int_{\Omega} \|\Delta \boldsymbol{u}_{\ell}\|_{\mathbb{R}^{2}}^{2} dx$$

bi-harmonic operator

B. Fischer and J. Modersitzki.
 Curvature based image registration.
 J. of Mathematical Imaging and Vision, 18(1):81–85, 2003.

Stefan Henn.

A multigrid method for a fourth-order diffusion equation with application to image processing. *SIAM J. Sci. Comput.*, 2005.

Registration of a

Curvature Registration

- ▶ Goal: do not penalize affine linear transformations $S[Cx + b] \stackrel{!}{=} 0$ for all $C \in \mathbb{R}^{d \times d}$ and $b \in \mathbb{R}^{d}$
- But: $S^{\text{diff},\text{elas},\text{fluid},\dots}[Cx+b] \neq 0$!
- ► Idea: $S^{\text{curv}}[y] = \sum_{\ell} \int_{\Omega} (\Delta y_{\ell})^2 dx \Rightarrow S^{\text{curv}}[Cx + b] = 0$

Summary Regularization

- ► Registration is ill-posed ~> requires regularization
- Regularizer controls reasonability of transformation
- Application conform regularization
- Enabling physical models (linear elasticity, fluid flow, ...)
- ► ~ high dimensional optimization problems

McMaster

Numerical Methods for Image Registration

Optimize \leftrightarrow Discretize

Image Registration

$$\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \min, \quad y_{\text{reg}}(x) = x$$

Numerical Approaches:

- ► Optimize → Discretize
- ► Discretize → Optimize

relatively large problems:
 2.000.000 – 500.000.000 unknowns

Optimize → Discretize: ELE

Image Registration

$$\mathcal{J}[y] = \mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \min, \quad y_{\text{reg}}(x) = x$$

- Euler-Lagrange eqs. (ELE) give necessary condition: $\mathcal{D}_y + \alpha \mathcal{S}_y = 0 \iff f[y] + \alpha \mathcal{A}y = 0$ system of non-linear partial differential eqs. (PDE)
- outer forces *f*, drive registration
- inner forces Ay, tissue properties
- ► ELE ~→ PDE: balance of forces

Optimize → Discretize: Summary

Continuous Euler-Lagrange equations

 $f[y] + \alpha \mathcal{A} y = 0, \quad f[y^k] + \alpha \mathcal{A} y^{k+1} = 0, \quad f[y] + \alpha \mathcal{A} y = y_t$

all difficulties dumped into right hand side *f* spatial discretization straightforward
 efficient solvers for linear systems
 small controllable steps (~> movies)

- moderate assumptions on f and A (smoothness)
- -
- no optimization problem behind
- non-linearity only via f
- small steps

Software: http://www.math.uni-luebeck.de/SAFIR

Discretize → Optimize: Summary

Discretization \rightsquigarrow finite dimensional problem: $y^h \approx y(x^h)$

$$D(y^h) + \alpha S(y^h) \xrightarrow{y^h} \min, \quad y^h \in \mathbb{R}^n, \qquad h \longrightarrow 0$$

efficient optimization schemes (Newton-type) linear systems of type $H \delta_y = -rhs$,

 $H = M + \alpha B^{\top} B$, $M \approx D_{yy}$, $\text{rhs} = D_y + \alpha (B^{\top} B) y^h$

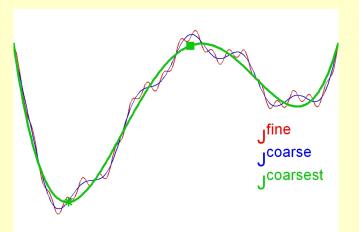
efficient multigrid solver for linear systems large steps

discretization not straightforward (multigrid)

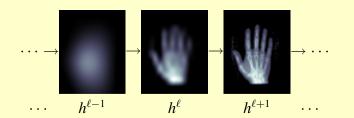
all parts have to be differentiable (data model)

McMaster

Multilevel



Multilevel



for $\ell = 1 : \ell_{max}$ do

transfer images to level ℓ approximately solve problem for yprolongating y to finer level \rightsquigarrow perfect starting point end for

Advantages of Multilevel Strategy

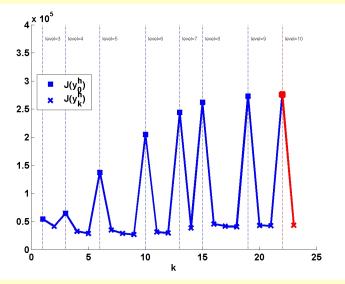
Regularization

Focusses on essential minima

Creates extraordinary starting value

Reduces computation time

Example: Multilevel Iteration History

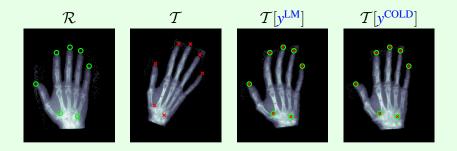


McMaster

Constrained Image Registration

Example: COLD

Combining Landmarks and Distance Measures



Patent AZ 10253 784.4; Fischer & M., 2003

Adding Constraints

Constrained Image Registration

$$\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] + \beta \int_{\Omega} \psi \left(\mathcal{C}^{\text{soft}}[y] \right) dx \xrightarrow{y} \min$$

subject to $\mathcal{C}^{hard}[y](x) = 0$ for all $x \in \Omega_{\mathcal{C}}$

Example: landmarks/volume preservation

- soft constraints (penalty)
- hard constraints
- both constraints

Rigidity Constraints

Soft Rigidity Constraints

FAIR with Soft Rigidity

$$\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] + \beta \mathcal{C}[y] \xrightarrow{y} \min$$

C soft constraints / penalty:

$$C[\mathbf{y}] = \frac{1}{2} \| \underbrace{\mathbf{r}^{\text{linear}}(\mathbf{y})}_{\text{linear}} \|_{\mathcal{Q}}^{2} + \frac{1}{2} \| \underbrace{\mathbf{r}^{\text{orth}}(\mathbf{y})}_{\mathcal{Q}} \|_{\mathcal{Q}}^{2} + \frac{1}{2} \| \underbrace{\mathbf{r}^{\text{det}}(\mathbf{y})}_{\mathcal{Q}} \|_{\mathcal{Q}}^{2}$$
orientation
$$r^{\text{linear}}(\mathbf{y}) = [\partial_{1,1}y_{1}, \dots, \partial_{d,d}y_{1}, \partial_{1,1}y_{2}, \dots]$$

$$r^{\text{orth}}(\mathbf{y}) = \nabla \mathbf{y}^{\top} \nabla \mathbf{y} - I_{d}$$

$$r^{\text{det}}(\mathbf{y}) = \det(\nabla \mathbf{y}) - 1$$

$$\mathbf{y} \text{ rigid } \iff [\mathbf{r}^{\text{linear}} = 0 \land \mathbf{r}^{\text{orth}} = 0 \land \mathbf{r}^{\text{det}} = 0]$$

The Weight \mathcal{Q}

- only locally rigid
- use weight function Q
- regions to be kept rigid move with y

$$||f||_{\mathcal{Q}}^2 = \int_{\Omega} f(x) \ \mathcal{Q}(\mathbf{y}(x))^2 \ dx$$

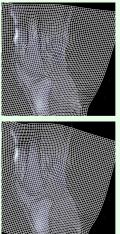
Numerical Scheme

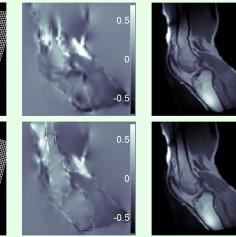
- $\blacktriangleright \quad Q(y^h) \approx \mathcal{Q}(y(x^h))$
- ► $r(y^h) = [\operatorname{diag}(Q(y^h)) r_1(y^h), \dots, \operatorname{diag}(Q(y^h)) r_{\operatorname{end}}(y^h)]$
- $C(y^h) = \frac{1}{2}r(y^h)^\top r(y^h)$
- $C_y(y^h) =$ lengthy formula
- $D(y^h) + \alpha S(y^h) + \beta C(y^h) \xrightarrow{y^h} \min$
- Optimizer: Gauß-Newton type approach,

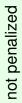
$$H \approx "\nabla^2 \mathcal{D}" + \alpha B^\top B + \beta r_y^\top r_y$$

Example: Knee

 $\det(\nabla y) - 1$

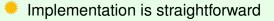






penalized

Results are OK



Constraints are not fulfilled

How to pick penalty (β, ψ) ?

McMaster

Hard Rigidity Constraints

FAIR with Hard Rigidity

 $\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \text{min subject to } y \text{ rigid on } \mathcal{Q}$

Eulerian \rightarrow Lagrangian

computations of \mathcal{D} and \mathcal{S} involve det (∇y)

rigidity in \mathcal{T} domain \rightsquigarrow linear constraints

$$y(x) = D_k x + t_k, \quad k = 1 : \#$$
segments

Lagrangian Model of Rigidity (2D)

rigid on segment i

$$\mathbf{y}(\mathbf{x}) = \mathbf{Q}(\mathbf{x})\mathbf{w}^{i} = \begin{pmatrix} \cos w_{1}^{i} & -\sin w_{1}^{i} \\ \sin w_{1}^{i} & \cos w_{1}^{i} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} + \begin{pmatrix} w_{2}^{i} \\ w_{3}^{i} \end{pmatrix}$$

•
$$w = (w^1, \dots, w^m), \quad \mathcal{C} = (\mathcal{C}^1, \dots, \mathcal{C}^m), \quad m = \#$$
segments

$$\mathcal{C}^{i}[y,w] = y(x) - Q(x)w^{i}, \qquad i = 1, \dots, m$$

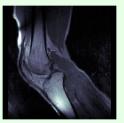
Lagrangian:

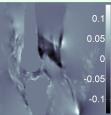
$$L(\mathbf{y}, \mathbf{w}, p) = \mathcal{D}[\mathbf{y}] + \alpha \mathcal{S}[\mathbf{y}] + p^{\top} \mathcal{C}[\mathbf{y}, \mathbf{w}]$$

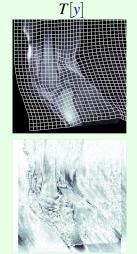
Numerical Scheme:

Rigidity as a Hard Constraint

R







Summary of Hard Rigidity Constraints

Results are OK

Implementation is interesting

Constraints are fulfilled

No additional Parameters

FIELDS

Summary

FIELDS

Summary

- Introduction to image registration: important, challenging, interdisciplinary
- ► General framework based on a variational approach: $\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{reg}] \xrightarrow{y} min$
- Discussion of various building blocks:
 - ▶ image model T[y]
 - distance measures D
 - regularizer S
- ► Numerical methods: multilevel, optimize ↔ discretize
- ► Constraints *C*:

landmarks, local rigidity, intensity correction, ...

Solutions and Algorithms For Image Registration

