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Water Resource Problems

Why does North Carolina Care?

U.S. Drought Monitor of North Carolina

October 2, 2007

Figure 1. North Carolina Drought Management Council (http://www.ncdrought.org/).
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Water Resource Problems

Lower Rio Grande Valley

Nueces

7

- TEXAS

[ sample Farmer

O Sample city

Sample Industs 15 Mides

St rom TWEB sosrce

T. Kelley

Optimization and Water Resources Policy



Supply Model

» City's water supply comes from
» Permanent rights (hard to sell/buy, fixed on Jan 1)
» Spot market leases (monthly decisions)
» Options (purchase Jan 1, exercise May 31)
» Decisions: buy leases, buy/exercise options
based on expected supply Sg and demand Dg

» Supply/Demand simulated by random sampling of history
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Supply Model

Six Design Variables

» Number of rights and options: R, O

» Jan 1 - May 31: Sg/Dg < 1 lease (or exercise options in
May) until SE/DE =/
» July 1 — Dec 31: SE/DE < ap until SE/DE =[5
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Optimization Problem Hidden Constraints
Results from Optimization
Algorithm Design

Minimize Cost

Cost = Rpr + Opo + E(X)px + E ( Z Ltp,_t>

months

R, O are amount of rights and options (design variables)
purchased Jan 1.

Prices pr, po known.

X = exercised options, price px (depends on data + design)
L; = leases in month t, price p; (depends on data + design)
Data randomly generated from historical record using several
realizations.

Simple bound constraints and hidden constraints.
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Optimization Problem Hidden Constraints
Results from Optimization
Algorithm Design

Variance Reduction via Control Variates: |

Assume that f = E(f).
Estimate noise as standard error o/+/n in f
Objective: reduce variance o; tune number of realizations n
Let Z be a random variable that is well correlated to # for which
E(Z) is known.
Define
0 =f(x)+c(Z - E(2)),

and c is tuned to minimize variance.
We can use f = E(6) since E(Z) is known.
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Optimization Problem Hidden Constraints
Results from Optimization
Algorithm Design

Variance Reduction via Control Variates: |l

Since A A
Var(0) = Var(f) — 2cCov(f, Z) + c®Var(Z)

the optimal value of c is

c* = Cov(f,Z2)/Var(2).
We get an estimate of Var(6) too:

Var(6) = (1 — p?)Var(F)

where p is the correlation between f and Z.
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Optimization Problem Hidden Constraints
Results from Optimization
Algorithm Design

Variance Reduction via Control Variates: |l

One can use more than one control variate:
0=F+) c(Z - E(Z)).

So, how to you invent the Z's?

> Lease price at beginning of the year has known expectation
(data).

» Net supply at end of April (prior to option exercise month).
Compute from inflows and demand. Expectations known
(data).

Then estimate Var(;A‘) and Cov(lA‘, Z) with a small pilot study.
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Optimization Problem Hidden Constraints
Results from Optimization
Algorithm Design

Benefits of Variance Reduction

» Smoother landscape for give number of realizations
» Reduced realizations per function call by 50%

» Promise of coupling to optimization algorithm
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Optimization Problem Hidden Constraints
Results from Optimization
Algorithm Design

Hidden Constraints

> Reliability
» Probability of serious shortage < .005 (every 16.7 years).
> Tested after simulation runs.

» Conditional value-at-risk (CVAR)

» Mean of costs above 95th percentile.
» CVAR < 1.25x total portfolio costs
» Tested after simulation runs.
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ation Problem Hidden Constraints
Results from Optimization
Algorithm Design

Optimization Landscape
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Optimization Problem Hidden Constraints
Results from Optimization
Algorithm Design

Results of Optimization

» Water Resources

» Leases/Options vs only permanent rights
lower annual costs with no reliability penalty

> Leases alone reduce costs even more
but with higher variability

» Optimization

» Implicit filtering was robust: could cross gaps
restarts not necessary
final costs within 3% for varying initial iterates

» Feasible initial iterate important
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Optimization Problem Hidden Constraints
Results from Optimization
Algorithm Design

Algorithm Design

» Algorithms based on coordinate search
» Termination
» budget, estimate of necessary conditions, ...

» Hidden constraints

» Trivial(?) Parallelism
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What it’s for and what it does

Implicit Filtering Theory

Noisy Optimization Problems

» Implicit filtering is designed for noisy problems.

» Perturbations of smooth problems
» Internal iterations
» Stochastic models

» Handles Hidden Constraints or failed points
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What it’s for and what it does

Implicit Filtering Theory

Stencil-Based Sampling Methods

» Given x., scale hc, and directions V = (vq,..., v)

» Evaluate f at xc + hcvj for 1 < j < k.

» Assign NaN, Inf, or artificial value to failed point.
» Decide what to do next.

» Example: Coordinate Search

> Take best point f(xc 4+ hcv;) = min unless ...
> stencil failure: f(xc) is best. In that case, reduce h.

Coordinate search implicitly filters out noise.
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What it’s for and what it does

Implicit Filtering Theory

Convergence Theory: smooth f

If
» f has bounded level sets
» feCl
» V is a positive basis

Stencil failure implies Vf = O(h) and so ...
» h, — 0 (bounded level sets) therefore
» Vi(x,) — 0

Due to many authors in various forms.
True, but not very exciting.
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What it’s for and what it does

Implicit Filtering Theory

Convergence Theory: noisy f

If

» f has bounded level sets

> f= f:smooth + ¢: fsmooth S Cl

» V is a positive basis
then h, — 0, and if

¢(Xn)/hn —0
then
vfsmooth(xn) —0

Theory (Audet-Dennis) for Lipschitz f.
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What it’s for and what it does

Implicit Filtering Theory

Example: coordinate search

Sample f at x on a stencil centered at x, scale=h
S(x,h) = {x £ he;}

» Move to the best point.

» If x is the best point, reduce h.

Necessary Conditions: No legal direction points downbhill
(which is why you reduce h).

C. T. Kelley Optimization and Water Resources Policy



What it’s for and what it does

Implicit Filtering Theory

What if x is the best point?

Smooth Objective
If £(x) < min,cs(x ) f(2) (stencil failure)
then
IVF(x)Il = O(h)

So, if (xn, hn) are the points/scales generated by coordinate search
and f has bounded level sets, then

» h, — 0 (finitely many grid points/level) and therefore

» any limit point of {x,} is a critical point of f.

Not a method for smooth problems.
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What it’s for and what it does
Theory

Implicit Filtering

Model Problem
motivated by the pictures

» f; smooth, easy to minimize; ¢ noise
» N is small, f is typically costly to evaluate.

» f has multiple local minima
which trap most gradient-based algorithms.
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What it’s for and what it does

Implicit Filtering Theory

Convergence?

Stencil failure implies that

where
9l sx,h) = T&XW(Z)I-
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What it’s for and what it does

Implicit Filtering Theory

Bottom line

So, if (xn, hy) are the points/scales generated by coordinate search,
f has bounded level sets, and

Tim (hn + by |6l 5(x,h,)) = O

then
» h, — 0 (finitely many grid points) and therefore

» any limit point of {x,} is a critical point of f.
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What it’s for and what it does

Implicit Filtering Theory

Simplex Gradient

» Coordinate search is building an approximation of the
gradient.

» Let 6f(x: V); = f(x+ hv;) — f(x)
> Define the simplex gradient
Df(x: h, V) =h"Y(VT)5f(x: V)
» Df(x: h, V) is the minimum norm least squares solution of

min ||AV T Df — &f||

» |f V is a one-sided or centered difference stencil,
you get the usual difference gradient.
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What it’s for and what it does

Implicit Filtering Theory

Exploiting the Simplex Gradient

Since we can compute the simplex gradient with no extra effort,
we can

» add —Df to the stencil for the next search,
» do a line search in that direction and mimic steepest descent,

» build a quasi-Newton model Hessian and use that direction,
and/or

» reduce h when ||Df|| is small.

Implicit filtering reduces h when ||[Df(x : h, V)| < 7h and uses a
quasi-Newton model Hessian.
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What it’s for and what it does

Implicit Filtering Theory

Quasi-Newton Acceleration

We begin with H = /. For the unconstrained case we use two

updates.
» SR1
(y — Hes)(y — HCS)T
H.=H
+ <t (y — Hes)Ts
» BFGS
T H H T
H+ — HC+ .yy _ ( Cs)( Cs)

yTs sTH.s
where s = x; — x¢ and

y = Df (x4 : he, V) — Df(xc : he, V)

QN Hessians make a huge difference in performance.
Obvious extension for bound constraints.
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What it’s for and what it does

Implicit Filtering Theory

Implicit Filtering

imfilter(x, f, pmax, 7, {h,}, amax)
for k=0,... do
fdquasi(x, f, pmax, T, h,, amax)
end for
pmax, T, amax are termination parameters

fdquasi = finite difference quasi-Newton method using a simplex
gradient Df(x : h,v)
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What it’s for and what it does

Implicit Filtering Theory

fdquasi(x, f, pmax, T, h, amax)

p=1
while p < pmax and |Df (x : h,v)|| > 7h do
compute f and Df(x : h, v)
terminate with success on stencil failure
update the model Hessian H if appropriate; solve Hd = —Df (x : h, v)f(x)
use a backtracking line search, with at most amax backtracks, to find a
step length A
terminate with failure on > amax backtracks
X—x+Ad;p—p+1
end while
if p > pmax report iteration count failure
if p <= pmax report success
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P What it’s for and what it does
Implicit Filtering Theory

Application of Theory

Let (xn, hp) be the sequence from implicit filtering.
If

» Vf, is Lipschitz continuous.
> |imn~>oo(hn + hr71||¢||5(x,hn)) =0

» fdquasi terminates with success for infinitely many n.

then any limit point of {x,} is a critical point of f.
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New Features
Code: imfil.m

Least squares gradient/Hessian approximation

» Split H= A+ C. Approximate A with quasi-Newton.
Compute C (N¢ degrees of freedom).

» Compute part of the Hessian using
h2
6F(xc : h, V) = h VTVF(xc)+ ?CVTHV + O(h?)

by solving the least squares problem

h2
min [|6f(xc : he, V) — he VI Df(x : h, V) — ?CVTCVH
for N¢ unknowns.

Powell (2006) has a similar idea for DFO.



New Features
Code: imfil.m

Diagonal C; V central difference

» Nc = N, so if there are no failed points
— 1
min ||f(xy) — VT Df — 5vTCVH

is a square system.

Not a finite difference approximation of Hessian diagonal.
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New Features
Code: imfil.m

Feedback to objective

You can pass h to f. This helps if ...
» f can control its own accuracy via

» tolerance in ODE/DAE/PDE models, or
» number of realizations n in Monte Carlo models
» f knows its own limiting resolution, so

» f can tell you when to terminate the iteration.
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New Features
Code: imfil.m

Using the estimate of the noise

DF(x : h, V) = Vf; + O(h + |6] /h)

so the noise renders the gradient estimate useless when
o/vVn= o] = |[Vfllh~ |[Df(x : h,V)]|h.
So, if f can estimate o, then one can tune n so that

O'/ﬁ S MtunsHDf(X : ha V)Hh

C. T. Kelley Optimization and Water Resources Policy



New Features
Code: imfil.m

Termination

Even if the gradient estimate is poor, the search may still produce
good results.

However, the search fails if decreases in f do not reflect decreases
in fs:

o/ gl = [6f(x : V)i

for all j.
So, if f can tell the code what o/y/n is, the code can terminate if
the estimated noise is larger than the variation in f.

C. T. Kelley Optimization and Water Resources Policy



New Features
Code: imfil.m

New Mode for Parallelism

» User managed parallelism
» Call multiple instances of objective

» Sample mpi/c/linux cluster code available coming soon
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Research Issues

Research Issues

>
>
>
>
>

Algorithms to locate neighborhoods of minimizers
Analysis
Asymptotic theoretical results vs tight computational budget

Parallel computing: 1/0, load balancing

Designing feedback between function and optimization
method

» Noise estimation and control
» Termination of iteration

» Other Applications
Electronics, Automotive, Algorithm Tuning
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How to Get imfil.m

How to get imfil.m

» Email me at tim_kelley@ncsu.edu

> Get it directly from
http://www4.ncsu.edu/ " ctk/imfil.html

Under construction.
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