"Optimized" Airline Plans and Operational Realities

Amy Cohn, University of Michigan Fields Lecture, 2008

Overview

- Scheduling process
 - Classical OR models
- Disconnect between plans and operations
 - Causes of disruption
 - Impact of disruption
 - Propagation of delay
 - Mis-aligned incentives

Overview, cont.

- New metrics and objectives for the planning process
 - What is robustness?
 - How do we measure it?
 - How do we value it?
 - How do we achieve it?
- 1 Current successes
- 1 Future challenges

Airline Planning

- Allocating and scheduling multiple scarce resources
 - Aircraft
 - Crew
 - Gates
 - Maintenance slots
- 1 Complex, inter-dependent network
- 1 Highly competitive environment

Airline Schedule Planning

Pros and cons of disaggregation

Schedule Design

- Decide markets, frequency, time table
- Precedes (and drives) all other planning decisions
- Lots of qualitative decisions
- 1 Feasibility difficulty to establish

Fleet Assignment

- For each flight, pick a fleet type
- Satisfy:
 - Cover constraints
 - Balance constraints
 - Count constraints
- Maximize expected revenue minus operating cost

Maintenance Routing

- 1 For each flight assign a tail number
- Need to create cycles
- Need adequate maintenance opportunities
- Every tail flies every flight?
- No clear objective function
- Plan changes frequently more a validation than a plan

Crew Scheduling

- 1 For each flight assign a crew (cockpit, cabin)
- Need to respect lots of complex FAA and labor restrictions
- Minimize cost
- Crew pairing problem: Find a minimum cost set of feasible pairings such that each flight is included in exactly one pairing
- These pairings are then assigned to individual crew members (rostering, bidding)

Links Between Planning Problems

- Schedule determines flights to be covered
- Fleet assignment partitions flights into smaller sets that share common crews, common aircraft
- Maintenance routing restricts feasible crew connections

OR Contributions to Airline Planning

- Decades of OR research in airline planning
- Many important general OR techniques have evolved from airline applications
- Countless research projects, papers, models, algorithms, software tools, and Edelman awards
- 1 A true OR success story in many ways

Limitations of These Successes

- Airline planning is largely based on static, deterministic data
- Does not directly and adequately address:
 - Daily fluctuations in demand
 - Uncertainty in resource availability
 - Uncertainty in flight times

- ...

Sources of Delay/Disruption

- Weather
- 1 Mechanical
- Air traffic control
- Boarding delays
- Unavailable crew (cockpit, cabin, gate, ground)
- 1 ...

Delay Propagation Statistics

Impact of Disruptions

Direct Delay Costs to Major U.S. Airlines (2006)

Delay Propagation

- In addition to root causes of delay, many delays are caused by upstream delays
 - Awaiting aircraft
 - Awaiting crew
 - Awaiting connecting passengers
 - Awaiting gates

- ...

Propagation Tree: Example

Delay and Disruption Statistics

Delay and Disruption Trends

Source: Bureau of Transportation Statistics: http://www.bts.gov/

Key Conflict

- Slack is fundamentally "bad" in planning and fundamentally "good" in operations
- 1 In planning, wastes a scarce resource
- In operations, provides an opportunity to absorb delay and prevent propagation
- How should this conflict be resolved? Does it impact the way plans are built?

Beyond Delay Propagation

- Not all delays propagate
- Alternatives for recovery
 - Swapping aircraft
 - Swapping crew
 - Canceling flights
 - Spare aircraft, ferrying

- ...

New Objectives for Airline Planning

- Focusing solely on deterministic objectives doesn't make sense
- 1 There are NO "clear-blue sky" days
- What should the planning objectives be?
 - Min expected cost
 - Min worst case
 - Maximize robustness
 - Trade off between cost and robustness

Minimize Expected Cost

- Several major obstacles:
 - Integrated planning
 - Stochastic
 - Data
 - Recovery codification

Maximize Robustness

- Several major obstacles:
- What is robustness?
 - How do we measure it?
 - How do we value it?
 - How do we achieve it?

Another Question: Boundaries

- What should be addressed in planning?
- What should be addressed in operations?

Alternative Approaches to Robustness

- Don't try to achieve "the Holy Grail"
- Incremental, iterative approaches
 - Decreasing propagation
 - Providing opportunities for recovery

Example One

- Ellis Johnson and Barry Smith
- Impose "station purity" in the fleet assignment problem to improve robustness of solution
 - Limit number of fleet types into spoke stations
 - Greater flexibility for recovering crews, aircraft
 - Impact on computational performance need to develop new methodologies
 - Need to make cost-benefit trade-offs

Example Two

- Cindy Barnhart, Shan Lan, and John-Paul Clarke
- 1 Focus on decreasing passenger disruption
- 1 Two approaches
 - Taking into account stochasticity when construcing aircraft rotations by strategically choosing aircraft connections
 - Re-timing flight departures to decrease passenger mis-connects

Example Three

- Sergey Shebalov and Diego Klabjan
- Focus on crew scheduling
- Consider secondary objective criteria: maximizing number of "move-up crews"
- How much increase in planned crew costs should be incurred to have more options for crew recovery?

Example Four

- David Ryan and Oliver Weide
- Look at the link between crew scheduling and maintenance routing
 - Linked together via short turns
- Work to improve robustness by decreasing tight turns
- Begin with least-cost solution and iteratively increase robustness with minor increases in cost

Example Five

- Jay Rosenberger, Ellis Johnson, and George Nemhauser
- Methods to increase flexibility for recovery via fleet assignment/maintenance routing
 - Hub isolation
 - Short cycles
- 1 Cost trade-offs

Our Research: Motivation

- 1 How can we mitigate delay propagation?
- One approach is to add more slack to the connections
 - But adding more slack increases cost
 - How to trade-off between improved robustness and increased cost?
- Re-distribute the slack that is already in the network!
 - No additional costs incurred

Our Research: Problem Statement

1 Objective:

Minimize the expected delay propagation

Constraints:

- Change the departure times of the flights within a given time window
- Keep the original connections still feasible with respect to the crew assignment

Other uses of time windows:

Levin (1971), Rexing et al (2000), Lan et al (2003)

Our Research: Notation

1 Sets:

- Set of flights (nodes) F
- Set of connections (arcs) A
 - Union of two sets: cockpit crew (P) and aircraft (C) connections
 - 1 $A = P \cup C$
- Set of possible delay values (minutes) M

Parameters:

- Probability of the root delay
- The original slack on each arc

$$0 \le p_f^m \le 1 \quad \forall f \in \mathsf{F} , \forall m \in \mathsf{M}$$

$$s_{f_1,f_2} \ge 0 \quad \forall (f_1,f_2) \in \mathbf{A}$$

Our Research: Decision Variables

Flight re-timing

$$k_f^- \le x_f \le k_f^+$$

1 The new slack on each arc

$$y_{f_1,f_2} \ge 0$$

Delay propagated from f_1 to f_2 when f_1 is delayed by m minutes

$$d_{f_1,f_2}^m \ge 0$$

Our Research: Key Constraint

original schedule

modified schedule

Our Research: Single-Layer Model

$$\min \sum_{m \in M} \sum_{(f_1, f_2) \in A} p_{f_1}^m d_{f_1, f_2}^m$$

$$y_{f_1, f_2} = s_{f_1, f_2} - x_{f_1} + x_{f_2} \qquad \forall (f_1, f_2) \in A$$

$$d_{f_1, f_2}^m \ge m - y_{f_1, f_2} \qquad \forall (f_1, f_2) \in A \qquad \forall m \in M$$

$$d_{f_1, f_2}^m \ge 0 \qquad \forall (f_1, f_2) \in F \qquad \forall m \in M$$

$$k_f^- \le x_f \le k_f^+ \qquad \forall f \in F$$

$$y_{f_1, f_2} \ge 0 \qquad \forall (f_1, f_2) \in A$$

Our Research: Expanded Model

1 How to consider all layers of propagation?

$$d_{f_0,f_i}^m \ge d_{f_0,r_{f_0}^m(f_i)}^m - y_{r_{f_0}^m(f_i),f_i}$$

Propagation from the root flight to flight i

Propagation from root flight to the parent flight of *i*

New slack between parent flight and flight *i*

Our Research: Implementation

- Implemented the model using CPLEX10.0/C++
- Used historical data in order to compute the probability of root departure delays
- 1 Assumptions:
 - Equal time windows (+/- 15 minutes)
 - Flights that start a duty period can't move earlier
 - Flights that end a duty period can't move later
 - Relax this in later experiments...

Our Research: Size vs. Run Time

Data	Duty	Model	No. of	No. of	No. of	Time
Set	Restriction		Constraints	Variables	Nonzeros	(sec.)
1	15	SLM	2,701	3,217	5,867	4
1	15	MLM	6,108	6,636	16,080	8
2	15	SLM	2,444	2,923	5,289	2
2	15	MLM	5,376	5,865	14,081	6

Our Research: Results

Data Set	Duty Restrictions	Single-Layer Model	Multi-Layer Model	
1	0	6.3%	7.2%	
1	5	23.0%	27.4%	
1	10	33.6%	40.9%	
1	15	41.5%	51.0%	
2	0	5.3%	5.8%	
2	5	23.5%	27.3%	
2	10	34.4%	41.5%	
2	15	43.1%	52.2%	

Our Research: Observations

- Can relax integrality of decision variables
 - The coefficient matrix is totally unimodular
- The optimal solution is not too sensitive to the objective function coefficients
 - Small errors in estimating the delay probabilities don't dramatically affect the solution quality

Our Research: Limitations

- 1 Objective function ignores recovery intervention
- 1 Model considers each root delay independently

Our Research: Over-Counting

Our Research: Under-Counting

Our Research: Validation

Data Set	Duty Restrictions	Single-Layer Model	Multi-Layer Model
1	0	(3.2%, 5.4%)	(4.4%, 6.6%)
1	5	(21.8%, 23.9%)	(23.4%, 25.5%)
1	10	(35.6%, 37.5%)	(37.5%, 39.2%)
1	15	(46.0%, 47.6%)	(47.8%, 49.3%)
2	0	(2.6%, 5.0%)	(3.5%, 5.9%)
2	5	(22.7%, 24.8%)	(24.3%, 26.3%)
2	10	(37.0%, 38.8%)	(38.9%, 40.6%)
2	15	(47.9%, 49.5%)	(50.1%, 51.7%)

Future Challenges, Opportunities

- 1 Challenges:
 - Fuel issues
 - Mergers
 - Congestion

Future Challenges, Opportunities

Opportunities

- Computers are getting faster
- Algorithms are getting better
- New integrated planning tools
- Silos are coming down
- Academics, industry are working together