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Preliminaries on operator spaces

An operator space E is called
homogeneous or λ-homogeneous if ∃λ s.t. every bounded
map u on E is c.b. and ‖u‖cb ≤ λ‖u‖;
Hilbertian or λ-Hilbertian if E is isomorphic or λ-isomorphic
to a Hilbert space (at the Banach space level).

Vector-valued Schatten classes (Pisier):
Sp = Schatten p-class; S∞ = B(`2)

S∞[E ] = S∞ ⊗min E ;
S1[E ] = S1⊗̂E , ⊗̂ = the projective tensor product;
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Definition (Effros-Ruan)
Let u : E → F be a map between two operator spaces. u is
called completely 1-summing if the map id⊗ u is bounded from
S1 ⊗min E to S1[F ]. Then define

πo
1(u) = ‖id⊗ u : S1 ⊗min E → S1[F ]‖

and

Πo
1(E , F ) = {u : E → F completely 1-summing}.

Remark
Πo

1(E , F ) is an ideal in the following sense:

v ∈ CB(E1, E), u ∈ Πo
1(E , F ), w ∈ CB(F , F1)⇒

wuv ∈ Πo
1(E1, F1), πo

1(wuv) ≤ ‖w‖cb π
o
1(u) ‖v‖cb .
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Column and row spaces

C = column space; R = row space. Given a Hilbert space H let

Hc = B(C, H) and H r = B(H, C).

Definition
Cp = first column of Sp; Rp = first row of Sp, 1 ≤ p ≤ ∞.

C∞ = C and R∞ = R; C2 = R2 = OH.

Elementary properties
Cp and Rp are 1-homogeneous and 1-Hilbertian. Their
canonical bases will be identified with that of `2:
ek1 ∼ e1k ∼ ek .
C∗p = Cp′ = Rp completely isometrically.(
C∞, C1

)
1/p = Cp completely isometrically.
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Direct sum and sum

Let E and F be two operator spaces. E ⊕p F denotes the direct
sum of E and F in the `p-sense.

Remark
For any 1 ≤ p,q ≤ ∞

E ⊕p F ' E ⊕q F .

This allows us to use E ⊕ F to denote E ⊕p F for any p.

Let (E , F ) be a compatible couple (i.e. E ,F ↪→ V). Put

E ∩ F = {x : x ∈ E , x ∈ F}, E + F = {x + y : x ∈ E , y ∈ F}.

We view E ∩ F as the diagonal subspace of E ⊕ F and E + F
as the quotient of E ⊕ F by the subspace {(x , y) : x + y = 0}.
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Quotients of subspaces of C ⊕ R

Notation
QS(E) denotes the family of all quotients of subspaces of E .

Properties of QS(C ⊕ R)

QS(C ⊕ R) is stable under duality.
OH ∈ QS(C ⊕ R) (Pisier’s exercise).
Cp ∈ QS(C ⊕ R) for any p.
Any space in QS(C ⊕ R) completely embeds into a
noncommutative L1 with universal constant.
In particular, OH completely embeds into a
noncommutative L1 (Junge’s embedding theorem).
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Main concern
Study various properties of homogeneous spaces in
QS(C ⊕ R):

their representation;
completely 1-summing maps between them;
their injectivity and exactness constants in the finite
dimensional case.
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Weighted L2-spaces

(Ω, ν) = a measure space; σ = a weight on Ω. The norm of
L2(Ω, σ) is given by

‖f‖L2(Ω,σ) =
( ∫

Ω
|f |2σ2dν

)1/2
.

Similarly, we have the `2-valued weighted L2(`2; Ω, σ).

Let σ and µ be two weights on Ω the following weight condition∫
Ω

min(σ2, µ2) dν <∞.

Then (L2(`2; Ω, σ), L2(`2; Ω, µ)) is a compatible couple.
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The spaces Kσ, µ

Let
Gσ, µ = L2(`2; Ω, σ)c + L2(`2; Ω, µ)r .

Recall

Gσ, µ = L2(`2; Ω, σ)c ⊕ L2(`2; Ω, µ)r/{(a,b) : a + b = 0 a.e.} .

Define Kσ, µ to be the subspace of constant functions of Gσ, µ.
The o.s.s. of Kσ, µ: for any finite sequence (xk ) ⊂ S∞∥∥∑

k

xk ⊗ ek
∥∥

S∞[Kσ, µ]

= inf
xk =ak +bk a.e.

{∥∥∑
k

∫
Ω

a∗kak σ
2dν

∥∥ 1
2 +

∥∥∑
k

∫
Ω

bkb∗k µ
2dν

∥∥ 1
2
}
,

Kσ, µ is a homogeneous Hilbertian space in QS(C ⊕ R).
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Representations of homogeneous spaces in
QS(C ⊕ R)

Theorem
Let F ∈ QS(C ⊕ R) be homogeneous. Then ∃ α, β ∈ [0, 1] and
∃ σ = (σ(j))j≥1, µ = (µ(j))j≥1 ⊂ [0, 1] s.t. σ and µ satisfy the
weight condition: ∑

j≥1

min(σ(j)2 , µ(j)2) <∞

and s.t. F is completely isomorphic to αC ∩ βR ∩ Kσ, µ.

Corollary

Every homogeneous F in QS(C ⊕ R) is completely isomorphic
to C, R or Kσ, µ.
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Idea of proof
A main ingredient: Let S ⊂ C ⊕ R. Then
∃ n0,n1,n ∈ N ∪ {∞} s.t.

S = Cn0 ⊕ Rn1 ⊕ Γ(T ),

where T : `n → `n is an injective positive operator on `n.
Use of a completely symmetric basis of F .
Ultraproduct technique.
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Concrete representations of Cp

The previous representation for homogeneous spaces in
QS(C ⊕ R) is not explicit enough to do concrete calculations in
some specific situations since we don’t know any precise
information on the two weights σ and µ.

In the case of the column p-spaces we can write σ and µ
explicitly.
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Concrete representations of Cp

Let R+ be quipped with the measure dt/t . For α ∈ R let
L2(`2; tα) be the weighted L2 with weight wα(t) = tα.
For 1 < p <∞ and θ = 1/p let

Gθ = L2(`2; t−θ)c + L2(`2; t1−θ)r

and let Kθ be the constant function subspace of Gθ.

Theorem
Let 1 < p <∞ and θ = 1/p. Then Cp = Kθ completely
isomorphically with universal constants.

Tool of the proof
Real interpolation.
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Concrete representations of CRp

Recall

CRp = Cp + Rp for 1 ≤ p < 2; CRp = Cp ∩ Rp for 2 ≤ p ≤ ∞.

The previous concrete representation of Cp implies a similar
one of CRp. Let

vθ(t) = min(t−θ , tθ−1), wθ(t) = min(t1−θ , tθ),

Vθ(t) = max(t−θ , tθ−1), Wθ(t) = max(t1−θ , tθ).

Theorem
Let 1 < p <∞ and θ = 1/p. Then CRp = Kvθ ,wθ for p < 2 and
CRp = KVθ ,Wθ

for p ≥ 2 completely isomorphically with
universal constants.
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Orlicz spaces

ϕ = an orlicz function on [0, ∞): ϕ is convex and ϕ(0) = 0.
The Orlicz space `ϕ consists of sequences x = (xn) s.t.

‖x‖ϕ = inf
{
λ > 0 :

∑
n

ϕ
( |xn|
λ

)
<∞

}
<∞.

Remark
`ϕ depends, up to isomorphism, only on the values of ϕ in
a neighborhood of 0.
The finite sequences are dense in `ϕ iff ϕ satisfies the
∆2-condition: ϕ(2t) ≤ λϕ(t).
Under the ∆2-condition `ϕ is uniquely determined, up to
isomorphism, by its fundamental sequence:

ϕn = ‖
∑
k≤n

ek‖ϕ =
1

ϕ−1( 1
n )
.
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Schatten-Orlicz classes

Let x be a compact operator on `2. Let (sn(x))n≥1 denote the
sequence of singular values of x , i.e. (sn(x))n≥1 is the
sequence of the eigenvalues of |x | ranged in decreasing order
and repeated according to multiplicity.

Definition
Let ϕ be an Orlicz function. Define

Sϕ = {x : x ∈ B(`2) compact s.t. (sn(x)) ∈ `ϕ}
‖x‖ϕ = ‖(sn(x))‖`ϕ .

Sϕ = Sp for ϕ(t) = tp.
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The main novelty

Theorem
Let E ,F ∈ QS(C ⊕ R) be homogenous.

Πo
1(E , F ) ⊂ S2.

There exists an Orlicz function ϕ satisfying the
∆2-condition s.t. Πo

1(E , F ) = Sϕ isomorphically.
All relevant constants depend only on the homogeneity
constants of E and F .

Remark
Since E and F are Hilbertian, we can choose, without loss of
generality, two orthonormal bases (ek ) in E and (fk ) in F . Then
by homogeneity we need only to consider diagonal operators
from E to F : u(ek ) = λk fk .
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Idea of proof

The inclusion Πo
1(E , F ) ⊂ S2 is easy. Since

C ∩ R ⊂ E ,F ⊂ C + R,

we have

Πo
1(E , F ) ⊂ Πo

1(C ∩ R, C + R) = S2 .

First ingredient: the previous representation theorem.
Second ingredient: the complete embedding of spaces in
QS(C ⊕R) into noncommutative L1(M). Moreover,M can
be chosen QWEP or even injective.
A lemma of Pisier. Let E∗,F ⊂ S1 be two f.d. subspaces.
Let E∗ ⊗1 F ⊂ S1⊗̂S1 = S1(`2(N2)). Identifying a map
u : E → F with its element ũ ∈ E∗ ⊗ F we have

Πo
1(E , F ) ' E∗ ⊗1 F iometrically.
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Reduction

Let E ,F ∈ QS(C ⊕ R) be homogeneous. Fix orthonormal
bases (ek ) of E and (fk ) of F . Define idn : E → F by
idn(ek ) = fk for k ≤ n and idn(ek ) = 0 for k > n.

Let ϕ be s.t. Πo
1(E , F ) = Sϕ. Then the fundamental sequence

of ϕ is equivalent to (πo
1(idn)).

Reduction
The determination of the whole space Πo

1(E , F ) is reduced to
that of the sequence (πo

1(idn)).

This considerably simplifies our task and this is the main
interest of the previous theorem
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A formula for πo
1(idn)

Let (γ, δ) and (σ, µ) be two pairs of weights on (Ω, ν) satisfying
the weight condition. Let E∗ = Kγ, δ and F = Kσ, µ . Let ⊗π
denote the Banach space projective tensor product. Set

A = L2(Ω2,min(γ ⊗ σ, δ ⊗ µ)),

B = L2(Ω,min(γ, δ))⊗π L2(Ω,min(σ, µ)),

Proposition

πo
1(idn) ∼ inf

{√
n‖a‖A + n‖b‖B : a ∈ A,b ∈ B,a + b = 1 a.e.

}
∼ sup

{∣∣ ∫ f (ω1, ω2)dν(ω1)dν(ω2)
∣∣ :

f ∈ A∗ ∩ B∗ , ‖f‖A∗ ≤
√

n , ‖f‖B∗ ≤ n
}
.
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A difficulty

In general it is very hard or even impossible to estimate πo
1(idn)

explicitly. But using the concrete representation of Cp, we can
do this for E = Cp and F = Cq. This is our next task.
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A special Orlicz function

Let
ψ(t) = t2 log(t + 1/t), t > 0.

ψ satisfies the ∆2-condition. The associated Orlicz space `ψ is
traditionally denoted by `2 log `.
Note that

ψ−1(t) ∼
√

2t
(

log
1
t
)−1/2 as t → 0.

Thus the fundamental sequence (ψn) is given by

ψn ∼
√

n log(n + 1) as n→∞.

We will need the Schatten-Orlicz class Sψ.
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Completely 1-summing maps from Cp to Cq

Theorem
Let 1 ≤ p,q ≤ ∞ s.t. q 6= p′ in the case 1 < p <∞. Let r
be determined by 2/r = 1/p + 1/q. Then

Πo
1(Cp , Cq) = Sr ∩ Sr ′ .

Let 1 < p <∞. Then

Πo
1(Cp , Cp′) = Sψ .
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Sketch of proof

Step 1: Πo
1(Cp , Cq) ⊂ Sr ∩ Sr ′ . Consider the diagram

Cp
u // Cq

w
��

C

v

OO

wuv // C

Then πo
1(wuv) ≤ ‖w‖cb π

o
1(u) ‖v‖cb . However

CB(C, Cp) = S2p , CB(Cq, C) = S2q , Πo
1(C, C) = S1 .

It follows that

‖wuv‖1 ≤ ‖w‖2q π
o
1(u) ‖v‖2p ;

whence ‖u‖r ′ ≤ πo
1(u) . This shows the assertion in the case

p′ < q. The case p′ > q is dealt with by considering Rp instead
of Cp.
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Sketch of proof

Step 2: Let 1 < p,q <∞. Then

πo
1(idn : Cn

p → Cn
q ) ≤ cp,q max

(
n

1
r ,n

1
r ′ , (n log(n + 1))

1
2
)
.

Let θ = 1/p′ and η = 1/q. Then

πo
1(idn : Cn

p → Cn
q ) ∼c inf

a+b=1 a.e.

(√
n ‖a‖A + n‖b‖B

)
,

where

A = L2(R2
+ ,min(s−θt−η , s1−θt1−η)) ,

B = L2(min(s−θ , s1−θ))⊗̂πL2(min(t−η , t1−η)).

Let 0 < s0 < 1 < s1 and 0 < t0 < 1 < t1. Consider

b = 1l(0, s0) ⊗ 1l(t1,∞) + 1l(s1,∞) ⊗ 1l(0, t0) , a = 1− b.
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Then by calculations of integrals we find

‖b‖B ≤ cp,q(s1−θ
0 t−η1 + s−θ1 t1−η

0 )

and

‖a‖A ∼cp,q


sη−θ0 + tθ−η1 if θ > η

sη−θ1 + tθ−η0 if θ < η[
log

s1t1
s0t0

]1/2 if θ = η

If θ > η (p′ < q), choose s−1
0 = t1 =

√
n and s1 = t−1

0 →∞.
Then

πo
1(idn : Cn

p → Cn
q ) ≤ c(p,q) n

1
r ′ .

If θ = η (q = p′), for s0 = t0 = n−
1

1−θ and s1 = t1 → 1 we get

πo
1(idn : Cn

p → Cn
q ) ≤ cp,q

√
n log(n + 1) .
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Sketch of proof

Step 3: For 1 < p <∞

πo
1(idn : Cn

p → Cn
p′) ≥ cp

√
n log(n + 1) .

This is done by duality by considering the following function
(with 0 < ε < 1)

f (s, t) = min((st)−2θ , (st)2(1−θ))1l[ε, 1](s) 1l[1, ε−1](t) .

Then

‖f‖2A∗ =

∫ ∞
0

∫ ∞
0

f (s, t)
dt
t

ds
s
∼cp log

1
ε

‖f‖B∗ ≤ cpε
−1 .

This allows us to conclude the proof.
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Completely 1-summing maps from CRp to CRq

Recall

CRp = Cp + Rp for p < 2; CRp = Cp ∩ Rp for p ≥ 2.

Using similar arguments we get the following

Theorem
Let 1 ≤ p, q ≤ ∞ s.t. p 6= q when 1 < p <∞. Then

Πo
1(CRp, CRq) = S2 ∩ Sr ,

where r is determined by 2/r = 1/p + 1/q′ .
Let 1 < p <∞. Then

Πo
1(CRp, CRp) = Sψ .
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Injectivity constants

E is called injective if idE factors as E u−→B(H)
v−→E by c.b.

maps u and v . The injectivity constant of E is defined to be

γ∞(E) = inf
vu=id

‖v‖cb ‖u‖cb .

Theorem
Let 1 < p <∞, p 6= 2. Then

γ∞(Cn
p ) ∼c(p) n

1
max(p, p′) and γ∞(CRn

p) ∼c(p)

√
n√

log(n + 1)
.

Proof. Use the elementary fact: Let E be an n-dimensional,
λ-homogeneous and µ-Hilbertian. Then

n ≤ πo
1(idE ) γ∞(E) ≤ λµn.
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1(idE ) γ∞(E) ≤ λµn.
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Exactness constants

Let dim E <∞. The exactness constant of E is

ex(E) = inf
{

dcb(E ,F ) : F ⊂Mn , n ∈ N
}
.

Theorem
Let 1 ≤ p ≤ ∞. Then

ex(Cn
p ) ∼c n

1
2 max(p, p′) and ex(CRn

p) ∼c n
1

2p .

The proof uses the representation theorem of Cp and

Lemma
Let E ⊂ L1(M) f.d. Then

ex(E) ∼c γ̃∞(E) = inf{‖v‖cb‖u‖cb : idE = vu,
u ∈ CB(E ,N ), v ∈ CB(N ,E),N = VNA}.
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