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An operator space E is called

@ homogeneous or A\-homogeneous if 3\ s.t. every bounded
map v on Eis c.b. and ||u||sp < Alju|;
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Definition ( )

Let u: E — F be a map between two operator spaces. u is
called completely 1-summing if the map id ® u is bounded from
S1 ®min E to Sq[F]. Then define

mP(u) = [lid® u : St @min E — Si[F]|

and

NY(E, F) = {u: E — F completely 1-summing}.
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Definition ( )

Let u: E — F be a map between two operator spaces. u is
called completely 1-summing if the map id ® u is bounded from
S1 ®min E to Sq[F]. Then define

Tr?(u) =|id®u : Sy @min E — S1[F]|l
and

N$(E, F) = {u: E — F completely 1-summing}.
1

Remark
NY(E, F) is anideal in the following sense:

v € CB(E;, E), ue N°(E, F), w e CB(F, Fy) =
wuv € N{(Ey, Fr), m9(wuv) < [|wllep 77 (U) [|V][ch -
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Column and row spaces

C = column space; R = row space. Given a Hilbert space H let

H® = B(C, H) and H' = B(H, C).
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Column and row spaces

C = column space; R = row space. Given a Hilbert space H let

H® = B(C, H) and H' = B(H, C).

Definition

Cp = first column of Sp; R, = first row of Sp, 1 < p < 0.

Coo:CandF?oo:Fw’; CQZRQZOH.

Elementary properties

@ Cp and R, are 1-homogeneous and 1-Hilbertian. Their
canonical bases will be identified with that of /5:
k1 ~ €1k ~ Ek.

@ C; = Cy = Rp completely isometrically.

° (COOa C1)

= Cp completely isometrically.

1/p
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Let E and F be two operator spaces. E @©p F denotes the direct
sum of E and F in the /p-sense.
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This allows us to use E @ F to denote E @, F for any p.
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Direct sum and sum

Let E and F be two operator spaces. E @©p F denotes the direct
sum of E and F in the /p-sense.

Forany 1 < p,g < c©

E®pF~EagF.

This allows us to use E @ F to denote E @, F for any p.

Let (E, F) be a compatible couple (i.e. E, F — V). Put
EnF={x:xeExeF}, E+F={x+y:xeE yeF}

We view E N F as the diagonal subspace of E® F and E + F
as the quotient of E & F by the subspace {(x,y) : x +y = 0}.
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Quotients of subspaces of C & R

QS(E) denotes the family of all quotients of subspaces of E.

Properties of QS(C @ R)
@ QS(C @ R) is stable under duality.
@ OH € QS(C @ R) (Pisier’s exercise).
@ Cp € QS(C @ R) for any p.

@ Any space in QS(C ¢ R) completely embeds into a
noncommutative L1 with universal constant.

@ In particular, OH completely embeds into a
noncommutative L, (Junge’s embedding theorem).
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Main concern

Study various properties of homogeneous spaces in
QS(C @ R):

@ their representation;

@ completely 1-summing maps between them;

@ their injectivity and exactness constants in the finite
dimensional case.
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Weighted Ly-spaces

(Q,v) = a measure space; o = a weight on Q. The norm of
Lo(Q2,0) is given by

1/2
1l = ( /Q #2o2dv)'2.
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(Q,v) = a measure space; o = a weight on Q. The norm of
Lo(Q2,0) is given by

1/2
1l = ( /Q #2o2dv)'2.

Similarly, we have the ¢»-valued weighted Ly(¢2; Q2, o).
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Weighted Ly-spaces

(Q,v) = a measure space; o = a weight on Q. The norm of
Lo(Q2,0) is given by

1/2
1l = ( /Q #2o2dv)'2.

Similarly, we have the ¢»-valued weighted Ly(¢2; Q2, o).

Let o and n be two weights on €2 the following weight condition
/ min(o?, u?) dv < occ.
Q

Then (La(42;Q2,0), La(l2; 2, 1)) is @ compatible couple.
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Let
Go, = Lo(l2;Q,0)° + Lo(l2; Q, )"

Recall

Go.p = Lo(l2;Q,0)° @ Lo(la; Q, 1) /{(a,b) : a+b=0ae.}.
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The spaces K, ,

Let
Go, = Lo(l2;Q,0)° + Lo(l2; Q, )"

Recall
Go, = Lo(l2;9Q,0)° @ Lo(l2; Q, )" /{(a,b) : a+ b=0a.e.}.

Define K, , to be the subspace of constant functions of G, ,,.
The o.s.s. of K, ,: for any finite sequence (xx) C S

I ZXK ® ekHsoo[K(,,H]
K

ol oo IS [ iacotanlf + S [ bubiaan),

K-, . is a homogeneous Hilbertian space in QS(C & R).
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Representations of homogeneous spaces in

QS(C @ R)
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Representations of homogeneous spaces in
QS(C o R)

Theorem

Let F € QS(C @ R) be homogeneous. Then 3 «, 3 € [0, 1] and
Jo = (0())j>1, v = (1()))j>1 C [0, 1] s.t. o and p satisfy the
weight condition:

Y min(a()?, p(j)?) < oo

j>1

and s.t. F is completely isomorphic to aC N BRN K, ..
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Representations of homogeneous spaces in

QS(C o R)

Let F € QS(C @ R) be homogeneous. Then 3 «, 3 € [0, 1] and
Jo = (0())j>1, v = (1()))j>1 C [0, 1] s.t. o and p satisfy the
weight condition:

Y min(a()?, p(j)?) < oo

j>1

and s.t. F is completely isomorphic to aC N BRN K, ..

Corollary

Every homogeneous F in QS(C @ R) is completely isomorphic
to C, Ror Ky, ..

v
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Idea of proof

@ A main ingredient: Let S ¢ C & R. Then
3 ng,ny,n € NU {0} s.t.

S=C"eR"aI(T),

where T : /" — (" is an injective positive operator on ¢".
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Idea of proof

@ A main ingredient: Let S ¢ C & R. Then
3 ng,ny,n € NU {0} s.t.

S=C"eR"aI(T),

where T : /" — (" is an injective positive operator on ¢".
@ Use of a completely symmetric basis of F.
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Idea of proof

@ A main ingredient: Let S ¢ C & R. Then
3 ng,ny,n € NU {0} s.t.

S=C"eR"aI(T),

where T : /" — (" is an injective positive operator on ¢".
@ Use of a completely symmetric basis of F.
@ Ultraproduct technique.
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Concrete representations of C,

The previous representation for homogeneous spaces in
QS(C @ R) is not explicit enough to do concrete calculations in
some specific situations since we don’t know any precise
information on the two weights o and .
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Concrete representations of C,

The previous representation for homogeneous spaces in
QS(C @ R) is not explicit enough to do concrete calculations in
some specific situations since we don’t know any precise
information on the two weights o and .

In the case of the column p-spaces we can write o and p
explicitly.
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Concrete representations of C,

Let R, be quipped with the measure dt/t. For a € R let
Lo(4o; t*) be the weighted L, with weight w,,(f) = t.
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Concrete representations of C,

Let R, be quipped with the measure dt/t. For a € R let
Lo(4o; t*) be the weighted L, with weight w,,(f) = t.
Fori1 <p<oocandf=1/plet

Go = Lo(l2; t70)° 4 Lo(f; t'70)
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Concrete representations of C,

Let R, be quipped with the measure dt/t. For a € R let
Lo(4o; t*) be the weighted L, with weight w,,(f) = t.
Fori1 <p<oocandf=1/plet

Gg = Lg((z; t_e)c + Lg(fg; t1 —9)r

and let Ky be the constant function subspace of Gy.
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Concrete representations of C,

Let R, be quipped with the measure dt/t. For a € R let
Lo(4o; t*) be the weighted L, with weight w,,(f) = t.
Fori1 <p<oocandf=1/plet

Go = Lo(l2; t70)° 4 Lo(f; t'70)

and let Ky be the constant function subspace of Gy.

Let1 < p<ooandd =1/p. Then C, = Ky completely
isomorphically with universal constants.
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Concrete representations of C,

Let R, be quipped with the measure dt/t. For a € R let
Lo(4o; t*) be the weighted L, with weight w,,(f) = t.
Fori1 <p<oocandf=1/plet

Go = Lo(l2; t70)° 4 Lo(f; t'70)

and let Ky be the constant function subspace of Gy.

Let1 < p<ooandd =1/p. Then C, = Ky completely
isomorphically with universal constants.

Tool of the proof
Real interpolation.
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Concrete representations of CR,

Recall

CRy, =Cp+Rpfor1 <p<2,CR,=CpnRyfor2 <p<oo.
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Concrete representations of CR,

Recalll
CRy, =Cp+Rpfor1 <p<2,CR,=CpnRyfor2 <p<oo.

The previous concrete representation of C, implies a similar
one of CR,.
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Concrete representations of CR,

Recalll
CRy, =Cp+Rpfor1 <p<2,CR,=CpnRyfor2 <p<oo.

The previous concrete representation of C, implies a similar
one of CR,. Let

ve(t) = min(t™0, =1, wy(t) =min(t'?, V),
Vo(t) = max(t™?, t°71),  Wy(t) = max(t'=?, ).
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Concrete representations of CR,

Recall
CRy, =Cp+Rpfor1 <p<2,CR,=CpnRyfor2 <p<oo.
The previous concrete representation of C, implies a similar
one of CR,. Let
ve(t) = min(t™0, =1, wy(t) =min(t'?, V),
Vo(t) = max(t™?, t°71),  Wy(t) = max(t'=?, ).

Let1 < p<ooandd =1/p. Then CR, = Ky, .w, for p <2 and
CRp = Ky, ,w, for p > 2 completely isomorphically with
universal constants.
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Orlicz spaces
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Orlicz spaces

¢ = an orlicz function on [0, cc0): ¢ is convex and ¢(0) = 0.
The Orlicz space ¢, consists of sequences x = (xp) s.1.
: |Xn]
Ixll, =inf {A >0+ > p(5F) < oo} < oo

n
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Orlicz spaces

¢ = an orlicz function on [0, cc0): ¢ is convex and ¢(0) = 0.
The Orlicz space ¢, consists of sequences x = (xp) s.1.

: [ Xn]
Ix|lo = inf{A >0 : Zw(T”) < 00} < oo.

| :

Remark

@ /, depends, up to isomorphism, only on the values of ¢ in
a neighborhood of 0.

v
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Orlicz spaces

¢ = an orlicz function on [0, cc0): ¢ is convex and ¢(0) = 0.
The Orlicz space ¢, consists of sequences x = (xp) s.1.

: [ Xn]
Ix|lo = inf{A >0 : Zw(T”) < 00} < oo.

| :

Remark

@ /, depends, up to isomorphism, only on the values of ¢ in
a neighborhood of 0.

@ The finite sequences are dense in Z,, iff © satisfies the
Ap-condition: p(2t) < A ().

v
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Orlicz spaces

¢ = an orlicz function on [0, c0): ¢ is convex and ¢(0) =
The Orlicz space ¢, consists of sequences x = (xp) s.1.

Ix|lo =inf{Ax >0 : Zcp(‘;’) < o0} < oo

Remark

@ /, depends, up to isomorphism, only on the values of ¢ in
a neighborhood of 0.

@ The finite sequences are dense in Z,, iff © satisfies the
Ap-condition: p(2t) < A ().

@ Under the Ap-condition /, is uniquely determined, up to
isomorphism, by its fundamental sequence:

on =1 exll, =

k<n (15)

| :

v
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Schatten-Orlicz classes
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Schatten-Orlicz classes

Let x be a compact operator on ¢». Let (sp(x))s>1 denote the
sequence of singular values of x, i.e. (Sy(X))n>1 is the
sequence of the eigenvalues of |x| ranged in decreasing order
and repeated according to multiplicity.

Quanhua Xu Completely summing maps



Schatten-Orlicz classes

Let x be a compact operator on ¢». Let (sp(x))s>1 denote the
sequence of singular values of x, i.e. (Sy(X))n>1 is the
sequence of the eigenvalues of |x| ranged in decreasing order
and repeated according to multiplicity.

Definition
Let © be an Orlicz function. Define

S, = {x: xeB({;) compacts.t. (sp(x)) € £,}

1l 1(sn())le, -
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Schatten-Orlicz classes

Let x be a compact operator on ¢». Let (sp(x))s>1 denote the
sequence of singular values of x, i.e. (Sy(X))n>1 is the
sequence of the eigenvalues of |x| ranged in decreasing order
and repeated according to multiplicity.

Definition

Let © be an Orlicz function. Define

S, = {x: xeB({;) compacts.t. (sp(x)) € £,}

1l 1(sn())le, -

S, = Sp for p(t) = tP.
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Let E, F € QS(C ¢ R) be homogenous.
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@ There exists an Orlicz function ¢ satisfying the
Ap-condition s.t. M{(E, F) = S, isomorphically.
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Let E, F € QS(C ¢ R) be homogenous.
e NJ(E, F) C Ss.
@ There exists an Orlicz function ¢ satisfying the
Ap-condition s.t. NY(E, F) = S, isomorphically.
@ All relevant constants depend only on the homogeneity
constants of E and F.
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The main novelty

Let E, F € QS(C ¢ R) be homogenous.

e NJ(E, F) C Ss.

@ There exists an Orlicz function ¢ satisfying the
Ap-condition s.t. NY(E, F) = S, isomorphically.

@ All relevant constants depend only on the homogeneity
constants of E and F.

Since E and F are Hilbertian, we can choose, without loss of
generality, two orthonormal bases (ex) in E and (f) in F. Then
by homogeneity we need only to consider diagonal operators
from E to F: u(ex) = k.
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ldea of proof
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ldea of proof

@ The inclusion N{(E, F) C Sy is easy. Since
CNRCEFcC+R,
we have

No(E, F) cN%(CNR,C+R)=S,.
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ldea of proof

@ The inclusion N{(E, F) C Sy is easy. Since
CNRCEFcC+R,
we have
NY(E, F) cN{y(CNnR,C+R)=S,.

@ First ingredient: the previous representation theorem.
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@ The inclusion N{(E, F) C Sy is easy. Since
CNRCEFcC+R,
we have
NY(E, F) cN{y(CNnR,C+R)=S,.

@ First ingredient: the previous representation theorem.

@ Second ingredient: the complete embedding of spaces in
QS(C @ R) into noncommutative L{(M). Moreover, M can
be chosen QWEP or even injective.

Quanhua Xu Completely summing maps



ldea of proof

@ The inclusion N{(E, F) C Sy is easy. Since
CNRCEFcC+R,
we have
NY(E, F) cN{y(CNnR,C+R)=S,.

@ First ingredient: the previous representation theorem.

@ Second ingredient: the complete embedding of spaces in
QS(C @ R) into noncommutative L{(M). Moreover, M can
be chosen QWEP or even injective.

@ Alemma of Pisier. Let E*, F C S; be two f.d. subspaces.
Let E* @1 F C S1®S; = S;(¢2(N?)). Identifying a map
u: E — F with its element U € E* ® F we have

NY(E, F) ~ E* ®1 F iometrically.
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Let E, F € QS(C @ R) be homogeneous. Fix orthonormal
bases (ex) of E and (fx) of F. Define id, : E — F by
idp(ex) = fx for k < nandid,(ex) = 0 for k > n.
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Let E, F € QS(C @ R) be homogeneous. Fix orthonormal
bases (ex) of E and (fx) of F. Define id, : E — F by
idp(ex) = fx for k < nandid,(ex) = 0 for k > n.

Let ¢ be s.t. M{(E, F) = S,. Then the fundamental sequence
of ¢ is equivalent to (w?(idp)).
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Let E, F € QS(C ¢ R) be homogeneous. Fix orthonormal
bases (ex) of E and (fx) of F. Define id, : E — F by
idp(ex) = fx for k < nandid,(ex) = 0 for k > n.

Let ¢ be s.t. M{(E, F) = S,. Then the fundamental sequence
of ¢ is equivalent to (w?(idp)).

Reduction

The determination of the whole space M§(E, F) is reduced to
that of the sequence (79(idp)).
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Let E, F € QS(C ¢ R) be homogeneous. Fix orthonormal
bases (ex) of E and (fx) of F. Define id, : E — F by
idp(ex) = fx for k < nandid,(ex) = 0 for k > n.

Let ¢ be s.t. M{(E, F) = S,. Then the fundamental sequence
of ¢ is equivalent to (w?(idp)).

Reduction

The determination of the whole space M§(E, F) is reduced to
that of the sequence (79(idp)).

This considerably simplifies our task and this is the main
interest of the previous theorem
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A formula for 7?(id,)
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A formula for 7?(id,)

Let (v, 9) and (o, 1) be two pairs of weights on (Q, ) satisfying
the weight condition. Let E* =K, s and F =K, ,.Let®,
denote the Banach space projective tensor product. Set

A = Lp(Q% min(y®o, 6 ® u)),
B = LZ(Q’ min(% 5)) S LZ(Qa min(a, M))a
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A formula for 7?(id,)

Let (v, 9) and (o, 1) be two pairs of weights on (Q, ) satisfying
the weight condition. Let E* =K, s and F =K, ,.Let®,
denote the Banach space projective tensor product. Set

A = Lp(Q% min(y®o, 6 ® u)),
B = LZ(Q’ min(% 5)) S LZ(Qa min(a, M))a

Proposition

m{(idp) ~ inf{v/n|lalla+n|bllg:acAbeBa+b=1ae.}
~ Sup{‘/f(w1,w2)dy(w1)d1/(w2)|:
fe A nB*, |flla < Vn,|flg- < n}.
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A formula for 7?(id,)

Let (v, 9) and (o, 1) be two pairs of weights on (Q, ) satisfying
the weight condition. Let E* =K, s and F =K, ,.Let®,
denote the Banach space projective tensor product. Set

A = Lp(Q% min(y®o, 6 ® u)),
B = LZ(Q’ min(% 5)) S LZ(Qa min(a, M))a

Proposition

m{(idp) ~ inf{v/n|lalla+n|bllg:acAbeBa+b=1ae.}
~ Sup{‘/f(w1,w2)dy(w1)d1/(w2)|:
fe A nB*, |flla < Vn,|flg- < n}.
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A difficulty
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A difficulty

In general it is very hard or even impossible to estimate 7 (id,)
explicitly. But using the concrete representation of Cp, we can
do this for E = Cp and F = Cq. This is our next task.
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A special Orlicz function
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A special Orlicz function

Let
¥(t) = tlog(t+1/t), t>0.

v satisfies the Ax-condition. The associated Orlicz space /y, is
traditionally denoted by ¢2 log ¢.
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A special Orlicz function

Let
¥(t) = tlog(t+1/t), t>0.

v satisfies the Ax-condition. The associated Orlicz space /y, is
traditionally denoted by ¢2 log ¢.
Note that

()~ VaT(log 1) as 10
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A special Orlicz function

Let
¥(t) = tlog(t+1/t), t>0.

v satisfies the Ax-condition. The associated Orlicz space /y, is
traditionally denoted by ¢2 log ¢.
Note that
[
P~ (t) ~ V2t (log ?) 2 as t—0.

Thus the fundamental sequence (v) is given by

tp ~+/nlog(n+1) as n— oo.

We will need the Schatten-Orlicz class S,.
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Completely 1-summing maps from C, to Cq4
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Completely 1-summing maps from C, to Cq4

0 Let1 <p,g<ocost g#pinthecase1 <p<oc. Letr
be determined by 2/r =1/p+1/q. Then

n?(Cp, Cq) = Sr N Sr/ .
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Completely 1-summing maps from C, to Cq4

0 Let1 <p,g<ocost g#pinthecase1 <p<oc. Letr
be determined by 2/r =1/p+1/q. Then

n?(Cp, Cq) = Sr N Sr/ .

@ Let1 <p<oo. Then

N9(Cp, Co) = S
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Sketch of proof
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Sketch of proof

Step 1: MN9(Cp, Cq) C Sy N Sp. Consider the diagram
T iw
C wuv C
Then 7¢(wuv) < ||wl[ep 79 (u) ||v||co - However
CB(C, Cp) = Sop, CB(Cy, C)=Syq, NJ(C,C)=Sy.
It follows that
wuvl[s < [[wll2q 77 (u) [[Vl2p:

whence |[u|» < m?(u) . This shows the assertion in the case
p’ < g. The case p’ > q is dealt with by considering R, instead
of Cp.
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Sketch of proof
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Sketch of proof

Step 2: Let1 < p,q < . Then

79(idp : CJ — CI) < cpgmax (n+,n, (nlog(n+1))?).
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Sketch of proof

Step 2: Let1 < p,q < . Then
79(idp : CJ — CI) < cpgmax (n+,n, (nlog(n+1))?).
Letd =1/p’andn =1/qg. Then

inf__(Vnlala+nlblls),

. . n
7?(idp : Cg — Cg) ~c e

where

A = Lp(R2 min(s™?t, s'0t'"m),
B = Ly(min(s™?, "), La(min(t", t'=")).
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Sketch of proof

Step 2: Let1 < p,q < . Then
79(idp : CJ — CI) < cpgmax (n+,n, (nlog(n+1))?).
Letd =1/p’andn =1/qg. Then

inf
o (Vlala+nlbls).,

where

A = Lp(R2 min(s™?t, s'0t'"m),
B = Lymin(s™?, s'"9)®,La(min(t™", t'=7)).

Let0<sp<1<s;and0 < fp <1< t. Consider

b =0, s) ® Uity, 00) + Uisy, 00) @ N0, 45, a@a=1-0b.
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Then by calculations of integrals we find

1-0 — B -
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Then by calculations of integrals we find

1bllg < Coq(sd ™ 1"+ 577577
and
SO ife>y
SO ife<n

S1tiq12 .
log — fo =
[log o 7]~ if0=n

lalla ~cp.q
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Then by calculations of integrals we find
—0 — _0 1—
1blls < coq(sy ™"t "+ 577 t57")
and
SO ife>y
SO ife<n

Sihiq1/2 .
log — fo=
[ 9 Soto] ! n

”aHA ~Cp,q

If0 >n (P < q),choose sy =t =+/nand sy =t;' — co.
Then

Y-

m7(idn : Cj — Cg) < c(p,q) n7 .
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Then by calculations of integrals we find
—0 — _0 1—
1blls < coq(sy ™"t "+ 577 t57")
and
SO ife>y
SO ife<n

S1tiq12 .
log — fo =
[ 9 Soto] ! n

”aHA ~Cp,q

If0 >n (P < q),choose sy =t =+/nand sy =t;' — co.
Then

Y-

m7(idy : G5 — Cgq) < c(p,q) n" .
|f9:77(C7=,0’),f0FSo:Z‘O:H*ﬁ and s; =t — 1 we get

m{(idp : Cp — Cq) < Cpq/nlog(n+1).
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Sketch of proof
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Sketch of proof

Step 3: For1 < p < o0

m{(id : Cp — Cp) > ¢py/nlog(n+1).
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Sketch of proof

Step 3: For1 < p < o0

m{(id : Cp — Cp) > ¢py/nlog(n+1).

This is done by duality by considering the following function
(with0 < e < 1)

f(s,1) = min((st) 2, (s)P=D)l 1)(8) g, o—1)(0).
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Sketch of proof

Step 3: For1 < p < o0

m{(id : Cp — Cp) > ¢py/nlog(n+1).

This is done by duality by considering the following function
(with0 < e < 1)

f(s,1) = min((st) 2, (s)P=D)l 1)(8) g, o—1)(0).

I3 = / / (s,) % %~ t0g L

Iflg- <

Then
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Sketch of proof

Step 3: For1 < p < o0

m{(id : Cp — Cp) > ¢py/nlog(n+1).

This is done by duality by considering the following function
(with0 < e < 1)

f(s,1) = min((st) 2, (s)P=D)l 1)(8) g, o—1)(0).

I3 = / / i) L 0]

Iflg- <

Then

This allows us to conclude the proof.
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Completely 1-summing maps from CR, to CR,
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Completely 1-summing maps from CR, to CR,

Recall

CR,=Cp+Rp for p<2;, CR,=CpnA, for p>2.

Quanhua Xu Completely summing maps



Completely 1-summing maps from CR, to CR,

Recall
CRy,=Cp+ Rp for p<2; CR,=CpnA, for p>2.

Using similar arguments we get the following

@ let1<p,g<ost p#gwhenl < p<oo. Then

where r is determined by 2/r =1/p+1/q’.
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Completely 1-summing maps from CR, to CR,

Recall
CRy,=Cp+ Rp for p<2; CR,=CpnA, for p>2.

Using similar arguments we get the following

@ let1<p,g<ost p#gwhenl < p<oo. Then

where r is determined by 2/r =1/p+1/q’.
@ Let1 <p<oo. Then

N9(CRy, CRy) = S,
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Injectivity constants
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Injectivity constants

E is called injective if idg factors as E —— B(H) - E by c.b.
maps u and v. The injectivity constant of E is defined to be

'YOO(E): inf HVchHUch-
vu=id
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Injectivity constants

E is called injective if idg factors as E —— B(H) - E by c.b.
maps u and v. The injectivity constant of E is defined to be

'YOO(E): inf HVchHUch-
vu=id

Let1 < p < oo, p#2. Then

1
Yeo(Cp) ~e(p) N7 and  70o(CHp

) ~ _vn
“® Jogint 1)
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Injectivity constants

E is called injective if idg factors as E —— B(H) - E by c.b.
maps u and v. The injectivity constant of E is defined to be

'YOO(E): inf HVchHUch-
vu=id

Let1 < p < oo, p#2. Then

1
Yeo(Cp) ~e(p) N7 and  70o(CHp

) ~ _vn
" \log(n+1)

Proof. Use the elementary fact: Let E be an n-dimensional,
A-homogeneous and p-Hilbertian. Then

n < 79(idg) Yoo (E) < Aun.
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Exactness constants
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Exactness constants

Let dim E < co. The exactness constant of E is

ex(E) =inf{dw(E,F) : FCM,, ne N}.
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Exactness constants

Let dim E < co. The exactness constant of E is

ex(E) =inf{dw(E,F) : FCM,, ne N}.

Let1 < p < oco. Then

1 1
ex(Cp) ~c n?2m®.#) and ex(CRp) ~¢ n? .
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Exactness constants

Let dim E < co. The exactness constant of E is

ex(E) =inf{dw(E,F) : FCM,, ne N}.

Let1 < p < oco. Then

1 1
ex(Cp) ~c n?2m®.#) and ex(CRp) ~¢ n? .

The proof uses the representation theorem of C, and

Let E C L1(M) f.d. Then

eX(E) ~¢ Yoo (E) = inH{|[V||cpl|Ul[cp : ide = vu,
ue CB(E,N),v e CB(N,E),N = VNAL.
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