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Plan of the talk

CIhtroduction to discrete and compact quantum groups.

Boundaries at infinity and applications
(joint work with Vergnioux)

~— exactness of certain C=dlgebras,
~—» Ozawa’s solidity of certain von Neumann algebras.

Identification of Poisson boundaries for random walks
(joint work with Vander Vennet).
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Compact quantum groups (Woronowicz)

A compact quantum group G is a pair (C(G),A) where
C(G) is a unital Cdlgebra,
A :C(G) - C(G) Lmid C(G) is a unital "~Homomorphism,
satisfying
[—do-associativity : (A COd)A = (id CA)A,
the density conditions :

A(C(G))(1 LC(G)) and A(C(G))(C(G) 1)
are total in C(G) [mid C(G).

If C(G) is commutative, this corresponds to
G being a compact group,

T (G) being the C~=dlgebra of continuous functions,
LA given by (A(f))(x,y) = f(xy).
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Operator algebra point of view

Theorem (Woronowicz)

If G is a compact quantum group, C(G) admits a unique Haar state h.
~— Reduced C ~dlgebra 11,(C(G)) denoted as Ceq(G).

~— Von Neumann algebra 11, (C(G))™denoted as L= (G).

Potential interest, because we can take G = [L-hamely

CCreq(G) =C,iglr) and L*(G) =L(I),
CA(ug) = ug [C0d.

~—» Concrete compact quantum groups can lead to
interesting operator algebras.
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Representation theory

Let G be a compact quantum group.
Definition
An n-dimensional unitary representation of G is

—an n x n unitary matrix (Uj;) with matrix coe [ciehts in C(G),
satisfying A(Ujj) = ¢ Ui CUY;.

All that you expect, holds :

~—» Direct sums, irreducibles, Peter-Weyl, ...
~— Tensor product U ® V := (UjjVi).

~—> The representation U := (Uib—ris not necessarily unitary,
but can be unitarized :

contragredient U®:=FUF~1 for some F [GL,(C).

~— Enveloping Cdlgebra C,(G) and notion of co-amenability.
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Universal compact quantum groups

Definition (Van Daele-Wang, Banica)

We define two families of compact quantum groups G.
G =Ao(F) G =Au(F)
for F [GL,(C) and FF = #1. for F [GL,(C).

Let C(G) be the universal unital C ~dlgebra with generators ij)
subject to the relations W is unitary,

CBUF ! is also unitary.

CW=FUF L

with comultiplication A(Ujj) = ¢ Ui CUY;.
v__
[ [al L1
~— SUq(2) = A0 _sigp@ | for g C[31,1]\{0}.
lal

~—> Apart from the SUq(2), all A, u(F) are non co-amenable.
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Representation th. of A,(F) and A,(F) (Banica)

Let G = Ao (F).

Irred G = %N and

Un @Um Im|n—m| IE‘1—m|+1 C-d. m+m o
~—» Same fusion rules as SU(2).

~—> Fusion rules are abelian.
Let G = Ay(F).
Irred G = N [CNJ] the free monoid generated by o and (3,
L1
UX @ Uy = Uab )

z, Xx=az, y=zb

where x [Xis the involution on N [CNisatisfying a = 3. Also,

contragredient of Uy is Ux.
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Operator algebraic properties

We discuss G = Ag(F) (for F atleast 3x3) and G = Ay(F).

What is known.
Work of Banica :

1 (Au(F)) is a factor.
CCreqg(Au(F)) is simple.
0% (Au(l2)) CLLF2).

Work of V & Vergnioux :
1 (Aou(F)) is solid.
L Cred(Ao,u(F)) is exact.

At least for certain F,
L= (Ao (F)) is a full factor,
Cred (Ao (F)) is simple.

What is open :

CAre all L*(Ao,u(ln)) free
group factors?

CAre all L (Ao u(F)) and
L= (Ao u(F)) free
Araki-Woods factors?

—Are the Creq(Ao,u(ln))
projectionless?

Do the L*(Ao,u(In)) share
more with the L(Fg) ?
(Haagerup property,
complete metric approximation,

absence of Cartan, ...)
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Exact C ~dlgebras

A unital C"-digebra A is called exact if the minimal tensor product
A Lyid - with A, preserves short exact sequences.

Theorem (Ozawa, Anantharaman-Delaroche)

Let I be a discrete group. Then, C.L;(r) is exact if and only if
I admits an amenable action on a compact space.

Amenability of T :
&4 Elj]F) with [E4 [ 1 and [A§&n — &n 21~ O for all g.

Amenability of I X1

[Ed: X - [2Qr) continuous, with [E3(x) == 1 and

[AYEn(X) — &n(g - X) 21> O uniformly in x [X] for all g [T

Example : boundary action Fx [{ihfinite reduced words},
1

En(X1XoX3 - - -) = *Lﬁ Oxy--x-

i=1
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An application : solid factors

Definition (Ozawa)

A von Neumann algebra M with tracial state T is called solid if the
relative commutant of any di [ude subalgebra is injective.

~~» In particular, a solid non-hyperfinite Il; factor M is prime :
if M = M; T M}, one of both is a matrix algebra.

~—» If T is non-tracial : consider subalgebras with state
preserving conditional expectation.

Theorem (Ozawa)

Let I be a discrete group. The group von Neumann algebra L(I') is
solid if I admits a compactification X such that

—left action [ [T @xtends to amenable action I [X.1
might action I [T @xtends to action on X trivial on ol = X \T.
~—» We shall produce such actions for the duals of A (F).
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Discrete quantum groups

Let G be a compact quantum group
A:C(G) - C(G) Lmid C(G). P
Unitary representation is n x n matrix (Ujj) with A(Ujj) = Ui CUY;.

k
~— Set Hy = C" and view U [B{Hy) LC{G).

The dual discrete quantum group

Let Irred G be the set of all irreducible rep. of G.
Write U H G) for all x [Irted G. Set
x [BlHx) LC{G)

lf(@‘= B(Hx).

x [rred G

~— Comultiplication A =&Y - =(EITTF(EYsuch that
A@)yy S =S a, whenever S intertwines U, and Uy @ Uy .

Remark. If G = I£-bf course (&)= (') and A(a)(x,y) = a(xy).

11/20



Exactness and solidity for dual of Ay(F)

Let G = Ao(F). We have Irred G = %N with U, on H, and
Un @ Um IE|n—m| Iﬂln—mhl -4 [CUdm .
Compactification of &= C ~digebra B with co(&)Y CBICTT(E)!
et V, : Hh+1 - Hny [CH] be an isometric intertwiner.

Define Wy : B(Hn) - B(Hn+1) : Wn(a) = V(& 1V, UCP.
CIh fact, Wnm : B(Hp) - B(Hm) form=n.
—C "dlgebra B as ‘direct limit’. (Non-trivial: Y, are not homom.)

Theorem (V — Vergnioux)

The left action &1 co(G)extends to an amenable action on B, while
the right action extends to an action on B that is trivial on B/co(&)!

~—> Credq(G) is exact and L*(G) is (generalized) solid.

Remarks : [t is non-obvious to define amenable actions.

[—Bxtends to A, (F) : joint work with Vander Vennet.
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Probabilistic boundaries

Let 1 be a probability measure on a discrete group I'.
~~— Random walk with transition probab. péx,g = p(x"ty).

~~—» Markov operator on () : (Pa)(x) = p(x,y)a(y).

y

Bounded harmonic functions H* (I, n) = {a [ IT(I) | Pa=a}.

Assume : transience and supp L generates I' as semi-group.

Poisson boundary
r Qn).
[ CTharacterization.

[Properties.
CDefinition.

Action of I on probability space (Y, n).
Poisson integral;

@ Kx) = . a(x -y) dn(y)
is a bijection L*(Y,n) - H®(, ).
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Probabilistic boundaries

Let 1 be a probability measure on a discrete group I'.
~~— Random walk with transition probab. péx,y = p(x"ty).

~~—» Markov operator on [=°[) : (Pa)(x) = p(x,y)a(y).

y

Bounded harmonic functions H* (I, p) = {a [ IT(I) | Pa=a}.

Assume : transience and supp |1 generates [ as semi-group.

Poisson boundary
r C(Yln).
CCharacterization.

[Rroperties.
Definition.

We can take a compactification I [XI
such that

[—Almost every path converges to a
pointin Y := X\T.
—Probability to end up in U is n(U).
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Probabilistic boundaries

Let i be a probability measure on a discrete group I'.
~~— Random walk with transition probab. p{x,g = p(x"ty).

~—> Markov operator on [2[T) : (Pa)(x) = p(x,y)a(y).

y

Bounded harmonic functions H*(I',p) = {a [IT(I) | Pa = a}.

Assume : transience and supp L generates [ as semi-group.

r C(n).
[—Characterization.
[Rroperties.
CDefinition.

Equipped with the product
a-b = strong 'jﬁrr]n P"(ab)
H* (T, ) is a von Neumann algebra.
SetH{ ([, u) = L(Y,n) with
adn =a(e).
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Probabilistic boundaries

Let i be a probability measure on a discrete group I'.

~~— Random walk with transition probab. p{x,g = p(x"ty).

~—> Markov operator on [2[T) : (Pa)(x) = p(x,y)a(y).

y

Bounded harmonic functions H*(I',p) = {a [IT(I) | Pa = a}.

Assume : transience and supp L generates [ as semi-group.

Poisson boundary
r Cn).
C_Characterization.

[Rroperties.
CDefinition.

Equipped with the product
a-b = strong 'jﬁrr]n P"(ab)
H* (T, ) is a von Neumann algebra.
SetH{ ([, u) = L(Y,n) with
adn =a(e).

~~—» Basic problem : identify I (Yl n).
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Poisson boundaries of discrete quantum groups
| ]

Remember : (&)= B(Hy).

x rrkd G

_B(Hy) has favorite state ), coming from unitarizing Uy.
[Rix a probability measure p on Irred G o
~— State Y, on (&Y given by wu(a) = L)Wk (ax).
~— Markov operator on ={&): P(a) = (id IIIIL)MA).

[—Assume transience and generating property of u and consider

H* (&) = {a CIF())| Pa = a}.

Von Neumann algebra with product a - b = strong 'jﬁrm P"(ab).
—Bvaluation in the trivial rep. € : harmonic state n on H®(GH).

~— We get the Poisson boundary H®(GH),
equipped with actions of &-and G.

~~» Definition due to Izumi (study of infinite product actions).

Central problem : identify 6 X" H®(G&H1) in examples.
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Identification of Poisson boundaries

@ Restriction of Markov operator : random walk on Irred G.

@ If fusion rules are commutative, the Poisson boundary
of Irred G is trivial and H®(&{1) independent of p.

Theorem (Izumi)
For any generating measure p on Irred(SUq(2)), we get
H®(G&4) CICP(T\SUq(2)) (Podles’ sphere).

~—> (Izumi-Neshveyev-Tuset) Generalization to SUq(n).

Theorem (Tomatsu, see next talk)

If G is co-amenable compact quantum group with commutative
fusion rules, H(&{1) CTP(K\SUq(2)) where K is the maximal
compact subgroup of Kac type.

Tool : Izumi’s Poisson integral © : L®(G) - H® (&)
©(a) = (id v~ ).
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Poisson boundary of A, (F)

FF = +1 and C(Ao(f/)) generated by Ujj; with U = FUF 1 unitary.
[ Tal 1
When Fq = _sign@ , , we get SUq(2).
lal

~— Let Tr(F ) = |q + %| and FF = —sign(q).
Take the unital C=algebra L generated by the entries of a
2xnmatrix Lwith L'e=1, LLE2 1 and L = FgLF L.

~—> Commuting ergodic actions SUq(2) [Llon the left and
Ao(F) I bn the right.

Theorem (V - Vander Vennet)

The Poisson boundary of @ can be identified with (T\L)™

Remarks. CT\L [Chbundary C~dlgebra B/co(EHof m
L is nuclear. Is it simple?

[—(De Rijdt - Vander Vennet) Behavior of Poisson boundaries

under monoidal equivalence.
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Recall the quantum group Ay (F)

G = Au(F) and C(G) generated by Uj; with U and FUF~* unitary.

Recall. IrredG = N E%ree monoid generated by o and (3,
UX @ Uy = Uab 3
z, x=az, y=zb

where x [Xs the involution on N [Nisatisfying a = 3.

17/20



Cayley tree of Irred(Ay(F))

[let u be generating prob. measure
NG on lrred(Ay(F)) with finite support.

[Classical transient random walk on

GBG . Cayley tree.
[—Roisson boundary is given by
o > harmonic measure n on set Y of
ap ap Ba? infinite words in a, B.
¢ —

(Kaimanovich et al.)

Bataap

BZG»—

€ B [32 B3
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Poisson boundary of A,(F)

Let p be a generating probability measure on Irred(Ay(F)) with
finite support

Let n be the harmonic measure on the set Y of infinite words in a, 3.

~~> An infinite word x in a, 3 can be of the form
x =x1 [X3d [Xd [=31- or has tail aBapa- - -.

~~> n has no atoms in words with tail aBapBap- - -.

~—» It su Cced to consider infinite words
of the form x = x; [xXd [ xXd [1-.

Theorem (V - Vander Vennet)

The Poisson boundary H*(&+{1) can be identified with the

measurable field of ITPFlsnite factors over (Y, n) with fiber in
4= 1

X =x1 [xd [xd [-1- given by (B(Hx), Wx)-
k
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Back to exactness and solidity for G = A,(F)

(Work in progress)
Consider the set Y of infinite words in o, 3 as a compact space.

~—~ Continuous field B of unital C~dlgebras over Y with
1
CHiber in x =x; [xXd [ xd [-1- given by B(Hx),
k
fiber in x =y CaBaf- - - given by

B(Hy) [Cbbundary Ay—1
~— We can view B as a boundary of ¢

~—> Left action of G&-becomes amenable on B, while the right
action becomes trivial on B.

~—» Exactness for Creq(Au(F)) and solidity for L= (Ay(F)).
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