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Plan of the talk

ñ Introduction to discrete and compact quantum groups.

ñ Boundaries at infinity and applications
(joint work with Vergnioux)

exactness of certain C∗-algebras,

Ozawa’s solidity of certain von Neumann algebras.

ñ Identification of Poisson boundaries for random walks
(joint work with Vander Vennet).
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Compact quantum groups (Woronowicz)

A compact quantum group G is a pair (C(G),∆) where

ñ C(G) is a unital C∗-algebra,

ñ ∆ : C(G)→ C(G)⊗min C(G) is a unital ∗-homomorphism,

satisfying

ñ co-associativity : (∆ ⊗ id)∆ = (id ⊗ ∆)∆,

ñ the density conditions :∆(C(G))(1 ⊗ C(G)) and ∆(C(G))(C(G)⊗ 1)
are total in C(G)⊗min C(G).

If C(G) is commutative, this corresponds to

ñ G being a compact group,

ñ C(G) being the C∗-algebra of continuous functions,

ñ ∆ given by (∆(f ))(x, y) = f (xy).
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Operator algebra point of view

Theorem (Woronowicz)

If G is a compact quantum group, C(G) admits a unique Haar state h.

Reduced C∗-algebra πh(C(G)) denoted as Cred(G).

Von Neumann algebra πh(C(G))′′ denoted as L∞(G).

Potential interest, because we can take G = Γ̂ , namely

ñ Cred(G) = C∗
red(Γ) and L∞(G) = L(Γ),

ñ ∆(ug) = ug ⊗ ug.

Concrete compact quantum groups can lead to
interesting operator algebras.
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Representation theory

Let G be a compact quantum group.

Definition

An n-dimensional unitary representation of G is

ñ an n × n unitary matrix (Uij) with matrix coefficients in C(G),
ñ satisfying ∆(Uij) =

∑
k Uik ⊗ Ukj.

All that you expect, holds :

Direct sums, irreducibles, Peter-Weyl, ...

Tensor product U T© V := (UijVkl).

The representation U := (U∗
ij ) is not necessarily unitary,

but can be unitarized :

contragredient Uc := FUF−1 for some F ∈ GLn(C).

Enveloping C∗-algebra Cu(G) and notion of co-amenability.
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Universal compact quantum groups

Definition (Van Daele-Wang, Banica)

We define two families of compact quantum groups G.

G = Ao(F)
for F ∈ GLn(C) and FF = ±1.

G = Au(F)
for F ∈ GLn(C).

Let C(G) be the universal unital C∗-algebra with generators (Uij)
subject to the relations ñ U is unitary,

ñ U = FUF−1. ñ FUF−1 is also unitary.

with comultiplication ∆(Uij) =
∑

k Uik ⊗ Ukj.

SUq(2) = Ao

( 0
√

|q|
− sign(q)√

|q| 0

)
for q ∈ [−1,1] \ {0}.

Apart from the SUq(2), all Ao,u(F) are non co-amenable.
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Representation th. of Ao(F) and Au(F) (Banica)

Let G = Ao(F).

Irred G = 1
2N and

Un T© Um � U|n−m| ⊕ U|n−m|+1 ⊕ · · · ⊕ Un+m .

Same fusion rules as SU(2).
Fusion rules are abelian.

Let G = Au(F).
Irred G = N ∗ N, the free monoid generated by α and β,

Ux T© Uy =
⊕

z, x=az, y=zb

Uab ,

where x , x is the involution on N ∗ N satisfying α = β. Also,

contragredient of Ux is Ux .
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Operator algebraic properties

We discuss G = Ao(F) (for F at least 3 × 3) and G = Au(F).

What is known.
Work of Banica :

ñ L∞(Au(F)) is a factor.

ñ Cred(Au(F)) is simple.

ñ L∞(Au(I2)) � L(F2).

Work of V & Vergnioux :

ñ L∞(Ao,u(F)) is solid.

ñ Cred(Ao,u(F)) is exact.

ñ At least for certain F ,
L∞(Ao(F)) is a full factor,
Cred(Ao(F)) is simple.

What is open :

ñ Are all L∞(Ao,u(In)) free
group factors?

ñ Are all L∞(Ao,u(F)) and
L∞(Ao,u(F)) free
Araki-Woods factors?

ñ Are the Cred(Ao,u(In))
projectionless?

ñ Do the L∞(Ao,u(In)) share
more with the L(Fk) ?
(Haagerup property,

complete metric approximation,

absence of Cartan, ...)
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Exact C∗-algebras

Definition

A unital C∗-algebra A is called exact if the minimal tensor product
A ⊗min · with A, preserves short exact sequences.

Theorem (Ozawa, Anantharaman-Delaroche)

Let Γ be a discrete group. Then, C∗
red(Γ) is exact if and only ifΓ admits an amenable action on a compact space.

Amenability of Γ :
∃ξn ∈ `2(Γ) with ‖ξn‖2 = 1 and ‖λgξn − ξn‖2 → 0 for all g.

Amenability of Γ � X :
∃ξn : X → `2(Γ) continuous, with ‖ξn(x)‖2 = 1 and
‖λgξn(x)− ξn(g · x)‖2 → 0 uniformly in x ∈ X , for all g ∈ Γ .

Example : boundary action Fk � {infinite reduced words},

ξn(x1x2x3 · · · ) = 1√
n

n∑
j=1

δx1···xj .
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An application : solid factors

Definition (Ozawa)

A von Neumann algebra M with tracial state τ is called solid if the
relative commutant of any diffuse subalgebra is injective.

In particular, a solid non-hyperfinite II1 factor M is prime :
if M = M1 ⊗ M2, one of both is a matrix algebra.

If τ is non-tracial : consider subalgebras with state
preserving conditional expectation.

Theorem (Ozawa)

Let Γ be a discrete group. The group von Neumann algebra L(Γ) is
solid if Γ admits a compactification X such that

ñ left action Γ � Γ extends to amenable action Γ � X ,

ñ right action Γ � Γ extends to action on X trivial on ∂Γ = X \ Γ .

We shall produce such actions for the duals of Ao(F).
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Discrete quantum groups

Let G be a compact quantum group∆ : C(G)→ C(G)⊗min C(G).
Unitary representation is n × n matrix (Uij) with ∆(Uij) =

∑
k

Uik ⊗ Ukj.

Set HU = Cn and view U ∈ B(HU)⊗ C(G).

The dual discrete quantum group

Let Irred G be the set of all irreducible rep. of G.

Write Ux ∈ B(Hx)⊗ C(G) for all x ∈ Irred G. Set

`∞(Ĝ) =
∏

x∈Irred G

B(Hx).

Comultiplication ∆̂ : `∞(Ĝ)→ `∞(Ĝ)⊗ `∞(Ĝ) such that∆̂(a)x,y S = S az whenever S intertwines Uz and Ux T© Uy .

Remark. If G = Γ̂ , of course `∞(Ĝ) = `∞(Γ) and ∆(a)(x, y) = a(xy).
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Exactness and solidity for dual of Ao(F)

Let G = Ao(F). We have Irred G = 1
2N with Un on Hn and

Un T© Um � U|n−m| ⊕ U|n−m|+1 ⊕ · · · ⊕ Un+m .

Compactification of Ĝ : C∗-algebra B with c0(Ĝ) ⊂ B ⊂ `∞(Ĝ).

ñ Let Vn : Hn+1 → Hn ⊗ H1 be an isometric intertwiner.
ñ Define ψn : B(Hn)→ B(Hn+1) : ψn(a) = V ∗

n (a ⊗ 1)Vn, UCP.
ñ In fact, ψn,m : B(Hn)→ B(Hm) for m ≥ n.
ñ C∗-algebra B as ‘direct limit’. (Non-trivial: ψn are not homom.)

Theorem (V – Vergnioux)

The left action Ĝ � c0(Ĝ) extends to an amenable action on B, while
the right action extends to an action on B that is trivial on B/c0(Ĝ).

Cred(G) is exact and L∞(G) is (generalized) solid.

Remarks : ñ It is non-obvious to define amenable actions.

ñ Extends to Au(F) : joint work with Vander Vennet.
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Probabilistic boundaries

Let µ be a probability measure on a discrete group Γ .

Random walk with transition probab. p(x, y) = µ(x−1y).

Markov operator on `∞(Γ) : (Pa)(x) =
∑
y

p(x, y)a(y).

Bounded harmonic functions H∞(Γ , µ) = {a ∈ `∞(Γ) | Pa = a}.

Assume : transience and suppµ generates Γ as semi-group.

Poisson boundaryΓ � (Y , η).
ñ Characterization.

ñ Properties.

ñ Definition.

Action of Γ on probability space (Y , η).

Poisson integralΘ(a)(x) =
∫

Y
a(x · y) dη(y)

is a bijection L∞(Y , η)→ H∞(Γ , µ).

Basic problem : identify Γ � (Y , η).
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Assume : transience and suppµ generates Γ as semi-group.

Poisson boundaryΓ � (Y , η).
ñ Characterization.

ñ Properties.

ñ Definition.

We can take a compactification Γ ⊂ X
such that

ñ Almost every path converges to a
point in Y := X \ Γ .

ñ Probability to end up in U is η(U).

Basic problem : identify Γ � (Y , η).
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Poisson boundaries of discrete quantum groups

Remember : `∞(Ĝ) =
∏

x∈Irred G

B(Hx).

ñ B(Hx) has favorite state ψx coming from unitarizing Ux .
ñ Fix a probability measure µ on Irred G

State ψµ on `∞(Ĝ) given by ψµ(a) =
∑

x µ(x)ψx(ax).
Markov operator on `∞(Ĝ) : P(a) = (id ⊗ψµ)∆̂(a).

ñ Assume transience and generating property of µ and consider

H∞(Ĝ, µ) = {a ∈ `∞(Ĝ) | Pa = a}.

Von Neumann algebra with product a · b = strong∗- lim
n

Pn(ab).

ñ Evaluation in the trivial rep. ε : harmonic state η on H∞(Ĝ, µ).

We get the Poisson boundary H∞(Ĝ, µ),
equipped with actions of Ĝ and G.

Definition due to Izumi (study of infinite product actions).

Central problem : identify Ĝ � H∞(Ĝ, µ) in examples.
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Identification of Poisson boundaries

Restriction of Markov operator : random walk on Irred G.

If fusion rules are commutative, the Poisson boundary
of Irred G is trivial and H∞(Ĝ, µ) independent of µ.

Theorem (Izumi)

For any generating measure µ on Irred(SUq(2)), we get
H∞(Ĝ, µ) � L∞(T\ SUq(2)) (Podles’ sphere).

(Izumi-Neshveyev-Tuset) Generalization to SUq(n).

Theorem (Tomatsu, see next talk)

If G is co-amenable compact quantum group with commutative
fusion rules, H∞(Ĝ, µ) � L∞(K\ SUq(2)) where K is the maximal
compact subgroup of Kac type.

Tool : Izumi’s Poisson integral Θ : L∞(G)→ H∞(Ĝ, µ)Θ(a) = (id⊗h)(V∗(1⊗a)V).
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Poisson boundary of Âo(F)

FF = ±1 and C(Ao(F)) generated by Uij with U = FUF−1 unitary.

When Fq =
( 0

√
|q|

− sign(q)√
|q| 0

)
, we get SUq(2).

Let Tr(F∗F) = |q + 1
q | and FF = − sign(q).

Take the unital C∗-algebra L generated by the entries of a
2 × n matrix L with L∗L = 1, LL∗ = 1 and L = FqLF−1.

Commuting ergodic actions SUq(2) � L on the left and
Ao(F)� L on the right.

Theorem (V – Vander Vennet)

The Poisson boundary of Âo(F) can be identified with (T\L)′′.

Remarks. ñ T\L � boundary C∗-algebra B/c0(Ĝ) of Âo(F).
ñ L is nuclear. Is it simple?
ñ (De Rijdt - Vander Vennet) Behavior of Poisson boundaries

under monoidal equivalence.
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Recall the quantum group Au(F)

G = Au(F) and C(G) generated by Uij with U and FUF−1 unitary.

Recall. Irred G = N ∗ N, the free monoid generated by α and β,

Ux T© Uy =
⊕

z, x=az, y=zb

Uab ,

where x , x is the involution on N ∗ N satisfying α = β.
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Cayley tree of Irred(Au(F))

ε

α

α2

α3

β2 β3β

βα

αβ

βαβ
β2α

αβ2

α2β

αβα

βα2

ñ Let µ be generating prob. measure
on Irred(Au(F)) with finite support.

ñ Classical transient random walk on
Cayley tree.

ñ Poisson boundary is given by
harmonic measure η on set Y of
infinite words in α,β.
(Kaimanovich et al.)
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Poisson boundary of Âu(F)

Let µ be a generating probability measure on Irred(Au(F)) with
finite support

Let η be the harmonic measure on the set Y of infinite words in α,β.

An infinite word x in α,β can be of the form
x = x1 ⊗ x2 ⊗ x3 ⊗ · · · or has tail αβαβαβ · · · .

η has no atoms in words with tail αβαβαβ · · · .

It suffices to consider infinite words
of the form x = x1 ⊗ x2 ⊗ x3 ⊗ · · · .

Theorem (V - Vander Vennet)

The Poisson boundary H∞(Ĝ, µ) can be identified with the

measurable field of ITPFIfinite factors over (Y , η) with fiber in

x = x1 ⊗ x2 ⊗ x3 ⊗ · · · given by
O

k

(B(Hxk),ψxk).
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Back to exactness and solidity for G = Au(F)

(Work in progress)

Consider the set Y of infinite words in α,β as a compact space.

Continuous field B of unital C∗-algebras over Y with

ñ fiber in x = x1 ⊗ x2 ⊗ x3 ⊗ · · · given by
O

k

B(Hxk),

ñ fiber in x = y ⊗αβαβ · · · given by

B(Hy)⊗ boundary Âo.

We can view B as a boundary of Ĝ.

Left action of Ĝ becomes amenable on B, while the right
action becomes trivial on B.

Exactness for Cred(Au(F)) and solidity for L∞(Au(F)).
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