Boundaries of discrete quantum groups

Fields Institute Workshop

Operator Spaces and Quantum Groups

Stefaan Vaes

Plan of the talk

- Introduction to discrete and compact quantum groups.
- Boundaries at infinity and applications (joint work with Vergnioux)
 - exactness of certain C*-algebras,
 - Ozawa's solidity of certain von Neumann algebras.
- Identification of Poisson boundaries for random walks (joint work with Vander Vennet).

Compact quantum groups (Woronowicz)

A compact quantum group \mathbb{G} is a pair $(C(\mathbb{G}), \Delta)$ where

- ► C(G) is a unital C*-algebra,
- ▶ $\Delta : C(\mathbb{G}) \to C(\mathbb{G}) \otimes_{\min} C(\mathbb{G})$ is a unital *-homomorphism,

satisfying

- co-associativity : $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$,
- ▶ the density conditions :

```
\Delta(C(\mathbb{G}))(1 \otimes C(\mathbb{G})) and \Delta(C(\mathbb{G}))(C(\mathbb{G}) \otimes 1) are total in C(\mathbb{G}) \otimes_{\min} C(\mathbb{G}).
```

If $C(\mathbb{G})$ is commutative, this corresponds to

- G being a compact group,
- $ightharpoonup C(\mathbb{G})$ being the C*-algebra of continuous functions,
- Δ given by $(\Delta(f))(x, y) = f(xy)$.

Operator algebra point of view

Theorem (Woronowicz)

If \mathbb{G} is a compact quantum group, $C(\mathbb{G})$ admits a unique Haar state h.

- \sim Reduced C*-algebra $\pi_h(C(\mathbb{G}))$ denoted as $C_{red}(\mathbb{G})$.
- \sim Von Neumann algebra $\pi_h(C(\mathbb{G}))''$ denoted as $L^{\infty}(\mathbb{G})$.

Potential interest, because we can take $\mathbb{G} = \widehat{\Gamma}$, namely

- $ightharpoonup C_{\text{red}}^*(\mathbb{G}) = C_{\text{red}}^*(\Gamma) \quad \text{and} \quad L^{\infty}(\mathbb{G}) = \mathcal{L}(\Gamma),$
- Concrete compact quantum groups can lead to interesting operator algebras.

Representation theory

Let \mathbb{G} be a compact quantum group.

Definition

An n-dimensional unitary representation of \mathbb{G} is

- ▶ an $n \times n$ unitary matrix (U_{ij}) with matrix coefficients in $C(\mathbb{G})$,
- satisfying $\Delta(U_{ij}) = \sum_k U_{ik} \otimes U_{kj}$.

All that you expect, holds:

- Direct sums, irreducibles, Peter-Weyl, ...
- ightharpoonup Tensor product $U \oplus V := (U_{ij}V_{kl})$.
- The representation $\overline{U} := (U_{ij}^*)$ is not necessarily unitary, but can be unitarized :
 - contragredient $U^c := F\overline{U}F^{-1}$ for some $F \in GL_n(\mathbb{C})$.
- \longrightarrow Enveloping C*-algebra $C_u(\mathbb{G})$ and notion of co-amenability.

Universal compact quantum groups

Definition (Van Daele-Wang, Banica)

We define two families of compact quantum groups G.

$$\mathbb{G} = A_o(F)$$

$$\mathbb{G} = A_u(F)$$
 for $F \in \mathrm{GL}_n(\mathbb{C})$ and $F\overline{F} = \pm 1$. for $F \in \mathrm{GL}_n(\mathbb{C})$.

Let $C(\mathbb{G})$ be the universal unital C*-algebra with generators (U_{ij}) subject to the relations $\lor U$ is unitary,

with comultiplication $\Delta(U_{ij}) = \sum_{k} U_{ik} \otimes U_{kj}$.

$$\longrightarrow SU_q(2) = A_o \begin{pmatrix} 0 & \sqrt{|q|} \\ -\frac{\operatorname{sign}(q)}{\sqrt{|q|}} & 0 \end{pmatrix} \text{ for } q \in [-1, 1] \setminus \{0\}.$$

 \longrightarrow Apart from the $SU_q(2)$, all $A_{o,u}(F)$ are non co-amenable.

Representation th. of $A_o(F)$ and $A_u(F)$ (Banica)

Let $\mathbb{G} = A_o(F)$.

Irred $\mathbb{G} = \frac{1}{2} \mathbb{N}$ and

$$U_n \oplus U_m \cong U_{\lfloor n-m \rfloor} \oplus U_{\lfloor n-m \rfloor+1} \oplus \cdots \oplus U_{n+m}$$
.

- Same fusion rules as SU(2).
- Fusion rules are abelian.

Let $\mathbb{G} = A_{\mathcal{U}}(F)$.

Irred $\mathbb{G} = \mathbb{N} * \mathbb{N}$, the free monoid generated by α and β ,

$$U_X \oplus U_y = \bigoplus_{z, x=az, y=\overline{z}b} U_{ab}$$
,

where $x \mapsto \overline{x}$ is the involution on $\mathbb{N} * \mathbb{N}$ satisfying $\overline{\alpha} = \beta$. Also,

contragredient of U_X is $U_{\overline{X}}$.

Operator algebraic properties

We discuss $\mathbb{G} = A_o(F)$ (for F at least 3×3) and $\mathbb{G} = A_u(F)$.

What is known.

Work of Banica:

- ▶ $L^{\infty}(A_u(F))$ is a factor.
- $C_{\text{red}}(A_u(F))$ is simple.
- $L^{\infty}(A_{u}(I_{2})) \cong \mathcal{L}(\mathbb{F}_{2}).$

Work of V & Vergnioux:

- ► $L^{\infty}(A_{o,u}(F))$ is solid.
- $C_{\text{red}}(A_{o,u}(F))$ is exact.
- At least for certain F, L[∞](A_o(F)) is a full factor, C_{red}(A_o(F)) is simple.

What is open:

- ► Are all $L^{\infty}(A_{o,u}(I_n))$ free group factors?
- ► Are all L[∞](A_{o,u}(F)) and L[∞](A_{o,u}(F)) free Araki-Woods factors?
- Are the $C_{red}(A_{o,u}(I_n))$ projectionless?
- ▶ Do the $L^{\infty}(A_{o,u}(I_n))$ share more with the $\mathcal{L}(\mathbb{F}_k)$? (Haagerup property, complete metric approximation, absence of Cartan, ...)

Exact C*-algebras

Definition

A unital C^* -algebra A is called exact if the minimal tensor product $A \otimes_{min} \cdot$ with A, preserves short exact sequences.

Theorem (Ozawa, Anantharaman-Delaroche)

Let Γ be a discrete group. Then, $C_{\text{red}}^*(\Gamma)$ is exact if and only if Γ admits an amenable action on a compact space.

Amenability of Γ :

 $\exists \xi_n \in \ell^2(\Gamma) \text{ with } \|\xi_n\|_2 = 1 \text{ and } \|\lambda_g \xi_n - \xi_n\|_2 \to 0 \text{ for all } g.$

Amenability of $\Gamma \cap X$:

 $\exists \xi_n : X \to \ell^2(\Gamma)$ continuous, with $\|\xi_n(x)\|_2 = 1$ and $\|\lambda_q \xi_n(x) - \xi_n(g \cdot x)\|_2 \to 0$ uniformly in $x \in X$, for all $g \in \Gamma$.

Example: boundary action $\mathbb{F}_k \cap \{\text{infinite reduced words}\}$,

$$\xi_n(x_1x_2x_3\cdots) = \frac{1}{\sqrt{n}}\sum_{i=1}^n \delta_{x_1\cdots x_j}.$$

An application : solid factors

Definition (Ozawa)

A von Neumann algebra M with tracial state τ is called solid if the relative commutant of any diffuse subalgebra is injective.

- In particular, a solid non-hyperfinite II₁ factor M is prime: if $M = M_1 \otimes M_2$, one of both is a matrix algebra.
- If τ is non-tracial: consider subalgebras with state preserving conditional expectation.

Theorem (Ozawa)

Let Γ be a discrete group. The group von Neumann algebra $\mathcal{L}(\Gamma)$ is solid if Γ admits a compactification X such that

- ▶ left action $\Gamma \cap \Gamma$ extends to amenable action $\Gamma \cap X$,
- right action $\Gamma \cap \Gamma$ extends to action on X trivial on $\partial \Gamma = X \setminus \Gamma$.
- \longrightarrow We shall produce such actions for the duals of $A_o(F)$.

Discrete quantum groups

Let G be a compact quantum group

$$\Delta: C(\mathbb{G}) \to C(\mathbb{G}) \otimes_{\mathsf{min}} C(\mathbb{G}).$$

Unitary representation is $n \times n$ matrix (U_{ij}) with $\Delta(U_{ij}) = \sum_{k} U_{ik} \otimes U_{kj}$.

 \longrightarrow Set $H_U = \mathbb{C}^n$ and view $U \in B(H_U) \otimes C(\mathbb{G})$.

The dual discrete quantum group

Let Irred G be the set of all irreducible rep. of G.

Write $U_x \in B(H_x) \otimes C(\mathbb{G})$ for all $x \in Irred \mathbb{G}$. Set

$$\ell^{\infty}(\widehat{\mathbb{G}}) = \prod_{X \in \mathsf{Irred}\,\mathbb{G}} \mathsf{B}(H_X).$$

Comultiplication $\hat{\Delta}: \ell^{\infty}(\widehat{\mathbb{G}}) \to \ell^{\infty}(\widehat{\mathbb{G}}) \ \overline{\otimes} \ \ell^{\infty}(\widehat{\mathbb{G}})$ such that $\hat{\Delta}(a)_{x,y} \ S = S \ a_z$ whenever S intertwines U_z and $U_x \oplus U_y$.

Remark. If
$$\mathbb{G} = \widehat{\Gamma}$$
, of course $\ell^{\infty}(\widehat{\mathbb{G}}) = \ell^{\infty}(\Gamma)$ and $\Delta(a)(x,y) = a(xy)$.

Exactness and solidity for dual of $A_o(F)$

Let
$$\mathbb{G} = A_o(F)$$
. We have Irred $\mathbb{G} = \frac{1}{2} \mathbb{N}$ with U_n on H_n and $U_n \oplus U_m \cong U_{|n-m|} \oplus U_{|n-m|+1} \oplus \cdots \oplus U_{n+m}$.

Compactification of $\widehat{\mathbb{G}}$: C*-algebra B with $c_0(\widehat{\mathbb{G}}) \subset B \subset \ell^{\infty}(\widehat{\mathbb{G}})$.

- ▶ Let $V_n: H_{n+1} \to H_n \otimes H_1$ be an isometric intertwiner.
- ▶ Define $\psi_n : B(H_n) \to B(H_{n+1}) : \psi_n(a) = V_n^*(a \otimes 1) V_n$, UCP.
- ▶ In fact, $\psi_{n,m}$: B(H_n) \rightarrow B(H_m) for $m \ge n$.
- ► C*-algebra B as 'direct limit'. (Non-trivial: ψ_n are not homom.)

Theorem (V - Vergnioux)

The left action $\hat{\mathbb{G}} \cap c_0(\hat{\mathbb{G}})$ extends to an amenable action on B, while the right action extends to an action on B that is trivial on $B/c_0(\hat{\mathbb{G}})$.

- \sim $C_{\text{red}}(\mathbb{G})$ is exact and $L^{\infty}(\mathbb{G})$ is (generalized) solid.
- **Remarks:** It is non-obvious to define amenable actions.
 - Extends to $A_u(F)$: joint work with Vander Vennet.

Let μ be a probability measure on a discrete group Γ .

- \sim Random walk with transition probab. $p(x, y) = \mu(x^{-1}y)$.
- Markov operator on $\ell^{\infty}(\Gamma)$: $(Pa)(x) = \sum_{y} p(x,y)a(y)$. Bounded harmonic functions $H^{\infty}(\Gamma,\mu) = \{a \in \ell^{\infty}(\Gamma) \mid Pa = a\}$.

Assume : transience and supp μ generates Γ as semi-group.

Poisson boundary

 $\Gamma \cap (Y, \eta)$.

- Characterization.
- Properties.
- Definition.

Action of Γ on probability space (Y, η) .

Poisson integral

$$\Theta(a)(x) = \int_{Y} a(x \cdot y) \ d\eta(y)$$

is a bijection $L^{\infty}(Y, \eta) \to H^{\infty}(\Gamma, \mu)$.

Let μ be a probability measure on a discrete group Γ .

- \sim Random walk with transition probab. $p(x, y) = \mu(x^{-1}y)$.
- Markov operator on $\ell^{\infty}(\Gamma)$: $(Pa)(x) = \sum_{y} p(x, y) a(y)$. Bounded harmonic functions $H^{\infty}(\Gamma, \mu) = \{a \in \ell^{\infty}(\Gamma) \mid Pa = a\}$.

Assume: transience and supp μ generates Γ as semi-group.

Poisson boundary $\Gamma \curvearrowright (Y, \eta)$.

- Characterization.
- Properties.
- Definition.

We can take a compactification $\Gamma \subset X$ such that

- Almost every path converges to a point in $Y := X \setminus \Gamma$.
- ▶ Probability to end up in U is $\eta(U)$.

Let μ be a probability measure on a discrete group Γ .

- \sim Random walk with transition probab. $p(x, y) = \mu(x^{-1}y)$.
- Markov operator on $\ell^{\infty}(\Gamma)$: $(Pa)(x) = \sum_{y} p(x,y)a(y)$.

 Bounded harmonic functions $H^{\infty}(\Gamma,\mu) = \{a \in \ell^{\infty}(\Gamma) \mid Pa = a\}$.

Assume: transience and supp μ generates Γ as semi-group.

Poisson boundary

 $\Gamma \cap (Y, \eta).$

- Characterization.
- Properties.
- ▶ Definition.

```
Equipped with the product a \cdot b = \text{strong}^* - \lim_n P^n(ab) H^\infty(\Gamma, \mu) is a von Neumann algebra. Set H^\infty(\Gamma, \mu) = L^\infty(Y, \eta) with \int a \, d\eta = a(e).
```

Let μ be a probability measure on a discrete group Γ .

- \sim Random walk with transition probab. $p(x, y) = \mu(x^{-1}y)$.
- Markov operator on $\ell^{\infty}(\Gamma)$: $(Pa)(x) = \sum_{y} p(x,y)a(y)$. Bounded harmonic functions $H^{\infty}(\Gamma,\mu) = \{a \in \ell^{\infty}(\Gamma) \mid Pa = a\}$.

Assume: transience and supp μ generates Γ as semi-group.

Poisson boundary

$$\Gamma \cap (Y, \eta)$$
.

- ► Characterization.
- Properties.
- ▶ Definition.

Equipped with the product $a \cdot b = \text{strong*-}\lim_{n} P^{n}(ab)$ $H^{\infty}(\Gamma, \mu)$ is a von Neumann algebra. Set $H^{\infty}(\Gamma, \mu) = L^{\infty}(Y, \eta)$ with $\int a \, d\eta = a(e)$.

Poisson boundaries of discrete quantum groups

Remember:
$$\ell^{\infty}(\widehat{\mathbb{G}}) = \prod_{x \in \text{Irred } \mathbb{G}} \mathsf{B}(H_x).$$

- ▶ B(H_X) has favorite state ψ_X coming from unitarizing $\overline{U_X}$.
- Fix a probability measure μ on Irred G
 - State ψ_{μ} on $\ell^{\infty}(\widehat{\mathbb{G}})$ given by $\psi_{\mu}(a) = \sum_{x} \mu(x) \psi_{x}(a_{x})$.
 - \longrightarrow Markov operator on $\ell^{\infty}(\widehat{\mathbb{G}})$: $P(a) = (id \otimes \psi_{\mu})\widehat{\Delta}(a)$.
- Assume transience and generating property of μ and consider $H^{\infty}(\widehat{\mathbb{G}}, \mu) = \{a \in \ell^{\infty}(\widehat{\mathbb{G}}) \mid Pa = a\}.$

Von Neumann algebra with product $a \cdot b = \text{strong}^* - \lim_{n} P^n(ab)$.

- ► Evaluation in the trivial rep. ε : harmonic state η on $H^{\infty}(\widehat{\mathbb{G}}, \mu)$.
- We get the Poisson boundary $H^{\infty}(\widehat{\mathbb{G}}, \mu)$, equipped with actions of $\widehat{\mathbb{G}}$ and \mathbb{G} .
- Definition due to Izumi (study of infinite product actions).

Central problem: identify $\widehat{\mathbb{G}} \cap H^{\infty}(\widehat{\mathbb{G}}, \mu)$ in examples.

Identification of Poisson boundaries

- Restriction of Markov operator : random walk on Irred G.
- If fusion rules are commutative, the Poisson boundary of Irred \mathbb{G} is trivial and $H^{\infty}(\widehat{\mathbb{G}}, \mu)$ independent of μ .

Theorem (Izumi)

For any generating measure μ on Irred(SU_q(2)), we get $H^{\infty}(\widehat{\mathbb{G}}, \mu) \cong L^{\infty}(\mathbb{T} \setminus SU_q(2))$ (Podles' sphere).

 \sim (Izumi-Neshveyev-Tuset) Generalization to $SU_a(n)$.

Theorem (Tomatsu, see next talk)

If \mathbb{G} is co-amenable compact quantum group with commutative fusion rules, $H^{\infty}(\widehat{\mathbb{G}},\mu)\cong L^{\infty}(\mathbb{K}\setminus SU_q(2))$ where \mathbb{K} is the maximal compact subgroup of Kac type.

Tool: Izumi's Poisson integral
$$\Theta: L^{\infty}(\mathbb{G}) \to H^{\infty}(\widehat{\mathbb{G}}, \mu)$$

$$\Theta(a) = (\mathrm{id} \otimes h)(\mathbb{V}^*(1 \otimes a)\mathbb{V}).$$

Poisson boundary of $\widehat{A_o(F)}$

 $F\overline{F} = \pm 1$ and $C(A_0(F))$ generated by U_{ij} with $U = F\overline{U}F^{-1}$ unitary.

When
$$F_q = \begin{pmatrix} 0 & \sqrt{|q|} \\ -\frac{\operatorname{sign}(q)}{\sqrt{|q|}} & 0 \end{pmatrix}$$
, we get $SU_q(2)$.

- Let $Tr(F^*F) = |q + \frac{1}{q}|$ and $F\overline{F} = -\operatorname{sign}(q)$. Take the unital C^* -algebra \underline{L} generated by the entries of a $2 \times n$ matrix L with $L^*L = 1$, $LL^* = 1$ and $L = F_q \overline{L}F^{-1}$.
- Commuting ergodic actions $SU_q(2) \cap \mathcal{L}$ on the left and $A_o(F) \cap \mathcal{L}$ on the right.

Theorem (V - Vander Vennet)

The Poisson boundary of $\widehat{A_o(F)}$ can be identified with $(\mathbb{T} \setminus \mathcal{L})''$.

Remarks.
$$\blacktriangleright \mathbb{T} \setminus \mathcal{L} \cong \text{boundary } \mathbb{C}^* \text{-algebra } B/c_0(\widehat{\mathbb{G}}) \text{ of } \widehat{A_o(F)}.$$

- £ is nuclear. Is it simple?
- ► (De Rijdt Vander Vennet) Behavior of Poisson boundaries under monoidal equivalence.

Recall the quantum group $A_u(F)$

 $\mathbb{G} = A_u(F)$ and $C(\mathbb{G})$ generated by U_{ij} with U and $F\overline{U}F^{-1}$ unitary.

Recall. Irred $\mathbb{G} = \mathbb{N} * \mathbb{N}$, the free monoid generated by α and β ,

$$U_X \oplus U_y = \bigoplus_{z, x=az, y=\overline{z}b} U_{ab}$$
,

where $x \mapsto \overline{x}$ is the involution on $\mathbb{N} * \mathbb{N}$ satisfying $\overline{\alpha} = \beta$.

Cayley tree of $Irred(A_u(F))$

Poisson boundary of $\widehat{A}_u(\widehat{F})$

Let μ be a generating probability measure on $Irred(A_u(F))$ with finite support

Let η be the harmonic measure on the set Y of infinite words in α , β .

- An infinite word x in α , β can be of the form $x = x_1 \otimes x_2 \otimes x_3 \otimes \cdots$ or has tail $\alpha \beta \alpha \beta \alpha \beta \cdots$.
- \sim η has no atoms in words with tail $\alpha\beta\alpha\beta\alpha\beta\cdots$.
- It suffices to consider infinite words of the form $x = x_1 \otimes x_2 \otimes x_3 \otimes \cdots$.

Theorem (V - Vander Vennet)

The Poisson boundary $H^{\infty}(\widehat{\mathbb{G}}, \mu)$ can be identified with the measurable field of ITPFI_{finite} factors over (Y, η) with fiber in

$$x = x_1 \otimes x_2 \otimes x_3 \otimes \cdots$$
 given by $\overline{\bigotimes_k} (B(H_{x_k}), \psi_{x_k}).$

Back to exactness and solidity for $\mathbb{G} = A_u(F)$

(Work in progress)

Consider the set Y of infinite words in α , β as a compact space.

- Continuous field B of unital C*-algebras over Y with
 - fiber in $x = x_1 \otimes x_2 \otimes x_3 \otimes \cdots$ given by $\bigotimes_k B(H_{x_k})$,
 - ► fiber in $x = y \otimes \alpha \beta \alpha \beta \cdots$ given by $B(H_y) \otimes boundary \widehat{A_o}$.
- \longrightarrow We can view *B* as a boundary of $\hat{\mathbb{G}}$.
- Left action of $\hat{\mathbb{G}}$ becomes amenable on B, while the right action becomes trivial on B.
- \sim Exactness for $C_{\text{red}}(A_{\mu}(F))$ and solidity for $L^{\infty}(A_{\mu}(F))$.