Boundaries of discrete quantum groups

Fields Institute Workshop

Operator Spaces and Quantum Groups

KATHOLIEKE UNIVERSITEIT
 LEUVEN

Stefaan Vaes

Plan of the talk

- Introduction to discrete and compact quantum groups.
- Boundaries at infinity and applications (joint work with Vergnioux)
\leadsto exactness of certain C^{*}-algebras,
\leadsto Ozawa's solidity of certain von Neumann algebras.
- Identification of Poisson boundaries for random walks (joint work with Vander Vennet).

Compact quantum groups (Woronowicz)

A compact quantum group \mathbb{G} is a pair $(C(\mathbb{G}), \Delta)$ where

- $C(\mathbb{G})$ is a unital C^{*}-algebra,
- $\Delta: C(\mathbb{G}) \rightarrow C(\mathbb{G}) \otimes_{\min } C(\mathbb{G})$ is a unital ${ }^{*}$-homomorphism, satisfying
- co-associativity : $(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta$,
- the density conditions:

$$
\Delta(C(\mathbb{G}))(1 \otimes C(\mathbb{G})) \text { and } \Delta(C(\mathbb{G}))(C(\mathbb{G}) \otimes 1)
$$

are total in $C(\mathbb{G}) \otimes_{\text {min }} C(\mathbb{G})$.

If $C(\mathbb{G})$ is commutative, this corresponds to

- \mathbb{G} being a compact group,
- $C(\mathbb{G})$ being the C^{*}-algebra of continuous functions,
- Δ given by $(\Delta(f))(x, y)=f(x y)$.

Operator algebra point of view

Theorem (Woronowicz)

If \mathbb{G} is a compact quantum group, $C(\mathbb{G})$ admits a unique Haar state h.
\leadsto Reduced C^{*}-algebra $\pi_{h}(C(\mathbb{G}))$ denoted as $C_{\text {red }}(\mathbb{G})$.
\leadsto Von Neumann algebra $\pi_{h}(C(\mathbb{G}))^{\prime \prime}$ denoted as $L^{\infty}(\mathbb{G})$.

Potential interest, because we can take $\mathbb{G}=\widehat{\Gamma}$, namely

- $C_{\text {red }}(\mathbb{G})=C_{\text {red }}^{*}(\Gamma)$ and $L^{\infty}(\mathbb{G})=\mathcal{L}(\Gamma)$,
- $\Delta\left(u_{g}\right)=u_{g} \otimes u_{g}$.
\leadsto Concrete compact quantum groups can lead to interesting operator algebras.

Representation theory

Let \mathbb{G} be a compact quantum group.

Definition

An n-dimensional unitary representation of \mathbb{G} is

- an $n \times n$ unitary matrix $\left(U_{i j}\right)$ with matrix coefficients in $C(\mathbb{G})$,
- satisfying $\Delta\left(U_{i j}\right)=\sum_{k} U_{i k} \otimes U_{k j}$.

All that you expect, holds :
\leadsto Direct sums, irreducibles, Peter-Weyl, ...
\leadsto Tensor product U © $V:=\left(U_{i j} V_{k l}\right)$.
\leadsto The representation $\bar{U}:=\left(U_{i j}^{*}\right)$ is not necessarily unitary, but can be unitarized : contragredient $U^{c}:=F \bar{U} F^{-1}$ for some $F \in G L_{n}(\mathbb{C})$.
\leadsto Enveloping C^{*}-algebra $C_{u}(\mathbb{G})$ and notion of co-amenability.

Universal compact quantum groups

Definition (Van Daele-Wang, Banica)

We define two families of compact quantum groups \mathbb{G}.

$$
\begin{array}{c|c}
\mathbb{G}=A_{o}(F) & \mathbb{G}=A_{u}(F) \\
\text { for } F \in \mathrm{GL}_{n}(\mathbb{C}) \text { and } F \bar{F}= \pm 1 . & \text { for } F \in G L_{n}(\mathbb{C}) .
\end{array}
$$

Let $C(\mathbb{G})$ be the universal unital C^{*}-algebra with generators $\left(U_{i j}\right)$ subject to the relations $\bullet U$ is unitary,

- $U=F \bar{U} F^{-1}$.
- $F \bar{U} F^{-1}$ is also unitary.
with comultiplication $\Delta\left(U_{i j}\right)=\sum_{k} U_{i k} \otimes U_{k j}$.
$\leadsto \mathrm{SU}_{q}(2)=A_{o}\left(\begin{array}{cc}0 & \sqrt{|q|} \\ -\frac{\operatorname{sign}(q)}{\sqrt{|q|}} & 0\end{array}\right)$ for $q \in[-1,1] \backslash\{0\}$.
\leadsto Apart from the $\mathrm{SU}_{q}(2)$, all $A_{o, u}(F)$ are non co-amenable.

Representation th. of $A_{0}(F)$ and $A_{u}(F)$

Let $\mathbb{G}=A_{0}(F)$.

Irred $\mathbb{G}=\frac{1}{2} \mathbb{N}$ and

$$
U_{n}\left(\uparrow U_{m} \cong U_{|n-m|} \oplus U_{|n-m|+1} \oplus \cdots \oplus U_{n+m} .\right.
$$

\leadsto Same fusion rules as $\operatorname{SU}(2)$.
Fusion rules are abelian.

Let $\mathbb{G}=A_{u}(F)$.

Irred $\mathbb{G}=\mathbb{N} * \mathbb{N}$, the free monoid generated by α and β,

$$
U_{x} \uparrow U_{y}=\bigoplus_{z, x=a z, y=\bar{z} b} U_{a b}
$$

where $x \mapsto \bar{x}$ is the involution on $\mathbb{N} * \mathbb{N}$ satisfying $\bar{\alpha}=\beta$. Also,
contragredient of U_{x} is $U_{\bar{x}}$.

Operator algebraic properties

We discuss $\mathbb{G}=A_{o}(F) \quad$ (for F at least 3×3) and $\mathbb{G}=A_{u}(F)$.

What is known.
Work of Banica :

- $L^{\infty}\left(A_{u}(F)\right)$ is a factor.
- $C_{\text {red }}\left(A_{u}(F)\right)$ is simple.
- $L^{\infty}\left(A_{u}\left(I_{2}\right)\right) \cong \mathcal{L}\left(\mathbb{F}_{2}\right)$.

Work of V \& Vergnioux :

- $L^{\infty}\left(A_{o, u}(F)\right)$ is solid.
- $C_{\text {red }}\left(A_{o, u}(F)\right)$ is exact.
- At least for certain F, $L^{\infty}\left(A_{o}(F)\right)$ is a full factor, $C_{\text {red }}\left(A_{o}(F)\right)$ is simple.

What is open :

- Are all $L^{\infty}\left(A_{0, u}\left(I_{n}\right)\right)$ free group factors?
- Are all $L^{\infty}\left(A_{o, u}(F)\right)$ and $L^{\infty}\left(A_{o, u}(F)\right)$ free Araki-Woods factors?
- Are the $C_{\text {red }}\left(A_{o, u}\left(I_{n}\right)\right)$ projectionless?
- Do the $L^{\infty}\left(A_{o, u}\left(I_{n}\right)\right)$ share more with the $\mathcal{L}\left(\mathbb{F}_{k}\right)$? (Haagerup property, complete metric approximation, absence of Cartan, ...)

Exact C*-algebras

Definition

A unital C^{*}-algebra A is called exact if the minimal tensor product $A \otimes_{\text {min }}$ with A, preserves short exact sequences.

Theorem (Ozawa, Anantharaman-Delaroche)

Let Γ be a discrete group. Then, $C_{\text {red }}^{*}(\Gamma)$ is exact if and only if Γ admits an amenable action on a compact space.

Amenability of Γ :
$\exists \xi_{n} \in \ell^{2}(\Gamma)$ with $\left\|\xi_{n}\right\|_{2}=1$ and $\left\|\lambda_{g} \xi_{n}-\xi_{n}\right\|_{2} \rightarrow 0$ for all g.
Amenability of $\Gamma \curvearrowright X$:
$\exists \xi_{n}: X \rightarrow \ell^{2}(\Gamma)$ continuous, with $\left\|\xi_{n}(x)\right\|_{2}=1$ and $\left\|\lambda_{g} \xi_{n}(x)-\xi_{n}(g \cdot x)\right\|_{2} \rightarrow 0$ uniformly in $x \in X$, for all $g \in \Gamma$.

Example : boundary action $\mathbb{F}_{k} \curvearrowright$ \{infinite reduced words\},

$$
\xi_{n}\left(x_{1} x_{2} x_{3} \cdots\right)=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} \delta_{x_{1} \cdots x_{j}}
$$

An application : solid factors

Definition (Ozawa)

A von Neumann algebra M with tracial state τ is called solid if the relative commutant of any diffuse subalgebra is injective.
\leadsto In particular, a solid non-hyperfinite II_{1} factor M is prime : if $M=M_{1} \bar{\otimes} M_{2}$, one of both is a matrix algebra.
\leadsto If τ is non-tracial : consider subalgebras with state preserving conditional expectation.

Theorem (Ozawa)

Let Γ be a discrete group. The group von Neumann algebra $\mathcal{L}(\Gamma)$ is solid if Γ admits a compactification X such that

- left action $\Gamma \curvearrowright \Gamma$ extends to amenable action $\Gamma \curvearrowright X$,
- right action $\Gamma \curvearrowright \Gamma$ extends to action on X trivial on $\partial \Gamma=X \backslash \Gamma$.
\leadsto We shall produce such actions for the duals of $A_{o}(F)$.

Discrete quantum groups

Let \mathbb{G} be a compact quantum group

$$
\Delta: C(\mathbb{G}) \rightarrow C(\mathbb{G}) \otimes_{\min } C(\mathbb{G}) .
$$

Unitary representation is $n \times n$ matrix $\left(U_{i j}\right)$ with $\Delta\left(U_{i j}\right)=\sum_{k} U_{i k} \otimes U_{k j}$.
\leadsto Set $H_{U}=\mathbb{C}^{n}$ and view $U \in B\left(H_{U}\right) \otimes C(\mathbb{G})$.

The dual discrete quantum group

Let Irred \mathbb{G} be the set of all irreducible rep. of \mathbb{G}.
Write $U_{x} \in \mathrm{~B}\left(H_{x}\right) \otimes C(\mathbb{G})$ for all $x \in \operatorname{Irred} \mathbb{G}$. Set

$$
\ell^{\infty}(\widehat{\mathbb{G}})=\prod_{x \in \operatorname{lrred} \mathbb{G}} \mathrm{~B}\left(H_{x}\right) .
$$

\sim Comultiplication $\hat{\Delta}: \ell^{\infty}(\hat{\mathbb{G}}) \rightarrow \ell^{\infty}(\hat{\mathbb{G}}) \otimes \ell^{\infty}(\hat{\mathbb{G}})$ such that $\hat{\Delta}(a)_{x, y} S=S a_{z}$ whenever S intertwines U_{z} and $U_{x} \oplus U_{y}$.

Remark. If $\mathbb{G}=\hat{\Gamma}$, of course $\ell^{\infty}(\hat{\mathbb{G}})=\ell^{\infty}(\Gamma)$ and $\Delta(a)(x, y)=a(x y)$.

Exactness and solidity for dual of $A_{0}(F)$

Let $\mathbb{G}=A_{o}(F)$. We have Irred $\mathbb{G}=\frac{1}{2} \mathbb{N}$ with U_{n} on H_{n} and

$$
U_{n} \oplus U_{m} \cong U_{|n-m|} \oplus U_{|n-m|+1} \oplus \cdots \oplus U_{n+m} .
$$

Compactification of $\widehat{\mathbb{G}}: C^{*}$-algebra B with $c_{0}(\hat{\mathbb{G}}) \subset B \subset \ell^{\infty}(\hat{\mathbb{G}})$.

- Let $V_{n}: H_{n+1} \rightarrow H_{n} \otimes H_{1}$ be an isometric intertwiner.
- Define $\psi_{n}: \mathrm{B}\left(H_{n}\right) \rightarrow \mathrm{B}\left(H_{n+1}\right): \psi_{n}(a)=V_{n}^{*}(a \otimes 1) V_{n}$, UCP.
- In fact, $\psi_{n, m}: \mathrm{B}\left(H_{n}\right) \rightarrow \mathrm{B}\left(H_{m}\right)$ for $m \geq n$.
- C*-algebra B as 'direct limit'. (Non-trivial: ψ_{n} are not homom.)

Theorem (V - Vergnioux)

The left action $\widehat{\mathbb{G}} \curvearrowright c_{0}(\widehat{\mathbb{G}})$ extends to an amenable action on B, while the right action extends to an action on B that is trivial on $B / c_{0}(\hat{\mathbb{C}})$.
$\leadsto C_{\text {red }}(\mathbb{G})$ is exact and $L^{\infty}(\mathbb{G})$ is (generalized) solid.
Remarks: It is non-obvious to define amenable actions.

- Extends to $A_{u}(F)$: joint work with Vander Vennet.

Probabilistic boundaries

Let μ be a probability measure on a discrete group Γ.
\leadsto Random walk with transition probab. $p(x, y)=\mu\left(x^{-1} y\right)$.
\leadsto Markov operator on $\ell^{\infty}(\Gamma):(P a)(x)=\sum_{y} p(x, y) a(y)$.
Bounded harmonic functions $H^{\infty}(\Gamma, \mu)=\left\{a \in \ell^{\infty}(\Gamma) \mid P a=a\right\}$.
Assume : transience and supp μ generates Γ as semi-group.

Poisson boundary

$\Gamma \curvearrowright(Y, \eta)$.

- Characterization.
- Properties.
- Definition.

Action of Γ on probability space (Y, η).
Poisson integral

$$
\Theta(a)(x)=\int_{Y} a(x \cdot y) d \eta(y)
$$

is a bijection $L^{\infty}(Y, \eta) \rightarrow H^{\infty}(\Gamma, \mu)$.

Probabilistic boundaries

Let μ be a probability measure on a discrete group Γ.
\leadsto Random walk with transition probab. $p(x, y)=\mu\left(x^{-1} y\right)$.
\simeq Markov operator on $\ell^{\infty}(\Gamma):(P a)(x)=\sum_{y} p(x, y) a(y)$.
Bounded harmonic functions $H^{\infty}(\Gamma, \mu)=\left\{a \in \ell^{\infty}(\Gamma) \mid P a=a\right\}$.
Assume : transience and supp μ generates Γ as semi-group.

Poisson boundary

$\Gamma \curvearrowright(Y, \eta)$.

- Characterization.
- Properties.
- Definition.

We can take a compactification $\Gamma \subset X$ such that

- Almost every path converges to a point in $Y:=X \backslash \Gamma$.
- Probability to end up in \mathcal{U} is $\eta(\mathcal{U})$.

Probabilistic boundaries

Let μ be a probability measure on a discrete group Γ.
\leadsto Random walk with transition probab. $p(x, y)=\mu\left(x^{-1} y\right)$.
\simeq Markov operator on $\ell^{\infty}(\Gamma):(P a)(x)=\sum_{y} p(x, y) a(y)$.
Bounded harmonic functions $H^{\infty}(\Gamma, \mu)=\left\{a \in \ell^{\infty}(\Gamma) \mid P a=a\right\}$.
Assume : transience and supp μ generates Γ as semi-group.

Poisson boundary

$\Gamma \curvearrowright(Y, \eta)$.

- Characterization.
- Properties.
- Definition.

Equipped with the product

$$
a \cdot b=\text { strong }^{*}-\lim _{n} P^{n}(a b)
$$

$H^{\infty}(\Gamma, \mu)$ is a von Neumann algebra.
Set $H^{\infty}(\Gamma, \mu)=L^{\infty}(Y, \eta)$ with
$\int a d \eta=a(e)$.

Probabilistic boundaries

Let μ be a probability measure on a discrete group Γ.
\leadsto Random walk with transition probab. $p(x, y)=\mu\left(x^{-1} y\right)$.
\simeq Markov operator on $\ell^{\infty}(\Gamma):(P a)(x)=\sum_{y} p(x, y) a(y)$.
Bounded harmonic functions $H^{\infty}(\Gamma, \mu)=\left\{a \in \ell^{\infty}(\Gamma) \mid P a=a\right\}$.
Assume : transience and supp μ generates Γ as semi-group.

Poisson boundary

$\Gamma \curvearrowright(Y, \eta)$.

- Characterization.
- Properties.
- Definition.

Equipped with the product

$$
a \cdot b=\text { strong }^{*}-\lim _{n} P^{n}(a b)
$$

$H^{\infty}(\Gamma, \mu)$ is a von Neumann algebra.
Set $H^{\infty}(\Gamma, \mu)=L^{\infty}(Y, \eta)$ with
$\int a d \eta=a(e)$.
$\leadsto B a s i c$ problem : identify $\Gamma \curvearrowright(Y, \eta)$.

Poisson boundaries of discrete quantum groups

Remember : $\ell^{\infty}(\widehat{\mathbb{G}})=\prod \mathrm{B}\left(H_{X}\right)$.

$$
x \in \operatorname{Irred} \mathbb{G}
$$

- $\mathrm{B}\left(H_{x}\right)$ has favorite state ψ_{x} coming from unitarizing $\overline{U_{x}}$.
- Fix a probability measure μ on Irred \mathbb{G} \leadsto State ψ_{μ} on $\ell^{\infty}(\widehat{\mathbb{G}})$ given by $\psi_{\mu}(a)=\sum_{x} \mu(x) \psi_{x}\left(a_{x}\right)$.
\leadsto Markov operator on $\ell^{\infty}(\widehat{\mathbb{G}}): P(a)=\left(\right.$ id $\left.\otimes \psi_{\mu}\right) \widehat{\Delta}(a)$.
- Assume transience and generating property of μ and consider

$$
H^{\infty}(\widehat{\mathbb{G}}, \mu)=\left\{a \in \ell^{\infty}(\widehat{\mathbb{G}}) \mid P a=a\right\} .
$$

Von Neumann algebra with product $a \cdot b=$ strong*- $\lim _{n} P^{n}(a b)$.

- Evaluation in the trivial rep. ε : harmonic state η on $H^{\infty}(\widehat{\mathbb{G}}, \mu)$.
\leadsto We get the Poisson boundary $H^{\infty}(\hat{\mathbb{G}}, \mu)$, equipped with actions of $\widehat{\mathbb{G}}$ and \mathbb{G}.
\leadsto Definition due to Izumi (study of infinite product actions).
Central problem : identify $\hat{\mathbb{G}} \curvearrowright H^{\infty}(\hat{\mathbb{G}}, \mu)$ in examples.

Identification of Poisson boundaries

- Restriction of Markov operator : random walk on Irred \mathbb{G}.
- If fusion rules are commutative, the Poisson boundary of Irred \mathbb{G} is trivial and $H^{\infty}(\widehat{\mathbb{G}}, \mu)$ independent of μ.

Theorem (Izumi)

For any generating measure μ on $\operatorname{Irred}\left(\mathrm{SU}_{q}(2)\right)$, we get $H^{\infty}(\widehat{\mathbb{G}}, \mu) \cong L^{\infty}\left(\mathbb{T} \backslash S U_{q}(2)\right) \quad$ (Podles' sphere).
\leadsto (Izumi-Neshveyev-Tuset) Generalization to $\mathrm{SU}_{q}(n)$.

Theorem (Tomatsu, see next talk)

If \mathbb{G} is co-amenable compact quantum group with commutative fusion rules, $H^{\infty}(\widehat{\mathbb{G}}, \mu) \cong L^{\infty}\left(\mathbb{K} \backslash S U_{q}(2)\right)$ where \mathbb{K} is the maximal compact subgroup of Kac type.
Tool : Izumi's Poisson integral $\Theta: L^{\infty}(\mathbb{G}) \rightarrow H^{\infty}(\widehat{\mathbb{G}}, \mu)$

$$
\Theta(a)=(\mathrm{id} \otimes h)\left(\mathbb{V}^{*}(1 \otimes a) \mathbb{V}\right)
$$

Poisson boundary of $\widehat{A_{o}(F)}$

$F \bar{F}= \pm 1$ and $C\left(A_{o}(F)\right)$ generated by $U_{i j}$ with $U=F \bar{U} F^{-1}$ unitary.
When $F_{q}=\left(\begin{array}{cc}0 & \sqrt{|q|} \\ -\frac{\operatorname{sign}(q)}{\sqrt{|q|}} & 0\end{array}\right)$, we get $\mathrm{SU}_{q}(2)$.
\leadsto Let $\operatorname{Tr}\left(F^{*} F\right)=\left|q+\frac{1}{q}\right|$ and $F \bar{F}=-\operatorname{sign}(q)$.
Take the unital C^{*}-algebra \mathcal{L} generated by the entries of a $2 \times n$ matrix L with $L^{*} L=1, L L^{*}=1$ and $L=F_{q} \bar{L} F^{-1}$.
\leadsto Commuting ergodic actions $\mathrm{SU}_{q}(2) \curvearrowright \mathcal{L}$ on the left and $A_{o}(F) \curvearrowright \mathcal{L}$ on the right.

Theorem (V - Vander Vennet)

The Poisson boundary of $\widehat{A_{o}(F)}$ can be identified with $(\mathbb{T} \backslash \mathcal{L})^{\prime \prime}$.
Remarks. $\quad \mathbb{T} \backslash \mathcal{L} \cong$ boundary C^{*}-algebra $B / c_{0}(\hat{\mathbb{G}})$ of $\widehat{A_{o}(F)}$.

- \mathcal{L} is nuclear. Is it simple?
- (De Rijdt - Vander Vennet) Behavior of Poisson boundaries under monoidal equivalence.

Recall the quantum group $A_{u}(F)$

$\mathbb{G}=A_{u}(F)$ and $C(\mathbb{G})$ generated by $U_{i j}$ with U and $F \bar{U} F^{-1}$ unitary.

Recall. Irred $\mathbb{G}=\mathbb{N} * \mathbb{N}$, the free monoid generated by α and β,

$$
U_{x} \circledast U_{y}=\bigoplus_{z, x=a z, y=\bar{z} b} U_{a b},
$$

where $x \mapsto \bar{x}$ is the involution on $\mathbb{N} * \mathbb{N}$ satisfying $\bar{\alpha}=\beta$.

Cayley tree of $\operatorname{Irred}\left(A_{u}(F)\right)$

- Let μ be generating prob. measure on $\operatorname{Irred}\left(A_{u}(F)\right)$ with finite support.
- Classical transient random walk on Cayley tree.
- Poisson boundary is given by harmonic measure η on set Y of infinite words in α, β. (Kaimanovich et al.)

Poisson boundary of $\widehat{A_{u}(F)}$

Let μ be a generating probability measure on $\operatorname{Irred}\left(A_{u}(F)\right)$ with finite support
Let η be the harmonic measure on the set Y of infinite words in α, β.
\leadsto An infinite word x in α, β can be of the form $x=x_{1} \otimes x_{2} \otimes x_{3} \otimes \cdots$ or has tail $\alpha \beta \alpha \beta \alpha \beta \cdots$.
$\leadsto \eta$ has no atoms in words with tail $\alpha \beta \alpha \beta \alpha \beta \cdots$.
\leadsto It suffices to consider infinite words of the form $x=x_{1} \otimes x_{2} \otimes x_{3} \otimes \cdots$.

Theorem (V - Vander Vennet)

The Poisson boundary $H^{\infty}(\widehat{\mathbb{G}}, \mu)$ can be identified with the measurable field of ITPFI finite factors over (Y, η) with fiber in
$x=x_{1} \otimes x_{2} \otimes x_{3} \otimes \cdots$ given by $\bigotimes_{k}\left(\mathrm{~B}\left(H_{x_{k}}\right), \psi_{x_{k}}\right)$.

Back to exactness and solidity for $\mathbb{G}=A_{u}(F)$

(Work in progress)
Consider the set Y of infinite words in α, β as a compact space.
\leadsto Continuous field B of unital C^{*}-algebras over Y with

- fiber in $x=x_{1} \otimes x_{2} \otimes x_{3} \otimes \cdots$ given by $\bigotimes_{k} B\left(H_{x_{k}}\right)$,
- fiber in $x=y \otimes \alpha \beta \alpha \beta \cdots$ given by
$\mathrm{B}\left(H_{y}\right) \otimes$ boundary $\widehat{A_{o}}$.
\leadsto We can view B as a boundary of $\hat{\mathbb{G}}$.
\leadsto Left action of $\hat{\mathbb{G}}$ becomes amenable on B, while the right action becomes trivial on B.
\leadsto Exactness for $C_{\text {red }}\left(A_{u}(F)\right)$ and solidity for $L^{\infty}\left(A_{u}(F)\right)$.

