Reiter's property (P_1) for locally compact quantum groups

Volker Runde University of Alberta Edmonton, Alberta Canada

December 12, 2007

Amenability for locally compact groups

G := a locally compact group

 $L_x f := \text{left translate of } f \text{ by } x \colon (L_x f)(y) = f(xy)$

Definition. G is amenable if there is $M \in L^{\infty}(G)^*$ with $||M|| = \langle 1, M \rangle = 1$ and

$$\langle \phi, M \rangle = \langle L_x \phi, M \rangle$$

for $x \in G$, $\phi \in L^{\infty}(G)$.

Proposition. G is amenable if and only if there is a net $(m_{\alpha})_{\alpha}$ of non-negative, norm one functions in $L^1(G)$ such that

$$||L_{x^{-1}}m_{\alpha} - m_{\alpha}||_1 \to 0$$

for $x \in G$.

Reiter's properties (P_p)

Definition. G is said to have Reiter's property (P_p) for $p \in [1, \infty)$ if there is a net $(m_\alpha)_\alpha$ of non-negative, norm one functions in $L^p(G)$ such that

$$\sup_{x \in K} \|L_{x^{-1}} m_{\alpha} - m_{\alpha}\|_{p} \to 0$$

for all compact $K \subset G$.

Reiter's Theorem. The following are equivalent for *G*:

- (i) G is amenable;
- (ii) G has Reiter's property (P_1) ;
- (iii) G has Reiter's property (P_p) for all $p \in [1, \infty)$;
- (iv) G has Reiter's property (P_p) for some $p \in [1, \infty)$.

Leptin's Theorem via (P_2)

A(G) :=the Fourier algebra of G B(G) :=the Fourier–Stieltjes algebra of G

Leptin's Theorem.

G is amenable \iff A(G) has a (norm one) BAI.

Theorem. [Granirer–Leinert, 81] The topology of uniform convergence on compacta and the multiplier topology of A(G) coincide on the unit sphere of B(G).

Proof of \Longrightarrow **of Leptin's Theorem.**

$$G$$
 amenable \Longrightarrow G has (P_2)

Let (ξ_{α}) be a net in $L^2(G)$ as required by (P_2) , and define

$$e_{\alpha} := \xi_{\alpha} * \check{\xi}_{\alpha} \in A(G).$$

Then

$$\sup_{x \in K} |e_{\alpha}(x) - 1| \to 0$$

for a compact $K \subset G$. By Granirer–Leinert, $(e_{\alpha})_{\alpha}$ is a BAI for A(G). \square

Hopf-von Neumann algebras, I

 $\bar{\otimes} =$ the von Neumann algebra tensor product

Definition 1. A Hopf-von Neumann algebra is a pair (M,Γ) , where M is a von Neumann algebra, and Γ is a co-multiplication: a unital, injective, normal *-homomorphism $\Gamma: M \to M \bar{\otimes} M$ which is co-associative, i.e.,

$$(\mathrm{id}\otimes\Gamma)\circ\Gamma=(\Gamma\otimes\mathrm{id})\circ\Gamma.$$

Example 1. $M = L^{\infty}(G)$:

$$\Gamma_G : L^{\infty}(G) \to L^{\infty}(G \times G) \cong L^{\infty}(G) \bar{\otimes} L^{\infty}(G)$$

with

$$(\Gamma_G \phi)(x, y) := \phi(xy) \qquad (\phi \in L^{\infty}(G), x, y \in G).$$

Example 2. M = VN(G):

$$\hat{\Gamma}_G \colon \mathrm{VN}(G) \to \mathrm{VN}(G) \otimes \mathrm{VN}(G),$$

$$\lambda(x) \mapsto \lambda(x) \otimes \lambda(x).$$

Hopf-von Neumann algebras, II

For any Hopf-von Neumann algebra (M, Γ) :

 M_{st} is a completely contractive Banach algebra

via

$$\langle f * g, x \rangle := \langle f \otimes g, \Gamma x \rangle \text{ for } f, g \in M_*, x \in M$$

Example 3. $(L^{\infty}(G), \Gamma_G)$: $L^1(G)$ with convolution.

Example 4. $(\operatorname{VN}(G), \hat{\Gamma}_G)$: A(G) with pointwise multiplication.

Haar weights

Definition 2. Let (M,Γ) be a Hopf-von Neumann algebra.

(a) a left Haar weight is a n.f.s. weight ϕ on M such that

$$\phi((f \otimes id)(\Gamma x)) = \langle f, 1 \rangle \phi(x)$$

for $f \in M_*$ and $x \in \mathcal{M}_{\phi}$.

(b) a right Haar weight is a n.f.s. weight ϕ on M such that

$$\phi((\mathrm{id}\otimes f)(\Gamma x)) = \langle f, 1\rangle\phi(x)$$

for $f \in M_*$ and $x \in \mathcal{M}_{\phi}$.

Locally compact quantum groups

Definition 3. [Kustermans–Vaes, 03] A locally compact quantum group (LCQG) is a quadruple $\mathbb{G}=(M,\Gamma,\phi,\psi)$ where M is a Hopf–von Neumann algebra, ϕ is a left Haar weight, and ψ is a right Haar weight.

Example 5. $(L^{\infty}(G), \Gamma_G, \phi, \psi)$ with

 $\phi = \text{left Haar measure}$

 $\psi = \text{right Haar measure}.$

Example 6. $(\mathrm{VN}(G), \hat{\Gamma}, \hat{\phi}, \hat{\psi})$ with

 $\hat{\phi} = \hat{\psi} =$ the Plancherel weight on $\mathrm{VN}(G).$

Example 7. Woronowicz' $SU_q(2)$.

The multiplicative unitary

Theorem 1. Let $\mathbb{G}=(M,\Gamma,\phi,\psi)$ be a LCQG, let H_{ϕ} denote the Hilbert space obtained from ϕ through the GNS construction, and let $\Lambda_{\phi}:\mathcal{N}_{\phi}\to H_{\phi}$ be the GNS map. Then there is a unique unitary $W\in\mathcal{B}(H_{\phi}\otimes_2 H_{\phi})$ —the multiplicative unitary of \mathbb{G} —defined by

$$W^*(\Lambda_{\phi}(x) \otimes \Lambda_{\phi}(y)) = (\Lambda_{\phi} \otimes \Lambda_{\phi})((\Gamma y)(x \otimes 1))$$

for $x, y \in \mathcal{N}_{\phi}$. It satisfies the pentagonal relation

$$W_{2,3}W_{1,2} = W_{1,2}W_{1,3}W_{2,3},$$

and we have

$$\Gamma x = W^*(1 \otimes x)W$$

for $x \in M$.

Some notation (according to Ruan)

For any LCQG G:

$$L^{\infty}(\mathbb{G}) := M$$

$$L^{1}(\mathbb{G}) := M_{*}$$

$$L^{2}(\mathbb{G}) := \mathfrak{H}_{\phi}$$

$$\mathcal{C}_{0}(\mathbb{G}) := \overline{\{(\mathrm{id} \otimes \omega)(W) : \omega \in \mathcal{B}(L^{2}(\mathbb{G}))_{*}\}}^{\|\cdot\|}$$

$$M(\mathbb{G}) := \mathcal{C}_{0}(\mathbb{G})^{*}$$

Example 8. For $\mathbb{G} = G = (L^{\infty}(G), \Gamma_G, \phi, \psi)$, these are the usual objects.

Example 9. For $\mathbb{G} = \hat{G} = (\operatorname{VN}(G), \hat{\Gamma}_G, \hat{\phi}, \hat{\psi})$:

$$L^{\infty}(\hat{G}) = \text{VN}(G), \quad L^{1}(\hat{G}) = A(G),$$

$$\mathcal{C}_{0}(\hat{G}) = C_{r}^{*}(G), \quad M(\hat{G}) = B_{r}(G).$$

Duality

For every LCQG $\mathbb G$, there is a unique LCQG $\hat{\mathbb G}$ such that $\hat{\hat{\mathbb G}}=\mathbb G$

Example 10. If

$$G = (L^{\infty}(G), \Gamma_G, \phi, \psi),$$

then

$$\hat{G} = (\operatorname{VN}(G), \hat{\Gamma}_G, \hat{\phi}, \hat{\psi}).$$

Definition 4. G is

- (a) compact if $\phi \in L^1(\mathbb{G})$ and
- (b) discrete if $L^1(\mathbb{G})$ is unital.

Theorem 2.

 \mathbb{G} compact \iff $\hat{\mathbb{G}}$ discrete.

Amenability and co-amenability, I

Definition 5. A LCQG G is called

(a) amenable if there is a state $M \in L^\infty(\mathbb{G})^*$ such that

$$\langle (f \otimes \mathrm{id})(\Gamma x), M \rangle = \langle f, 1 \rangle \langle x, M \rangle$$

for $f \in L^1(\mathbb{G})$ and $x \in L^\infty(\mathbb{G})$, or, equivalently, if there is a net $(m_\alpha)_\alpha$ of states in $L^1(\mathbb{G})$ such that

$$||f * m_{\alpha} - \langle 1, f \rangle m_{\alpha}||_{L^{1}(\mathbb{G})} \to 0$$

for $f \in L^1(\mathbb{G})$;

(b) co-amenable if $L^1(\mathbb{G})$ has a BAI (consisting of states).

Leptin's Theorem.

G amenable \iff \hat{G} co-amenable.

Conjecture.

 \mathbb{G} amenable \iff $\hat{\mathbb{G}}$ co-amenable.

Amenability and co-amenability, II

Theorem 3. [Voiculescu, 79; Bedos-Tuset, 03]

 \mathbb{G} co-amenable \implies $\hat{\mathbb{G}}$ amenable.

Theorem 4. [Ruan, 96; Tomatsu, 06] For discrete \mathbb{G} :

 \mathbb{G} amenable \iff $\hat{\mathbb{G}}$ co-amenable.

Another look at (P_1)

For $g \in L^1(G)$, let

$$L_{\bullet}g: G \to L^1(G), \quad x \mapsto L_{x^{-1}}g.$$

Then:

(a)
$$L_{\bullet}g \in \mathcal{C}_b(G, L^1(G))$$
 and

(b)
$$fL_{\bullet}g \in \mathcal{C}_0(G, L^1(G)) = \mathcal{C}_0(G) \otimes^{\lambda} L^1(G)$$
 for $f \in \mathcal{C}_0(G)$.

Proposition 1. G has property (P_1) if and only if there is a net $(m_{\alpha})_{\alpha}$ of non-negative, norm one functions in $L^1(G)$ such that

$$||fL_{\bullet}m_{\alpha} - f \otimes m_{\alpha}||_{\mathcal{C}_0(G) \otimes^{\lambda} L^1(G)} \to 0$$

for $f \in \mathcal{C}_0(G)$.

(P_1) for LCQGs, I

For $g \in L^1(\mathbb{G})$, let

$$(\Gamma|g): L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}), \quad x \mapsto (\mathrm{id} \otimes g)(\Gamma x).$$

Then $(\Gamma|g) \in \mathcal{CB}(L^{\infty}(\mathbb{G})).$

For $a, b \in L^{\infty}(\mathbb{G})$, let

$$M_{a,b}: L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}), \quad x \mapsto axb.$$

So, $M_{a,b} \circ (\Gamma | g) \in \mathcal{CB}(L^{\infty}(\mathbb{G}))$.

Example 11. For $g \in L^1(G)$, $a, b \in \mathcal{C}_0(G)$:

$$M_{a,b} \circ (\Gamma|g) = abL_{\bullet}g.$$

(P_1) for LCQGs, II

Proposition 2. Let $g \in L^1(\mathbb{G})$, $a, b \in \mathcal{C}_0(\mathbb{G})$. Then $M_{a,b}\circ(\Gamma|g)\in\mathcal{CB}(L^\infty(\mathbb{G}),\mathcal{C}_0(\mathbb{G}))$ lies the norm closure of the finite rank operators in $\mathcal{CB}(L^{\infty}(\mathbb{G}))$ and can be identified with an element of $C_0(\mathbb{G})\check{\otimes}L^1(\mathbb{G})$.

Key
$$W\in \mathcal{M}(\mathcal{C}_0(\mathbb{G})\check{\otimes}\mathcal{K}(L^2(\mathbb{G})))$$

Definition 6. \mathbb{G} is said to have Reiter's property (P_1) if there is a net $(m_{\alpha})_{\alpha}$ of states in $L^{1}(\mathbb{G})$ such that

$$||M_{a,b} \circ (\Gamma | m_{\alpha}) - ab \otimes m_{\alpha}||_{\mathcal{C}_0(\mathbb{G}) \check{\otimes} L^1(\mathbb{G})} \to 0$$

for all $a, b \in \mathcal{C}_0(\mathbb{G})$.

(P_1) for LCQGs, III

Theorem 5.

 \mathbb{G} is amenable \iff \mathbb{G} has (P_1)

Lemma 1. Let $g \in L^1(\mathbb{G})$, $a,b \in \mathcal{C}_0(\mathbb{G})$. Then $\{b\mu a * g : \mu \in M(\mathbb{G}), \|\mu\| \leq 1\}$ is relatively norm compact in $L^1(\mathbb{G})$.

What is (P_2) for a LCQG, and is it equivalent to (P_1) ?