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o Given 1 < g < p < oo, take (gx, s) = (|fx|2,2p/q) and
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o Given 1 < p < q < 00, we easily deduce by duality that
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o In particular, we obtain isomorphic embeddings
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Given a general von Neumann algebra M and 1 < p, ¢ < 0o, we now define

Ly, (M) = [M,LyM)], and L§ (M) =M, L5sM)];.

1
p

We construct asymmetric L, spaces by taking amalgamated Haagerup tensor products
Liopag (M) = Ly(M) @ Lyg(M) = (LSP(M> 0 LSQ(M)) [{zy @y —x®7y).

Remark.  Of course, we have L,(M) = L, 9,)(M) cb-isometrically for 1 < p < ooc.
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Noncommutative %Lq and /C;{q
In the classical case, we had
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Ky (Q) = noLy(Q) +niLy(Q)  for  p<q
T, (8)) = ml?Lp(Q) N n%Lq(Q) for  p>q.
In the noncommutative case, we define
1 1 1
Ky (M) = (nTpLgp(/\/l) + anqu(/\/l)) QM. (nTpLC
L 1 €1 1
T (M) = (nQpLgp(/\/l) A n2qL§q(./\/l)) Dt (nL (M) N n?ngqw)).
These spaces are completely isomorphic to

1 141 141 1
Ky (M) = np Ly(M) + 02720 Ly, o) (M) + 025 Ligg 5 (M) + 0t Ly(M),

1

Ty (M) = ml?Lp(/\/l) a n%h%L(Qp,Qq)(M) N n2_q+2lpL(2q,2p)(/\/l) N n%Lq(/\/l).
Remarks.

o The cross terms disappear in the Banach space level.

o Explicit norms for S}*(7,!.(M)) and S(K7 (M)) = amalgamated/conditional L,'s.
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Theorem [JP]. We have complete embeddings:
i) If 1< p<g<oo,

r € K! (M) — wame T) @ 0y € Ly( A1),

i) If1<qg<p<oo,

reJ,, (M) 7TT66 T)® 6 € Ly(A; 7).
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Moreover, the images are cb-complemented and the constants do not depend on n.

Main tools. Free Rosenthal inequality [Junge, Parcet, Xu 2007].
Noncommutative Burkholder inequality [Junge, Xu 2003].

Interpolation of intersections: [ (M), J,1 (M)]g ~a T, (M).

Remarks.  Compared to [Junge, Parcet 2005] ~~ Absence of singularities as p — 1, c0.
Operator space L, embeddings ~~ jp?}‘,Q and IC)y for 1 <p <2< p' < 0.

Generalizations. Amalgamation + Vector-values + Non identically distributed variables.
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Noncommutative independence

A family of von Neumann algebras
NCMM,CA

is a system of increasingly independent / top-subsymmetric copies over N when:

o There exists Ex : A — AN normal faithful.
olface <M1,M2, . ,./\/lk_1> and b € M,,

£ {ab) = Ex{a)Ex(h).
o We have homomorphisms 7 : M — M, with

Tkl = id  and E/\/<7Tf(1)<5’31) T Wf(m)(fm)) = EN(Wg(U(Il) e 'Wg(m)(xm))
forall f,g:{1,2,...,m} — N such that

© f\{1,2 ..... A — g, mnar
o|Al <2and A= {k|f(k)=maxf} = {k|g(k) = maxg}.

o There exists Exr : M — N normal, faithful such that £y = E, o ;. holds for all &.

This is a quite general notion which includes the main examples:

o Free copies + Tensor product copies + g-independent copies, etc...
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A transference method

Theorem [JP]. Let (M,);>1 be independent top-subsymmetric copies over N
olf 1 <p<2,

E| Y oam@)| o B D i)
k=1 Lp(A k=1

olf 1 <p<q<oo,

HZM ®5k‘ Zﬂﬁee ®5k‘

Moreover, in both cases the relevant constants ¢; and ¢, are independent of p, ¢ and n.

Lp(Afree)

Lyp(A,; 5” Lp(Afree%g).

Remarks.
o This includes amalgamation, but we impose independent copies.

o The case p > ¢ requires duality ~» complementation ~ ¢, , = x.
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olf 1 <p<q< oo,
HZM ®5k‘ ®5k‘ :
Ly( .AK” Lp(““free%?)

Moreover, in both cases the relevant constants ¢; and ¢, are independent of p, ¢ and n.
Sketch of the proof.

o By Junge's recent methods in L4

HZ?Tk ®5k‘

o The construction of L,(A; () — H Li(R;; fnm7) which preserves independence.
iU

®5k|

~c ||x||/C o(MEN) ™

Li(A;0%) Ll(Af’r(ze%go).
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Corollary A. If 1 < p < 2, we have for top-subsymmetric copies

EH Z 5k77k:<37)
k=1

Moreover, the involved constant c is once more independent of p and n.

e it nollall, + v/al|En 02| + Vi Exlete)?]| .

r=a-+b+c

o Weighted g¢-Khintchine inequalities
If —1 < q <1, consider the generalized g-gaussians
Goi = Mlyler) + mlile_r) on Fy(H) = (CQ o PH™(, >q).
n>1

Let (Ty, &) = (((ggr)i=1)", (€2, - ) denote the g-deformed Araki-Woods factor.
Then, if 1 < p < 2 and zy,29,23,...,2, € L,(M), the following equivalences
hold up to a constant ¢ which is independent of p, ¢ and n

( Z )‘kﬂk akak)

DN —

(> ukb*bk)

~,. Inf
p rp=a+by

p

- %
| Yo an @ gud;
k=1



Applications I. Removable singularities

Corollary A. If 1 < p < 2, we have for top-subsymmetric copies

EH Z €k7Tk<I)
k=1

Moreover, the involved constant c is once more independent of p and n.

~e inf nollall, + v/l | En 6|+ vallEn(ee)?| .

D r=a+b+c

o Weighted ¢-Khintchine inequalities

o Weighted free Khinchine inequalities
Xu 2006.

o Weighted Fermionic Khinchine inequalities
Junge 2006 ~» p =1/ Xu 2006 ~ 1 < p <2

o Weighted g-deformed Khinchine inequalities
Junge, Parcet, Xu 2007

< 1
C
paq Yy /1 L ‘ql

Problem. Determine the order of growth of ¢, , as (p,q) — (oo, £1).

— 00 as q — =*l1.



Applications I. Removable singularities

Corollary A. If 1 < p < 2, we have for top-subsymmetric copies

EH Z €k7Tk<ZE)
k=1

Moreover, the involved constant c is once more independent of p and n.

~ inf nillall, + Val[En(®b)E], + vallEnce)
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o Weighted ¢-Khintchine inequalities
o Cb-embedding L, — L, preserving hyperfiniteness

Let M be hyperfinite and 1 < p < ¢ < 2. Then, there exists a completely isomorphic
embedding of L,(M) into L,(A) where both spaces are equipped with their natural
operator space structures and satisfy:

o A is hyperfinite.

o The constants are independent of p, g.



Applications I. Removable singularities

Corollary A. If 1 < p < 2, we have for top-subsymmetric copies

IEH 2”: ek ()

Moreover, the involved constant c is once more independent of p and n.

~e inf nollall, + v/l | En 6|+ vallEn(ee)?| .

D r=a+b+c

o Weighted ¢-Khintchine inequalities

o Cb-embedding L, — L, preserving hyperfiniteness

o Cb-embedding of OH into hyperfinite L,(.A)
Xu 2006 ~~ Weighted Fermionic Khintchine ~~ ¢, — co as p — 1.

o Cb-embedding of L,(M) into hyperfinite L,(.A)

Junge, Parcet 2007 ~~ Rosenthal inequality for copies ~~ ¢,, — oo as p — 1.
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Applications Il. There is no cb-embedding of /, into semifinite L,

Corollary B. If 1 < p < g < o0, the mapping

n n2

is a complete embedding with relevant constants independent of p, g.

Remark. In [Junge, Parcet 2005] ~~» 1 <p<g<oocandc, —ooasp— 1.

Corollary C. Assume that we have a cb-embedding
by — Ly(A)
for some 1 < p < g < 2. Then, the von Neumann algebra A cannot be semifinite.
Remark. We know from Xu that S, — L,(A) = A is of type III.
Sketch of the proof. By Corollary B and Rosenthal’s theorem,
U, — Ly(semifinite) = L,(R) — L,(semifinite),
where R is the hyperfinite 1I; factor. Moreover, applying Xu's techniques we can show

L,(R)— L,(A) = Ais of type lll.



