II_1 factors with at most one Cartan subalgebra

Narutaka OZAWA Joint work with Sorin POPA

Operator Spaces and Quantum Groups, Fields Institute, December 2007

Research supported by NSF


```
 \begin{array}{ccc} \Gamma & \text{countable discrete group} \\ (X,\mu) & \text{standard probability measure space} \\ \Gamma \curvearrowright (X,\mu) & \text{(ergodic) measure preserving action} \end{array}
```

```
 \begin{array}{ccc} \Gamma & \text{countable discrete group} \\ (X,\mu) & \text{standard probability measure space} \\ \Gamma \curvearrowright (X,\mu) & \text{(ergodic) measure preserving action} \end{array}
```

```
 \begin{array}{ccc} \Gamma & \text{countable discrete group} \\ (X,\mu) & \text{standard probability measure space} \\ \Gamma \curvearrowright (X,\mu) & \text{(ergodic) measure preserving action} \end{array}
```

$$\Gamma \curvearrowright X$$
 is said to be *ergodic* if $A \subset X$ and $\Gamma A = A \Rightarrow \mu(A) = 0, 1$.

```
 \begin{array}{ccc} \Gamma & \text{countable discrete group} \\ (X,\mu) & \text{standard probability measure space} \\ \Gamma \curvearrowright (X,\mu) & \text{(ergodic) measure preserving action} \end{array}
```

$$\Gamma \curvearrowright X$$
 is said to be *ergodic* if $A \subset X$ and $\Gamma A = A \Rightarrow \mu(A) = 0, 1$. We only consider either

ullet $(X,\mu)\cong([0,1],\mathsf{Lebesgue})$

$$\begin{array}{ccc} \Gamma & \text{countable discrete group} \\ (X,\mu) & \text{standard probability measure space} \\ \Gamma \curvearrowright (X,\mu) & \text{(ergodic) measure preserving action} \end{array}$$

$$\Gamma \curvearrowright X$$
 is said to be *ergodic* if $A \subset X$ and $\Gamma A = A \Rightarrow \mu(A) = 0, 1.$

We only consider either

• $(X, \mu) \cong ([0, 1], \mathsf{Lebesgue})$

or

•
$$X = \{pt\}$$
.

```
 \begin{array}{ccc} \Gamma & \text{countable discrete group} \\ (X,\mu) & \text{standard probability measure space} \\ \Gamma \curvearrowright (X,\mu) & \text{(ergodic) measure preserving action} \end{array}
```

 $\Gamma \curvearrowright X$ is said to be *ergodic* if $A \subset X$ and $\Gamma A = A \Rightarrow \mu(A) = 0, 1$.

We only consider either

- $(X, \mu) \cong ([0, 1], \text{Lebesgue})$ and $\Gamma \curvearrowright X$ is *essentially-free* i.e. $\mu(\{x : sx = x\}) = 0 \ \forall s \in \Gamma \setminus \{1\};$ or
- $X = \{pt\}$.

$$\frac{\mathsf{GA}}{\mathsf{\Gamma} \curvearrowright (\mathsf{X}, \mu)}$$

$$\bigcap_{\Gamma \curvearrowright (X, \mu)} \longrightarrow$$

$$\begin{array}{c}
\mathsf{GA} \\
\Gamma \curvearrowright (X,\mu)
\end{array}
\qquad
\begin{array}{c}
\mathsf{OE} \\
L^{\infty}(X) \subset \mathrm{vN}(X \rtimes \Gamma)
\end{array}$$

$$\begin{array}{c}
\mathsf{GA} \\
\Gamma \curvearrowright (X,\mu)
\end{array}
\longrightarrow
\begin{array}{c}
\mathsf{OE} \\
L^{\infty}(X) \subset \mathrm{vN}(X \rtimes \Gamma)
\end{array}$$

To what extent do vN/OE remember OE/GA/GP?

To what extent do vN/OE remember OE/GA/GP?

$$\sigma: \Gamma \curvearrowright L^{\infty}(X, \mu)
\sigma_{s}(f)(x) = f(s^{-1}x)
\int \sigma_{s}(f) d\mu = \int f d\mu$$

$$\sigma: \Gamma \curvearrowright L^{\infty}(X, \mu)$$

$$\sigma_{s}(f)(x) = f(s^{-1}x)$$

$$\int \sigma_{s}(f) d\mu = \int f d\mu$$

The unitary element $u_s = \sigma_s \otimes \lambda_s \in \mathbb{B}(L^2(X) \otimes \ell_2(\Gamma))$ satisfies $u_s f u_s^* = \sigma_s(f)$

for all $f \in L^{\infty}(X, \mu)$, identified with $f \otimes 1 \in \mathbb{B}(L^2(X) \otimes \ell_2(\Gamma))$.

$$\sigma: \Gamma \curvearrowright L^{\infty}(X, \mu)
\sigma_{s}(f)(x) = f(s^{-1}x)
\int \sigma_{s}(f) d\mu = \int f d\mu$$

The unitary element $u_s = \sigma_s \otimes \lambda_s \in \mathbb{B}(L^2(X) \otimes \ell_2(\Gamma))$ satisfies $u_s f u_s^* = \sigma_s(f)$

for all $f \in L^{\infty}(X, \mu)$, identified with $f \otimes 1 \in \mathbb{B}(L^2(X) \otimes \ell_2(\Gamma))$. We encode the information of $\Gamma \curvearrowright X$ into a single vN algebra

$$\mathrm{vN}(X \rtimes \Gamma) := \{ \sum_{s \in \Gamma}^{\mathrm{finite}} f_s \ u_s : f_s \in L^\infty(X) \}'' \subset \mathbb{B}(L^2(X) \otimes \ell_2(\Gamma)).$$

$$\sigma: \Gamma \curvearrowright L^{\infty}(X, \mu)
\sigma_{s}(f)(x) = f(s^{-1}x)
\int \sigma_{s}(f) d\mu = \int f d\mu$$

The unitary element $u_s = \sigma_s \otimes \lambda_s \in \mathbb{B}(L^2(X) \otimes \ell_2(\Gamma))$ satisfies $u_s f u_s^* = \sigma_s(f)$

for all $f \in L^{\infty}(X, \mu)$, identified with $f \otimes 1 \in \mathbb{B}(L^2(X) \otimes \ell_2(\Gamma))$. We encode the information of $\Gamma \curvearrowright X$ into a single vN algebra

$$\mathrm{vN}(X \rtimes \Gamma) := \{ \sum_{s \in \Gamma}^{\mathrm{finite}} f_s \ u_s : f_s \in L^{\infty}(X) \}'' \subset \mathbb{B}(L^2(X) \otimes \ell_2(\Gamma)).$$

 $\mathrm{vN}(X \rtimes \Gamma)$ is same as the crossed product vN algebra $L^\infty(X) \rtimes \Gamma$.

 $\mathrm{vN}(X \rtimes \Gamma)$ is a vN algebra of type II_1 , with the trace au given by

$$\tau(\sum_{s} f_{s} u_{s}) = \langle \sum_{s} f_{s} u_{s} (\mathbf{1} \otimes \delta_{1}), (\mathbf{1} \otimes \delta_{1}) \rangle = \int f_{1} d\mu.$$

(It follows
$$\tau(xy) = \tau(yx)$$
.)

 $\mathrm{vN}(X \rtimes \Gamma)$ is a vN algebra of type II_1 , with the trace au given by

$$\tau(\sum_{s} f_{s} u_{s}) = \langle \sum_{s} f_{s} u_{s} (\mathbf{1} \otimes \delta_{1}), (\mathbf{1} \otimes \delta_{1}) \rangle = \int f_{1} d\mu.$$

(It follows
$$\tau(xy) = \tau(yx)$$
.)

The subalgebra $L^{\infty}(X) \subset \mathrm{vN}(X \rtimes \Gamma)$ has a special property.

 $\mathrm{vN}(X \rtimes \Gamma)$ is a vN algebra of type II_1 , with the trace au given by

$$\tau(\sum_{s} f_{s} u_{s}) = \langle \sum_{s} f_{s} u_{s} (\mathbf{1} \otimes \delta_{1}), (\mathbf{1} \otimes \delta_{1}) \rangle = \int f_{1} d\mu.$$

(It follows $\tau(xy) = \tau(yx)$.)

The subalgebra $L^{\infty}(X) \subset \mathrm{vN}(X \rtimes \Gamma)$ has a special property.

Definition

A von Neumann subalgebra $A\subset M$ is called a $Cartan\ subalgebra$ if it is a maximal abelian subalgebra such that the normalizer

$$\mathcal{N}(A) = \{ u \in M : \text{unitary} \quad uAu^* = A \}$$

generates M.

Orbit Equivalence Relation

Theorem (Singer, Dye, Krieger, Feldman-Moore 1977)

Let $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ be ess-free p.m.p. actions, and

$$\theta: (X, \mu) \to (Y, \nu)$$

be an isomorphism. Then, the isomorphism

$$\theta^* : L^{\infty}(Y, \nu) \ni f \mapsto f \circ \theta \in L^{\infty}(X, \mu)$$

extends to a *-isomorphism

$$\pi : \mathrm{vN}(Y \rtimes \Lambda) \to \mathrm{vN}(X \rtimes \Gamma)$$

if and only if θ preserves the orbit equivalence relation:

$$\theta(\Gamma x) = \Lambda \theta(x)$$
 for μ -a.e. x .

Theorem (Hakeda-Tomiyama, Sakai 1967)

 $vN(X \rtimes \Gamma)$ is injective (amenable) $\Leftrightarrow \Gamma$ is amenable.

Theorem (Hakeda-Tomiyama, Sakai 1967)

 $vN(X \rtimes \Gamma)$ is injective (amenable) $\Leftrightarrow \Gamma$ is amenable.

E.g. Solvable groups and subexponential groups are amenable. Non-abelian free groups \mathbb{F}_r are not.

$$\begin{array}{c}
\mathsf{GA} \\
\Gamma \curvearrowright (X,\mu)
\end{array}
\longrightarrow
\begin{array}{c}
\mathsf{OE} \\
\mathsf{L}^{\infty}(X) \subset \mathrm{vN}(X \rtimes \Gamma)
\end{array}
\longrightarrow
\begin{array}{c}
\mathsf{vN} \\
\mathsf{vN}(X \rtimes \Gamma)
\end{array}$$

Theorem (Hakeda-Tomiyama, Sakai 1967)

 $vN(X \rtimes \Gamma)$ is injective (amenable) $\Leftrightarrow \Gamma$ is amenable.

E.g. Solvable groups and subexponential groups are amenable. Non-abelian free groups \mathbb{F}_r are not.

Theorem (Connes 1974, Ornstein-Weiss, C-Feldman-W 1981)

Amenable vN and OE are unique modulo center.

Theorem (Connes 1974, Ornstein-Weiss, C-Feldman-W 1981)

Amenable vN and OE are unique modulo center.

$$\begin{array}{c}
\mathsf{GA} \\
\Gamma \curvearrowright (X,\mu)
\end{array}
\longrightarrow
\begin{array}{c}
\mathsf{OE} \\
L^{\infty}(X) \subset \mathrm{vN}(X \rtimes \Gamma)
\end{array}
\longrightarrow
\begin{array}{c}
\mathsf{vN} \\
\mathsf{vN}(X \rtimes \Gamma)
\end{array}$$

Theorem (Connes 1974, Ornstein-Weiss, C-Feldman-W 1981)

Amenable vN and OE are unique modulo center.

Theorem (Connes-Jones 1982)

OE vN is not one-to-one,

i.e. \exists a Π_1 -factor with non-conjugate Cartan subalgebras.

$$\begin{array}{c}
\mathsf{GA} \\
\Gamma \curvearrowright (X,\mu)
\end{array}
\longrightarrow
\begin{array}{c}
\mathsf{OE} \\
\mathsf{L}^{\infty}(X) \subset \mathrm{vN}(X \rtimes \Gamma)
\end{array}
\longrightarrow
\begin{array}{c}
\mathsf{vN} \\
\mathsf{vN}(X \rtimes \Gamma)
\end{array}$$

Theorem (Connes 1974, Ornstein-Weiss, C-Feldman-W 1981)

Amenable vN and OE are unique modulo center.

Theorem (Connes-Jones 1982)

Theorem (Dykema 1993)

 $\mathrm{vN}(\Gamma_1 * \Gamma_2) \cong \mathrm{vN}(\mathbb{F}_2) \text{ for any infinite amenable groups } \Gamma_1 \text{ and } \Gamma_2.$

Theorem (Connes 1975)

 \exists a II_1 -factor which is not *-isomorphic to its complex conjugate.

Theorem (Connes 1975)

 \exists a II_1 -factor which is not *-isomorphic to its complex conjugate.

Theorem (Voiculescu 1994)

 $vN(\mathbb{F}_r)$ does not have a Cartan subalgebra.

Rigidity

Theorem (Furman 1999, (Monod-Shalom,) Popa, Kida, Ioana)

Some **OE** fully remembers **GA**.

Theorem (Furman 1999, (Monod-Shalom,) Popa, Kida, Ioana)

Some **OE** fully remembers **GA**.

Theorem (Oz-Popa)

Some **vN** fully remembers **OE**, i.e., \exists a (non-amenable) II_1 -factor with a unique Cartan subalgebra

$$\begin{array}{c}
\mathsf{GA} \\
\Gamma \curvearrowright (X,\mu)
\end{array}
\longrightarrow
\begin{array}{c}
\mathsf{OE} \\
\mathsf{L}^{\infty}(X) \subset \mathrm{vN}(X \rtimes \Gamma)
\end{array}
\longrightarrow
\begin{array}{c}
\mathsf{vN} \\
\mathsf{vN}(X \rtimes \Gamma)
\end{array}$$

Theorem (Furman 1999, (Monod-Shalom,) Popa, Kida, Ioana)

Some **OE** fully remembers **GA**.

Theorem (Oz-Popa)

Some **vN** fully remembers **OE**, i.e., \exists a (non-amenable) II_1 -factor with a unique Cartan subalgebra up to unitary conjugacy.

$$\begin{array}{c}
\mathsf{GA} \\
\Gamma \curvearrowright (X,\mu)
\end{array}
\longrightarrow
\begin{array}{c}
\mathsf{OE} \\
L^{\infty}(X) \subset \mathrm{vN}(X \rtimes \Gamma)
\end{array}
\longrightarrow
\begin{array}{c}
\mathsf{vN} \\
\mathsf{vN}(X \rtimes \Gamma)
\end{array}$$

Theorem (Furman 1999, (Monod-Shalom,) Popa, Kida, Ioana)

Some **OE** fully remembers **GA**.

Theorem (Oz-Popa)

Some **vN** fully remembers **OE**, i.e., \exists a (non-amenable) II_1 -factor with a unique Cartan subalgebra up to unitary conjugacy.

Note: Popa (2000) proved $vN(\mathbb{Z}^2) \subset vN(\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z}))$ is a unique "Cartan subalgebra with the relative property (T)."

Problem

• Is there **vN** which fully remembers **GA**?

Problem

- Is there **vN** which fully remembers **GA**?
- Is there **vN** which fully remembers **GP**?

Problem

- Is there vN which fully remembers GA?
- Is there **vN** which fully remembers **GP**?

•
$$vN(\mathbb{F}_2) \ncong vN(\mathbb{F}_3)$$

Problem

- Is there vN which fully remembers GA?
- Is there **vN** which fully remembers **GP**?
- $vN(\mathbb{F}_2) \not\cong vN(\mathbb{F}_3)$

Note: Popa (2004) proved $\mathrm{vN}([0,1]^\Gamma \rtimes \Gamma) \cong \mathrm{vN}(Y \rtimes \Lambda)$ implies $(\Gamma \curvearrowright [0,1]^\Gamma) \cong (\Lambda \curvearrowright Y)$ provided that Λ has the property (T). Further results by Popa and Vaes.

Suppose
$$(\Gamma \curvearrowright X) \cong_{\mathrm{OE}} (\Lambda \curvearrowright Y)$$
, i.e. $\exists \ \theta \colon X \stackrel{\sim}{\to} Y$ such that
$$\theta(\Gamma x) = \Lambda \theta(x) \quad \text{ for } \mu\text{-a.e. } x.$$

Suppose $(\Gamma \curvearrowright X) \cong_{\mathrm{OE}} (\Lambda \curvearrowright Y)$, i.e. $\exists \theta \colon X \stackrel{\sim}{\to} Y$ such that

$$\theta(\Gamma x) = \Lambda \theta(x)$$
 for μ -a.e. x .

Define $\alpha \colon X \times \Gamma \to \Lambda$ by

$$\theta(x) = \alpha(x, s)\theta(s^{-1}x).$$

Suppose $(\Gamma \curvearrowright X) \cong_{\mathrm{OE}} (\Lambda \curvearrowright Y)$, i.e. $\exists \theta \colon X \stackrel{\sim}{\to} Y$ such that

$$\theta(\Gamma x) = \Lambda \theta(x)$$
 for μ -a.e. x .

Define $\alpha: X \times \Gamma \to \Lambda$ by

$$\theta(x) = \alpha(x, s)\theta(s^{-1}x).$$

Then, α satisfies the cocycle identity:

$$\alpha(x,s)\alpha(s^{-1}x,t)=\alpha(x,st).$$

Suppose $(\Gamma \curvearrowright X) \cong_{\mathrm{OE}} (\Lambda \curvearrowright Y)$, i.e. $\exists \theta \colon X \xrightarrow{\sim} Y$ such that

$$\theta(\Gamma x) = \Lambda \theta(x)$$
 for μ -a.e. x .

Define $\alpha: X \times \Gamma \to \Lambda$ by

$$\theta(x) = \alpha(x, s)\theta(s^{-1}x).$$

Then, α satisfies the cocycle identity:

$$\alpha(x,s)\alpha(s^{-1}x,t)=\alpha(x,st).$$

Cocycles α and β are equivalent if $\exists \phi : X \to \Lambda$ such that

$$\beta(x,s) = \phi(x)\alpha(x,s)\phi(s^{-1}x)^{-1}.$$

Theorem (Cocycle Superrigidity)

With some assumption on $\Gamma \curvearrowright X$ (and not on Λ), any cocycle

$$\alpha \colon \Gamma \times X \to \Lambda$$

is equivalent to a cocycle β which is independent on $x \in X$.

Theorem (Cocycle Superrigidity)

With some assumption on $\Gamma \curvearrowright X$ (and not on Λ), any cocycle

$$\alpha \colon \Gamma \times X \to \Lambda$$

is equivalent to a cocycle β which is independent on $x \in X$.

Applied to the Zimmer cocycle, one obtains (virtual) conjugacy $(\Gamma \curvearrowright X) \cong (\Lambda \curvearrowright Y)$ via the homomorphism $\beta \colon \Gamma \to \Lambda$.

Theorem (Cocycle Superrigidity)

With some assumption on $\Gamma \curvearrowright X$ (and not on Λ), any cocycle

$$\alpha \colon \Gamma \times X \to \Lambda$$

is equivalent to a cocycle β which is independent on $x \in X$.

Applied to the Zimmer cocycle, one obtains (virtual) conjugacy $(\Gamma \curvearrowright X) \cong (\Lambda \curvearrowright Y)$ via the homomorphism $\beta \colon \Gamma \to \Lambda$.

Examples

• Γ higher rank lattice $+ \Lambda$ simple Lie group (Zimmer)

Theorem (Cocycle Superrigidity)

With some assumption on $\Gamma \curvearrowright X$ (and not on Λ), any cocycle

$$\alpha \colon \Gamma \times X \to \Lambda$$

is equivalent to a cocycle β which is independent on $x \in X$.

Applied to the Zimmer cocycle, one obtains (virtual) conjugacy $(\Gamma \curvearrowright X) \cong (\Lambda \curvearrowright Y)$ via the homomorphism $\beta \colon \Gamma \to \Lambda$.

Examples

- Γ higher rank lattice $+ \Lambda$ simple Lie group (Zimmer)
- Γ Kazhdan (T) / product + $\Gamma \curvearrowright X$ malleable (Popa)

Theorem (Cocycle Superrigidity)

With some assumption on $\Gamma \curvearrowright X$ (and not on Λ), any cocycle

$$\alpha \colon \Gamma \times X \to \Lambda$$

is equivalent to a cocycle β which is independent on $x \in X$.

Applied to the Zimmer cocycle, one obtains (virtual) conjugacy $(\Gamma \curvearrowright X) \cong (\Lambda \curvearrowright Y)$ via the homomorphism $\beta \colon \Gamma \to \Lambda$.

Examples

- \bullet Γ higher rank lattice $+ \Lambda$ simple Lie group (Zimmer)
- Γ Kazhdan (T) / product + $\Gamma \curvearrowright X$ malleable (Popa)
- Γ Kazhdan (T) + $\Gamma \curvearrowright X$ profinite (Ioana)

$$\begin{array}{ccc}
\Gamma \curvearrowright X & \sigma \colon \Gamma \curvearrowright L^{\infty}(X) \\
\alpha \colon \Gamma \to L^{\infty}(X, \mathrm{vN}(\Lambda)) \\
\cong L^{\infty}(X) \bar{\otimes} N \\
\alpha(x, s)\alpha(s^{-1}x, t) = \alpha(x, st) & \alpha_{s}(x) = \alpha_{st}
\end{array}$$

$$\Gamma \curvearrowright X$$

$$\alpha \colon X \times \Gamma \to \Lambda$$

$$\alpha(x,s)\alpha(s^{-1}x,t)=\alpha(x,st)$$

$$\sigma: \Gamma \curvearrowright L^{\infty}(X)$$

$$\alpha: \Gamma \to L^{\infty}(X, \text{vN}(\Lambda))$$

$$\cong L^{\infty}(X) \bar{\otimes} N$$

$$\alpha_{s}(x) = \alpha(x, s)$$

$$\alpha_{s} \sigma_{s}(\alpha_{t}) = \alpha_{st}$$

$$\Gamma \curvearrowright X$$

$$\alpha \colon X \times \Gamma \to \Lambda$$

$$\alpha(x, s)\alpha(s^{-1}x, t) = \alpha(x, st)$$

$$\sigma \colon \Gamma \curvearrowright L^{\infty}(X)$$

$$\alpha \colon \Gamma \to L^{\infty}(X, \text{vN}(\Lambda))$$

$$\cong L^{\infty}(X) \bar{\otimes} N$$

$$\alpha_{s}(X) = \alpha(x, s)$$

$$\alpha_{s} \sigma_{s}(\alpha_{t}) = \alpha_{st}$$

$$\begin{array}{ccc}
\Gamma \curvearrowright X & \sigma \colon \Gamma \curvearrowright L^{\infty}(X) \\
\alpha \colon \Gamma \to L^{\infty}(X, \mathrm{vN}(\Lambda)) \\
\cong L^{\infty}(X) \bar{\otimes} N \\
\alpha(x, s)\alpha(s^{-1}x, t) = \alpha(x, st) & \alpha_{s}(x) = \alpha_{st}
\end{array}$$

$$\Gamma \curvearrowright X$$

$$\alpha \colon \Gamma \curvearrowright L^{\infty}(X)$$

$$\alpha \colon \Gamma \to L^{\infty}(X, vN(\Lambda))$$

$$\cong L^{\infty}(X) \bar{\otimes} N$$

$$\alpha(x,s)\alpha(s^{-1}x,t) = \alpha(x,st)$$

$$\alpha_{s}(x) = \alpha(x,s)$$

$$\alpha_{s}(x) = \alpha(x,s)$$

$$\alpha_{s}(\alpha_{t}) = \alpha_{st}$$
Since $\sigma_{s}(f) = u_{s} f u_{s}^{*} \text{ in } vN(X \rtimes \Gamma),$

$$\Gamma \ni s \mapsto \alpha_{s} u_{s} \in vN(X \rtimes \Gamma) \bar{\otimes} N$$

is a group homomorphism which extends to an inclusion

$$\Theta \colon \mathrm{vN}(\Gamma) \hookrightarrow \mathrm{vN}(X \rtimes \Gamma) \mathbin{\bar{\otimes}} N.$$

Definition

An ergodic action $\Gamma \curvearrowright X$ is profinite if $X = \varprojlim \Gamma/\Gamma_n$ for some finite index subgroups $\Gamma \ge \Gamma_1 \ge \Gamma_2 \ge \cdots$; or equivalently $\exists A_1 \subset A_2 \subset \cdots \subset L^{\infty}(X)$ finite-dimensional Γ -invariant vN subalgebras with dense union. $(A_n = \ell_{\infty}(\Gamma/\Gamma_n).)$

Definition

An ergodic action $\Gamma \curvearrowright X$ is profinite if $X = \varprojlim \Gamma/\Gamma_n$ for some finite index subgroups $\Gamma \ge \Gamma_1 \ge \Gamma_2 \ge \cdots$; or equivalently $\exists A_1 \subset A_2 \subset \cdots \subset L^{\infty}(X)$ finite-dimensional Γ -invariant vN subalgebras with dense union. $(A_n = \ell_{\infty}(\Gamma/\Gamma_n).)$

$$\mathrm{vN}(X \rtimes \Gamma) = \left(\bigcup \mathrm{vN}((\Gamma/\Gamma_n) \rtimes \Gamma) \right)'' \cong \left(\bigcup \mathbb{M}_{[\Gamma:\Gamma_n]}(\mathrm{vN}(\Gamma_n)) \right)''.$$

Definition

An ergodic action $\Gamma \curvearrowright X$ is profinite if $X = \varprojlim \Gamma/\Gamma_n$ for some finite index subgroups $\Gamma \ge \Gamma_1 \ge \Gamma_2 \ge \cdots$; or equivalently $\exists A_1 \subset A_2 \subset \cdots \subset L^{\infty}(X)$ finite-dimensional Γ -invariant vN subalgebras with dense union. $(A_n = \ell_{\infty}(\Gamma/\Gamma_n).)$

$$\mathrm{vN}(X \rtimes \Gamma) = \left(\bigcup \mathrm{vN}((\Gamma/\Gamma_n) \rtimes \Gamma) \right)'' \cong \left(\bigcup \mathbb{M}_{[\Gamma:\Gamma_n]}(\mathrm{vN}(\Gamma_n)) \right)''.$$

What's behind loana's Cocycle Superrigidity

Definition

An ergodic action $\Gamma \curvearrowright X$ is profinite if $X = \varprojlim \Gamma/\Gamma_n$ for some finite index subgroups $\Gamma \ge \Gamma_1 \ge \Gamma_2 \ge \cdots$; or equivalently $\exists A_1 \subset A_2 \subset \cdots \subset L^{\infty}(X)$ finite-dimensional Γ -invariant vN subalgebras with dense union. $(A_n = \ell_{\infty}(\Gamma/\Gamma_n).)$

$$\mathrm{vN}(X \rtimes \Gamma) = \left(\bigcup \mathrm{vN}((\Gamma/\Gamma_n) \rtimes \Gamma) \right)'' \cong \left(\bigcup \mathbb{M}_{[\Gamma:\Gamma_n]}(\mathrm{vN}(\Gamma_n)) \right)''.$$

What's behind loana's Cocycle Superrigidity

$$\Theta \colon \mathrm{vN}(\Gamma) \hookrightarrow \mathrm{vN}(X \rtimes \Gamma) \mathbin{\bar{\otimes}} N = \Big(\bigcup \big(\mathrm{vN}((\Gamma/\Gamma_n) \rtimes \Gamma) \mathbin{\bar{\otimes}} N \big) \Big)''$$

Definition

An ergodic action $\Gamma \curvearrowright X$ is profinite if $X = \varprojlim \Gamma/\Gamma_n$ for some finite index subgroups $\Gamma \ge \Gamma_1 \ge \Gamma_2 \ge \cdots$; or equivalently $\exists A_1 \subset A_2 \subset \cdots \subset L^\infty(X)$ finite-dimensional Γ -invariant vN subalgebras with dense union. $(A_n = \ell_\infty(\Gamma/\Gamma_n).)$

$$\mathrm{vN}(X \rtimes \Gamma) = \left(\bigcup \mathrm{vN}((\Gamma/\Gamma_n) \rtimes \Gamma) \right)'' \cong \left(\bigcup \mathbb{M}_{[\Gamma:\Gamma_n]}(\mathrm{vN}(\Gamma_n)) \right)''.$$

What's behind loana's Cocycle Superrigidity

Complete Metric Approximation Property

Definition

A group Γ has the CMAP if $\exists f_n$ such that

- $f_n \colon \Gamma \to \mathbb{C}$ finitely supported,
- $f_n \rightarrow 1$ pointwise,
- $||m_{f_n}||_{cb} \leq 1$.

Here the Herz-Schur multiplier $m_f : \mathrm{vN}(\Gamma) \to \mathrm{vN}(\Gamma)$ is defined by $m_f(\sum_s \alpha_s \ u_s) = \sum_s \alpha_s f(s) \ u_s.$

Complete Metric Approximation Property

Definition

A group Γ has the CMAP if $\exists f_n$ such that

- $f_n \colon \Gamma \to \mathbb{C}$ finitely supported,
- $f_n \rightarrow 1$ pointwise,
- $||m_{f_n}||_{cb} \leq 1$.

Here the Herz-Schur multiplier $m_f : \mathrm{vN}(\Gamma) \to \mathrm{vN}(\Gamma)$ is defined by $m_f(\sum_s \alpha_s \ u_s) = \sum_s \alpha_s f(s) \ u_s$.

Theorem (De Cannière-Haagerup 1985, Cowling-Haagerup 1989)

Besides amenable groups, free groups \mathbb{F}_r have the CMAP, and so are discrete subgroups of SO(n, 1) and SU(n, 1).

Theorem **A** (Oz-Popa)

Suppose Γ CMAP and \exists $\Lambda \triangleleft \Gamma$ infinite normal amenable subgroup. Then, \exists a Λ -invariant mean on $\ell_{\infty}(\Lambda)$, which is $\operatorname{Ad}(\Gamma)$ -invariant. In particular, Γ is inner-amenable.

Proof (Assuming Λ is abelian).

Recall $\operatorname{vN}(\Lambda) \cong L^\infty(\widehat{\Lambda})$ via the Fourier transform $\ell_2(\Lambda) \cong L^2(\widehat{\Lambda})$. Let $\tau_0 \colon C(\widehat{\Lambda}) \to \mathbb{C}$ be the evaluation at the trivial character 1. $f \colon \Lambda \to \mathbb{C}$ fin. supp. $\Rightarrow \tau_0 \circ m_f \cong \widehat{f} \in L^1(\widehat{\Lambda})$ and $\|\widehat{f}\|_1 = \|m_f\|_{\operatorname{cb}}$. Take (f_n) as in Definition. Then $\forall s = \|m_{f_n} - m_{f_n} \circ \operatorname{Ad}_s\|_{\operatorname{cb}} \to 0$. Hence, if $\ell_2(\Lambda) \ni \xi_n \stackrel{\operatorname{Fourier}}{\longleftrightarrow} |\widehat{f_n|_\Lambda}|^{1/2} \in L^2(\widehat{\Lambda})$, then $|\xi|^2 \in \ell_1(\Lambda)$ is approximately Λ -invariant and approximately $\operatorname{Ad}(\Gamma)$ -invariant.

Theorem **A** (Oz-Popa)

Suppose Γ CMAP and \exists $\Lambda \triangleleft \Gamma$ infinite normal amenable subgroup. Then, \exists a Λ -invariant mean on $\ell_{\infty}(\Lambda)$, which is $\operatorname{Ad}(\Gamma)$ -invariant. In particular, Γ is inner-amenable.

Proof (Assuming Λ is abelian).

Recall $\operatorname{vN}(\Lambda) \cong L^\infty(\widehat{\Lambda})$ via the Fourier transform $\ell_2(\Lambda) \cong L^2(\widehat{\Lambda})$. Let $\tau_0 : C(\widehat{\Lambda}) \to \mathbb{C}$ be the evaluation at the trivial character 1. $f : \Lambda \to \mathbb{C}$ fin. supp. $\Rightarrow \tau_0 \circ m_f \cong \widehat{f} \in L^1(\widehat{\Lambda})$ and $\|\widehat{f}\|_1 = \|m_f\|_{\operatorname{cb}}$. Take (f_n) as in Definition. Then $\forall s = \|m_{f_n} - m_{f_n} \circ \operatorname{Ad}_s\|_{\operatorname{cb}} \to 0$. Hence, if $\ell_2(\Lambda) \ni \xi_n \xrightarrow{\operatorname{Fourier}} |\widehat{f_n|_\Lambda}|^{1/2} \in L^2(\widehat{\Lambda})$, then $|\xi|^2 \in \ell_1(\Lambda)$ is approximately Λ -invariant and approximately $\operatorname{Ad}(\Gamma)$ -invariant.

Theorem A (Oz-Popa)

Suppose Γ CMAP and \exists $\Lambda \triangleleft \Gamma$ infinite normal amenable subgroup. Then, \exists a Λ -invariant mean on $\ell_{\infty}(\Lambda)$, which is $\operatorname{Ad}(\Gamma)$ -invariant. In particular, Γ is inner-amenable.

Proof (Assuming Λ is abelian).

Recall $\operatorname{vN}(\Lambda) \cong L^\infty(\widehat{\Lambda})$ via the Fourier transform $\ell_2(\Lambda) \cong L^2(\widehat{\Lambda})$. Let $\tau_0 \colon C(\widehat{\Lambda}) \to \mathbb{C}$ be the evaluation at the trivial character 1. $f \colon \Lambda \to \mathbb{C}$ fin. supp. $\Rightarrow \tau_0 \circ m_f \cong \widehat{f} \in L^1(\widehat{\Lambda})$ and $\|\widehat{f}\|_1 = \|m_f\|_{\operatorname{cb}}$. Take (f_n) as in Definition. Then $\forall s = \|m_{f_n} - m_{f_n} \circ \operatorname{Ad}_s\|_{\operatorname{cb}} \to 0$. Hence, if $\ell_2(\Lambda) \ni \xi_n \stackrel{\text{Fourier}}{\longleftarrow} |\widehat{f_n}_{\Lambda}|^{1/2} \in L^2(\widehat{\Lambda})$, then $|\xi|^2 \in \ell_1(\Lambda)$ is approximately Λ -invariant and approximately $\operatorname{Ad}(\Gamma)$ -invariant.

Theorem A (Oz-Popa)

Suppose Γ CMAP and \exists $\Lambda \triangleleft \Gamma$ infinite normal amenable subgroup. Then, \exists a Λ -invariant mean on $\ell_{\infty}(\Lambda)$, which is $\operatorname{Ad}(\Gamma)$ -invariant. In particular, Γ is inner-amenable.

Proof (Assuming Λ is abelian).

Recall $\operatorname{vN}(\Lambda) \cong L^\infty(\widehat{\Lambda})$ via the Fourier transform $\ell_2(\Lambda) \cong L^2(\widehat{\Lambda})$. Let $\tau_0 \colon C(\widehat{\Lambda}) \to \mathbb{C}$ be the evaluation at the trivial character 1. $f \colon \Lambda \to \mathbb{C}$ fin. supp. $\Rightarrow \tau_0 \circ m_f \cong \widehat{f} \in L^1(\widehat{\Lambda})$ and $\|\widehat{f}\|_1 = \|m_f\|_{\operatorname{cb}}$. Take (f_n) as in Definition. Then $\forall s = \|m_{f_n} - m_{f_n} \circ \operatorname{Ad}_s\|_{\operatorname{cb}} \to 0$. Hence, if $\ell_2(\Lambda) \ni \xi_n \stackrel{\text{Fourier}}{\longleftrightarrow} |\widehat{f_n|_\Lambda}|^{1/2} \in L^2(\widehat{\Lambda})$, then $|\xi|^2 \in \ell_1(\Lambda)$ is approximately Λ -invariant and approximately $\operatorname{Ad}(\Gamma)$ -invariant.

Theorem A (Oz-Popa)

Suppose Γ CMAP and \exists $\Lambda \triangleleft \Gamma$ infinite normal amenable subgroup. Then, \exists a Λ -invariant mean on $\ell_{\infty}(\Lambda)$, which is $\operatorname{Ad}(\Gamma)$ -invariant. In particular, Γ is inner-amenable.

Proof (Assuming Λ is abelian).

Recall $\operatorname{vN}(\Lambda) \cong L^\infty(\widehat{\Lambda})$ via the Fourier transform $\ell_2(\Lambda) \cong L^2(\widehat{\Lambda})$. Let $\tau_0 \colon C(\widehat{\Lambda}) \to \mathbb{C}$ be the evaluation at the trivial character 1. $f \colon \Lambda \to \mathbb{C}$ fin. supp. $\Rightarrow \tau_0 \circ m_f \cong \widehat{f} \in L^1(\widehat{\Lambda})$ and $\|\widehat{f}\|_1 = \|m_f\|_{\operatorname{cb}}$. Take (f_n) as in Definition. Then $\forall s \quad \|m_{f_n} - m_{f_n} \circ \operatorname{Ad}_s\|_{\operatorname{cb}} \to 0$. Hence, if $\ell_2(\Lambda) \ni \xi_n \stackrel{\text{Fourier}}{\longleftarrow} |\widehat{f_n|_\Lambda}|^{1/2} \in L^2(\widehat{\Lambda})$, then $|\xi|^2 \in \ell_1(\Lambda)$ is approximately Λ -invariant and approximately $\operatorname{Ad}(\Gamma)$ -invariant.

Theorem \mathbf{A} (Oz-Popa)

Suppose Γ CMAP and \exists $\Lambda \triangleleft \Gamma$ infinite normal amenable subgroup. Then, \exists a Λ -invariant mean on $\ell_{\infty}(\Lambda)$, which is $\operatorname{Ad}(\Gamma)$ -invariant. In particular, Γ is inner-amenable.

Proof (Assuming Λ is abelian).

Recall $\operatorname{vN}(\Lambda) \cong L^\infty(\widehat{\Lambda})$ via the Fourier transform $\ell_2(\Lambda) \cong L^2(\widehat{\Lambda})$. Let $\tau_0 \colon C(\widehat{\Lambda}) \to \mathbb{C}$ be the evaluation at the trivial character 1. $f \colon \Lambda \to \mathbb{C}$ fin. supp. $\Rightarrow \tau_0 \circ m_f \cong \widehat{f} \in L^1(\widehat{\Lambda})$ and $\|\widehat{f}\|_1 = \|m_f\|_{\operatorname{cb}}$. Take (f_n) as in Definition. Then $\forall s = \|m_{f_n} - m_{f_n} \circ \operatorname{Ad}_s\|_{\operatorname{cb}} \to 0$. Hence, if $\ell_2(\Lambda) \ni \xi_n \stackrel{\text{Fourier}}{\longleftrightarrow} |\widehat{f_n|_\Lambda}|^{1/2} \in L^2(\widehat{\Lambda})$, then $|\xi|^2 \in \ell_1(\Lambda)$ is approximately Λ -invariant and approximately $\operatorname{Ad}(\Gamma)$ -invariant.

Theorem \mathbf{A} (Oz-Popa)

Suppose Γ CMAP and \exists $\Lambda \triangleleft \Gamma$ infinite normal amenable subgroup. Then, \exists a Λ -invariant mean on $\ell_{\infty}(\Lambda)$, which is $\operatorname{Ad}(\Gamma)$ -invariant. In particular, Γ is inner-amenable.

Proof (Assuming Λ is abelian).

Recall $\mathrm{vN}(\Lambda) \cong L^\infty(\widehat{\Lambda})$ via the Fourier transform $\ell_2(\Lambda) \cong L^2(\widehat{\Lambda})$. Let $\tau_0 : C(\widehat{\Lambda}) \to \mathbb{C}$ be the evaluation at the trivial character 1. $f : \Lambda \to \mathbb{C}$ fin. supp. $\Rightarrow \tau_0 \circ m_f \cong \widehat{f} \in L^1(\widehat{\Lambda})$ and $\|\widehat{f}\|_1 = \|m_f\|_{\mathrm{cb}}$. Take (f_n) as in Definition. Then $\forall s = \|m_{f_n} - m_{f_n} \circ \mathrm{Ad}_s\|_{\mathrm{cb}} \to 0$. Hence, if $\ell_2(\Lambda) \ni \xi_n \overset{\mathrm{Fourier}}{\longleftrightarrow} |\widehat{f_n|_\Lambda}|^{1/2} \in L^2(\widehat{\Lambda})$, then $|\xi|^2 \in \ell_1(\Lambda)$ is approximately Λ -invariant and approximately $\mathrm{Ad}(\Gamma)$ -invariant.

Theorem A (Oz-Popa)

Suppose Γ CMAP and \exists $\Lambda \triangleleft \Gamma$ infinite normal amenable subgroup. Then, \exists a Λ -invariant mean on $\ell_{\infty}(\Lambda)$, which is $\operatorname{Ad}(\Gamma)$ -invariant. In particular, Γ is inner-amenable.

Corollary

The lamplighter group

$$(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{F}_r = (\bigoplus_{\mathbb{F}_r} (\mathbb{Z}/2\mathbb{Z})) \rtimes \mathbb{F}_r$$

does not have the CMAP.

Theorem **A** (Oz-Popa)

Suppose Γ CMAP and \exists $\Lambda \triangleleft \Gamma$ infinite normal amenable subgroup. Then, \exists a Λ -invariant mean on $\ell_{\infty}(\Lambda)$, which is $\operatorname{Ad}(\Gamma)$ -invariant. In particular, Γ is inner-amenable.

Corollary

The lamplighter group

$$(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{F}_r = (\bigoplus_{\mathbb{F}_r} (\mathbb{Z}/2\mathbb{Z})) \rtimes \mathbb{F}_r$$

does not have the CMAP.

Theorem (de Cornulier-Stalder-Valette)

The lamplighter group $(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{F}_r$ has the Haagerup property.

Definition

A finite vN algebra M has the CMAP if $\exists \phi_n$ such that

- $\phi_n \colon M \to M$ finite rank,
- $\phi_n \to \mathrm{id}_M$ pointwise-ultraweak,
- $\|\phi_n\|_{cb} \leq 1$.

Definition

A finite vN algebra M has the CMAP if $\exists \phi_n$ such that

- $\phi_n : M \to M$ finite rank,
- $\phi_n \to \mathrm{id}_M$ pointwise-ultraweak,
- $\|\phi_n\|_{cb} \leq 1$.

Examples

• Γ has CMAP \Leftrightarrow $vN(\Gamma)$ has CMAP (Haagerup)

Definition

A finite vN algebra M has the CMAP if $\exists \phi_n$ such that

- $\phi_n : M \to M$ finite rank,
- $\phi_n \to \mathrm{id}_M$ pointwise-ultraweak,
- $\|\phi_n\|_{cb} \leq 1$.

Examples

- Γ has CMAP \Leftrightarrow $vN(\Gamma)$ has CMAP (Haagerup)
- CMAP inherits to a vN subalgebra (assuming finiteness).

Definition

A finite vN algebra M has the CMAP if $\exists \phi_n$ such that

- $\phi_n : M \to M$ finite rank,
- $\phi_n \to \mathrm{id}_M$ pointwise-ultraweak,
- $\|\phi_n\|_{cb} \leq 1$.

Examples

- Γ has CMAP \Leftrightarrow $vN(\Gamma)$ has CMAP (Haagerup)
- CMAP inherits to a vN subalgebra (assuming finiteness).
- Γ has CMAP and $\Gamma \curvearrowright X$ profinite $\Rightarrow vN(X \rtimes \Gamma)$ has CMAP. (Note: $vN(X \rtimes \Gamma)$ can be non- (Γ) .)

Use
$$\mu: P \otimes \bar{P} \ni \sum a_k \otimes \bar{b}_k \mapsto \tau(\sum a_k b_k^*) \in \mathbb{C}$$
 instead of τ_0 .

Use
$$\mu: P \otimes \bar{P} \ni \sum a_k \otimes \bar{b}_k \mapsto \tau(\sum a_k b_k^*) \in \mathbb{C}$$
 instead of τ_0 .

Theorem A+(Oz-Popa)

Use
$$\mu: P \otimes \bar{P} \ni \sum a_k \otimes \bar{b}_k \mapsto \tau(\sum a_k b_k^*) \in \mathbb{C}$$
 instead of τ_0 .

Theorem A+(Oz-Popa)

•
$$\|\eta_n - (u \otimes \bar{u})\eta_n\|_2 \to 0$$
 for every $u \in \mathcal{U}(P)$;

Use
$$\mu: P \otimes \bar{P} \ni \sum a_k \otimes \bar{b}_k \mapsto \tau(\sum a_k b_k^*) \in \mathbb{C}$$
 instead of τ_0 .

Theorem A+(Oz-Popa)

- $\|\eta_n (u \otimes \overline{u})\eta_n\|_2 \to 0$ for every $u \in \mathcal{U}(P)$;
- $\|\eta_n \operatorname{Ad}(u \otimes \overline{u})\eta_n\|_2 \to 0$ for every $u \in \mathcal{N}(P)$;

Use
$$\mu: P \otimes \bar{P} \ni \sum a_k \otimes \bar{b}_k \mapsto \tau(\sum a_k b_k^*) \in \mathbb{C}$$
 instead of τ_0 .

Theorem A+(Oz-Popa)

- $\|\eta_n (u \otimes \overline{u})\eta_n\|_2 \to 0$ for every $u \in \mathcal{U}(P)$;
- $\|\eta_n \operatorname{Ad}(u \otimes \overline{u})\eta_n\|_2 \to 0$ for every $u \in \mathcal{N}(P)$;
- $\langle (x \otimes 1)\eta_n, \eta_n \rangle = \tau(x) = \langle \eta_n, (1 \otimes \bar{x})\eta_n \rangle$ for every $x \in M$.

Use
$$\mu: P \otimes \bar{P} \ni \sum a_k \otimes \bar{b}_k \mapsto \tau(\sum a_k b_k^*) \in \mathbb{C}$$
 instead of τ_0 .

Theorem A+(Oz-Popa)

- $\|\eta_n (u \otimes \bar{u})\eta_n\|_2 \to 0$ for every $u \in \mathcal{U}(P)$;
- $\|\eta_n \operatorname{Ad}(u \otimes \overline{u})\eta_n\|_2 \to 0$ for every $u \in \mathcal{N}(P)$;
- $\langle (x \otimes 1)\eta_n, \eta_n \rangle = \tau(x) = \langle \eta_n, (1 \otimes \bar{x})\eta_n \rangle$ for every $x \in M$.

Use
$$\mu: P \otimes \bar{P} \ni \sum a_k \otimes \bar{b}_k \mapsto \tau(\sum a_k b_k^*) \in \mathbb{C}$$
 instead of τ_0 .

Theorem A+(Oz-Popa)

Suppose that M has CMAP and P is an amenable vN subalgebra. Then, $\exists \eta_n \in L^2(P \bar{\otimes} \bar{P})_+$ such that

- $\|\eta_n (u \otimes \bar{u})\eta_n\|_2 \to 0$ for every $u \in \mathcal{U}(P)$;
- $\|\eta_n \operatorname{Ad}(u \otimes \overline{u})\eta_n\|_2 \to 0$ for every $u \in \mathcal{N}(P)$;
- $\langle (x \otimes 1)\eta_n, \eta_n \rangle = \tau(x) = \langle \eta_n, (1 \otimes \bar{x})\eta_n \rangle$ for every $x \in M$.

We say $P \subset M$ is weakly compact if the above conclusion holds.

Use $\mu \colon P \otimes \bar{P} \ni \sum a_k \otimes \bar{b}_k \mapsto \tau(\sum a_k b_k^*) \in \mathbb{C}$ instead of τ_0 .

Theorem A+(Oz-Popa)

Suppose that M has CMAP and P is an amenable vN subalgebra. Then, $\exists \eta_n \in L^2(P \bar{\otimes} \bar{P})_+$ such that

- $\|\eta_n (u \otimes \overline{u})\eta_n\|_2 \to 0$ for every $u \in \mathcal{U}(P)$;
- $\|\eta_n \operatorname{Ad}(u \otimes \overline{u})\eta_n\|_2 \to 0$ for every $u \in \mathcal{N}(P)$;
- $\langle (x \otimes 1)\eta_n, \eta_n \rangle = \tau(x) = \langle \eta_n, (1 \otimes \bar{x})\eta_n \rangle$ for every $x \in M$.

We say $P \subset M$ is weakly compact if the above conclusion holds.

If $M = P \rtimes \Gamma$ and $\exists P_1 \subset P_2 \subset \cdots \subset P$ finite-dim. Γ -invariant vN subalgebras with dense union, then $P \subset M$ is weakly compact with $\eta_n = \mu_n^{1/2} \in L^2(P_n \bar{\otimes} \bar{P}_n)_+$.

Theorem \mathbf{B} (Oz-Popa)

Suppose that $M=Q\rtimes \mathbb{F}_r$ and that $P\subset M$ is weakly compact. Then, either one of the following occurs

Theorem \mathbf{B} (Oz-Popa)

Suppose that $M=Q\rtimes \mathbb{F}_r$ and that $P\subset M$ is weakly compact. Then, either one of the following occurs

• a nonzero corner of P is unitarily conjugated into Q;

Theorem \mathbf{B} (Oz-Popa)

Suppose that $M = Q \rtimes \mathbb{F}_r$ and that $P \subset M$ is weakly compact. Then, either one of the following occurs

- a nonzero corner of P is unitarily conjugated into Q;
- $\mathcal{N}(P)''$ is amenable relative to Q.

Theorem \mathbf{B} (Oz-Popa)

Suppose that $M = Q \rtimes \mathbb{F}_r$ and that $P \subset M$ is weakly compact. Then, either one of the following occurs

- a nonzero corner of P is unitarily conjugated into Q;
- $\mathcal{N}(P)''$ is amenable relative to Q.

Theorem \mathbf{B} (Oz-Popa)

Suppose that $M = Q \rtimes \mathbb{F}_r$ and that $P \subset M$ is weakly compact. Then, either one of the following occurs

- a nonzero corner of P is unitarily conjugated into Q;
- $\mathcal{N}(P)''$ is amenable relative to Q.

Corollary

Theorem \mathbf{B} (Oz-Popa)

Suppose that $M = Q \rtimes \mathbb{F}_r$ and that $P \subset M$ is weakly compact. Then, either one of the following occurs

- a nonzero corner of P is unitarily conjugated into Q;
- $\mathcal{N}(P)''$ is amenable relative to Q.

Corollary

• $P \subset vN(\mathbb{F}_r)$ diffuse amenable $\Rightarrow \mathcal{N}(P)''$ amenable.

Theorem \mathbf{B} (Oz-Popa)

Suppose that $M = Q \rtimes \mathbb{F}_r$ and that $P \subset M$ is weakly compact. Then, either one of the following occurs

- a nonzero corner of P is unitarily conjugated into Q;
- $\mathcal{N}(P)''$ is amenable relative to Q.

Corollary

- $P \subset vN(\mathbb{F}_r)$ diffuse amenable $\Rightarrow \mathcal{N}(P)''$ amenable.
- Q $CMAP \Rightarrow Q \otimes vN(\mathbb{F}_r)$ has no Cartan subalgebra.

Theorem \mathbf{B} (Oz-Popa)

Suppose that $M = Q \rtimes \mathbb{F}_r$ and that $P \subset M$ is weakly compact. Then, either one of the following occurs

- a nonzero corner of P is unitarily conjugated into Q;
- $\mathcal{N}(P)''$ is amenable relative to Q.

Corollary

- $P \subset \mathrm{vN}(\mathbb{F}_r)$ diffuse amenable $\Rightarrow \mathcal{N}(P)''$ amenable.
- Q CMAP $\Rightarrow Q \otimes vN(\mathbb{F}_r)$ has no Cartan subalgebra.
- $\mathbb{F}_r \curvearrowright X$ profinite $\Rightarrow \begin{array}{c} L^{\infty}(X) \subset \mathrm{vN}(X \rtimes \mathbb{F}_r) \text{ is the unique} \\ \text{Cartan subalgebra.} \end{array}$

Let $a_1, \ldots, a_r \in M = \mathrm{vN}(\mathbb{F}_r)$ be the standard unitary generators, and $M_1 = \langle b_1, \ldots, b_r \rangle$ be a copy of $\mathrm{vN}(\mathbb{F}_r)$. For $t \in \mathbb{R}$, define a *-homomorphism $\alpha_t \colon M \to M * M_1$ by

$$\alpha_t(a_k) = a_k \exp(t \log b_k).$$

Observe that $E_M \circ \alpha_t$ is the Haagerup multiplier on M associated with $\mathbb{F}_r \ni s \mapsto \gamma_t^{|s|} \in \mathbb{R}$, where $\gamma_t = \tau(\exp(t \log b_k)) = \frac{\sin(\pi t)}{\pi t}$. For a given finite subset $\mathfrak{F} \subset \mathcal{N}(P)$, choose t > 0 small enough so that $\alpha = \alpha_t$ satisfies $\alpha(u) \approx u$ for all $u \in \mathfrak{F}$. Since $\eta_n \in L^2(P \bar{\otimes} \bar{P})$ are "almost concentrated on the diagonal," $((E_M^\perp \circ \alpha) \otimes 1)\eta_n$ is a non-null sequence, almost $\operatorname{Ad}(\mathfrak{F})$ -invariant. But $L^2(M * M_1) \ominus L^2(M) \cong \bigoplus L^2(M) \bar{\otimes} L^2(M)$ as an M-bimodule, this implies amenability of $\mathcal{N}(P)''$.

Let $a_1, \ldots, a_r \in M = \mathrm{vN}(\mathbb{F}_r)$ be the standard unitary generators, and $M_1 = \langle b_1, \ldots, b_r \rangle$ be a copy of $\mathrm{vN}(\mathbb{F}_r)$.

For $t \in \mathbb{R}$, define a *-homomorphism $lpha_t \colon M o M * M_1$ by

$$\alpha_t(a_k) = a_k \exp(t \log b_k).$$

Observe that $E_M \circ \alpha_t$ is the Haagerup multiplier on M associated with $\mathbb{F}_r \ni s \mapsto \gamma_t^{|s|} \in \mathbb{R}$, where $\gamma_t = \tau(\exp(t \log b_k)) = \frac{\sin(\pi t)}{\pi t}$. For a given finite subset $\mathfrak{F} \subset \mathcal{N}(P)$, choose t > 0 small enough so that $\alpha = \alpha_t$ satisfies $\alpha(u) \approx u$ for all $u \in \mathfrak{F}$. Since $\eta_n \in L^2(P \bar{\otimes} \bar{P})$ are "almost concentrated on the diagonal," $((E_M^\perp \circ \alpha) \otimes 1)\eta_n$ is a non-null sequence, almost $\operatorname{Ad}(\mathfrak{F})$ -invariant. But $L^2(M * M_1) \ominus L^2(M) \cong \bigoplus L^2(M) \bar{\otimes} L^2(M)$ as an M-bimodule, this implies amenability of $\mathcal{N}(P)''$.

Let $a_1, \ldots, a_r \in M = vN(\mathbb{F}_r)$ be the standard unitary generators, and $M_1 = \langle b_1, \ldots, b_r \rangle$ be a copy of $vN(\mathbb{F}_r)$. For $t \in \mathbb{R}$, define a *-homomorphism $\alpha_t : M \to M * M_1$ by

$$\alpha_t(a_k) = a_k \exp(t \log b_k).$$

Observe that $E_M \circ \alpha_t$ is the Haagerup multiplier on M associated

with $\mathbb{F}_r \ni s \mapsto \gamma_t^{|s|} \in \mathbb{R}$, where $\gamma_t = \tau(\exp(t \log b_k)) = \frac{\sin(\pi t)}{\pi t}$. For a given finite subset $\mathfrak{F} \subset \mathcal{N}(P)$, choose t > 0 small enough so that $\alpha = \alpha_t$ satisfies $\alpha(u) \approx u$ for all $u \in \mathfrak{F}$. Since $\eta_n \in L^2(P \otimes \bar{P})$ are "almost concentrated on the diagonal," $((E_M^{\perp} \circ \alpha) \otimes 1)\eta_n$ is a non-null sequence, almost $Ad(\mathfrak{F})$ -invariant. But $L^2(M*M_1) \ominus L^2(M) \cong \bigoplus L^2(M) \bar{\otimes} L^2(M)$ as an M-bimodule, this implies amenability of $\mathcal{N}(P)''$.

Let $a_1, \ldots, a_r \in M = vN(\mathbb{F}_r)$ be the standard unitary generators, and $M_1 = \langle b_1, \ldots, b_r \rangle$ be a copy of $vN(\mathbb{F}_r)$. For $t \in \mathbb{R}$, define a *-homomorphism $\alpha_t : M \to M * M_1$ by

$$\alpha_t(a_k) = a_k \exp(t \log b_k).$$

Observe that $E_M \circ \alpha_t$ is the Haagerup multiplier on M associated with $\mathbb{F}_r \ni s \mapsto \gamma_t^{|s|} \in \mathbb{R}$, where $\gamma_t = \tau(\exp(t \log b_k)) = \frac{\sin(\pi t)}{\pi t}$. For a given finite subset $\mathfrak{F} \subset \mathcal{N}(P)$, choose t > 0 small enough so that $\alpha = \alpha_t$ satisfies $\alpha(u) \approx u$ for all $u \in \mathfrak{F}$. Since $\eta_n \in L^2(P \otimes \bar{P})$ are "almost concentrated on the diagonal," $((E_M^{\perp} \circ \alpha) \otimes 1)\eta_n$ is a non-null sequence, almost $Ad(\mathfrak{F})$ -invariant. But $L^2(M*M_1) \oplus L^2(M) \cong \bigoplus L^2(M) \bar{\otimes} L^2(M)$ as an M-bimodule, this implies amenability of $\mathcal{N}(P)''$.

Let $a_1, \ldots, a_r \in M = \mathrm{vN}(\mathbb{F}_r)$ be the standard unitary generators, and $M_1 = \langle b_1, \ldots, b_r \rangle$ be a copy of $\mathrm{vN}(\mathbb{F}_r)$. For $t \in \mathbb{R}$, define a *-homomorphism $\alpha_t \colon M \to M * M_1$ by

$$\alpha_t(a_k) = a_k \exp(t \log b_k).$$

Observe that $E_M \circ \alpha_t$ is the Haagerup multiplier on M associated with $\mathbb{F}_r \ni s \mapsto \gamma_t^{|s|} \in \mathbb{R}$, where $\gamma_t = \tau(\exp(t \log b_k)) = \frac{\sin(\pi t)}{\pi t}$. For a given finite subset $\mathfrak{F} \subset \mathcal{N}(P)$, choose t > 0 small enough so that $\alpha = \alpha_t$ satisfies $\alpha(u) \approx u$ for all $u \in \mathfrak{F}$.

Since $\eta_n \in L^2(P \bar{\otimes} \bar{P})$ are "almost concentrated on the diagonal," $((E_M^{\perp} \circ \alpha) \otimes 1)\eta_n$ is a non-null sequence, almost $\mathrm{Ad}(\mathfrak{F})$ -invariant. But $L^2(M*M_1) \oplus L^2(M) \cong \bigoplus L^2(M) \bar{\otimes} L^2(M)$ as an M-bimodule, this implies amenability of $\mathcal{N}(P)''$.

Let $a_1, \ldots, a_r \in M = \mathrm{vN}(\mathbb{F}_r)$ be the standard unitary generators, and $M_1 = \langle b_1, \ldots, b_r \rangle$ be a copy of $\mathrm{vN}(\mathbb{F}_r)$. For $t \in \mathbb{R}$, define a *-homomorphism $\alpha_t \colon M \to M * M_1$ by

$$\alpha_t(a_k) = a_k \exp(t \log b_k).$$

Observe that $E_M \circ \alpha_t$ is the Haagerup multiplier on M associated with $\mathbb{F}_r \ni s \mapsto \gamma_t^{|s|} \in \mathbb{R}$, where $\gamma_t = \tau(\exp(t \log b_k)) = \frac{\sin(\pi t)}{\pi t}$. For a given finite subset $\mathfrak{F} \subset \mathcal{N}(P)$, choose t > 0 small enough so that $\alpha = \alpha_t$ satisfies $\alpha(u) \approx u$ for all $u \in \mathfrak{F}$. Since $\eta_n \in L^2(P \bar{\otimes} \bar{P})$ are "almost concentrated on the diagonal," $((E_M^\perp \circ \alpha) \otimes 1)\eta_n$ is a non-null sequence, almost $\operatorname{Ad}(\mathfrak{F})$ -invariant. But $L^2(M*M_1) \ominus L^2(M) \cong \bigoplus L^2(M) \bar{\otimes} L^2(M)$ as an M-bimodule, this implies amenability of $\mathcal{N}(P)''$.

Let $a_1, \ldots, a_r \in M = \mathrm{vN}(\mathbb{F}_r)$ be the standard unitary generators, and $M_1 = \langle b_1, \ldots, b_r \rangle$ be a copy of $\mathrm{vN}(\mathbb{F}_r)$. For $t \in \mathbb{R}$, define a *-homomorphism $\alpha_t \colon M \to M * M_1$ by

$$\alpha_t(a_k) = a_k \exp(t \log b_k).$$

Observe that $E_M \circ \alpha_t$ is the Haagerup multiplier on M associated with $\mathbb{F}_r \ni s \mapsto \gamma_t^{|s|} \in \mathbb{R}$, where $\gamma_t = \tau(\exp(t \log b_k)) = \frac{\sin(\pi t)}{\pi t}$. For a given finite subset $\mathfrak{F} \subset \mathcal{N}(P)$, choose t > 0 small enough so that $\alpha = \alpha_t$ satisfies $\alpha(u) \approx u$ for all $u \in \mathfrak{F}$. Since $\eta_n \in L^2(P \bar{\otimes} \bar{P})$ are "almost concentrated on the diagonal," $((E_M^\perp \circ \alpha) \otimes 1)\eta_n$ is a non-null sequence, almost $\operatorname{Ad}(\mathfrak{F})$ -invariant. But $L^2(M * M_1) \ominus L^2(M) \cong \bigoplus L^2(M) \bar{\otimes} L^2(M)$ as an M-bimodule, this implies amenability of $\mathcal{N}(P)''$.

Let $a_1, \ldots, a_r \in M = \mathrm{vN}(\mathbb{F}_r)$ be the standard unitary generators, and $M_1 = \langle b_1, \ldots, b_r \rangle$ be a copy of $\mathrm{vN}(\mathbb{F}_r)$. For $t \in \mathbb{R}$, define a *-homomorphism $\alpha_t \colon M \to M * M_1$ by

$$\alpha_t(a_k) = a_k \exp(t \log b_k).$$

Observe that $E_M \circ \alpha_t$ is the Haagerup multiplier on M associated with $\mathbb{F}_r \ni s \mapsto \gamma_t^{|s|} \in \mathbb{R}$, where $\gamma_t = \tau(\exp(t \log b_k)) = \frac{\sin(\pi t)}{\pi t}$. For a given finite subset $\mathfrak{F} \subset \mathcal{N}(P)$, choose t > 0 small enough so that $\alpha = \alpha_t$ satisfies $\alpha(u) \approx u$ for all $u \in \mathfrak{F}$. Since $\eta_n \in L^2(P \bar{\otimes} \bar{P})$ are "almost concentrated on the diagonal," $((E_M^\perp \circ \alpha) \otimes 1)\eta_n$ is a non-null sequence, almost $\operatorname{Ad}(\mathfrak{F})$ -invariant. But $L^2(M*M_1) \ominus L^2(M) \cong \bigoplus L^2(M) \bar{\otimes} L^2(M)$ as an M-bimodule, this implies amenability of $\mathcal{N}(P)''$.

Thank you to organizers

Thank you to organizers and Fields Institute,

Thank you to organizers and Fields Institute, and wish you all a happy holiday season!

