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r countable discrete group
(X, ) standard probability measure space
'~ (X,u) (ergodic) measure preserving action
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What do we classify?

r countable discrete group
(X, ) standard probability measure space
'~ (X,u) (ergodic) measure preserving action

I~ X is said to be ergodic if
ACXandTA=A= u(A)=0,1.
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What do we classify?

r countable discrete group
(X, ) standard probability measure space
'~ (X,u) (ergodic) measure preserving action

I ~ X is said to be ergodic if
ACXandTA=A= u(A)=0,1.

We only consider either

e (X, pn) = ([0,1], Lebesgue)
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What do we classify?

r countable discrete group
(X, ) standard probability measure space
'~ (X,u) (ergodic) measure preserving action

I ~ X is said to be ergodic if
ACXandTA=A= u(A)=0,1.

We only consider either

e (X, pn) = ([0,1], Lebesgue)

o X = {pt}.
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Outline of the Classification Problem Classification Problem
Production Process
Brief History

What do we classify?

r countable discrete group
(X, ) standard probability measure space
'~ (X,u) (ergodic) measure preserving action

I~ X is said to be ergodic if
ACXandTA=A= u(A)=0,1.
We only consider either
o (X, n) = ([0,1], Lebesgue) and
[~ X is essentially-free i.e. u({x :sx =x})=0Vs e\ {1};
or

o X = {pt}.

Narutaka OZAWA II; factors with at most one Cartan subalgebra
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How do we classify?

r (X, p)
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How do we classify?

——
r vN(I)

To what extent do vN/OE
remember OE/GA/GP? J
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o: T~ L®(X,pn)
F(X,p) pmp e o5(f)(x)=f(s1x)
[os(Fy o= | £
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Group measure space constructions

o: T~ L®(X,pn)
F(X,p) pmp e o5(f)(x)=f(s1x)
[os(Fy o= | £

The unitary element us = 05 ® A\s € B(L?(X) @ £o(I)) satisfies
us f ul = os(f)

for all £ € L(X, 1), identified with f ® 1 € B(L2(X) ® £5(T)).
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Group measure space constructions

o: T~ L®(X,pn)
F(X,p) pmp e o5(f)(x)=f(s1x)
[os(Fy o= | £

The unitary element us = 05 ® A\s € B(L?(X) @ £o(I)) satisfies
us f ul = os(f)

for all f € L>°(X, i), identified with f ® 1 € B(L?(X) ® £»(I)).

We encode the information of I ~ X into a single vN algebra

finite
VN(X 3 T):={) fus: fi € L°(X)}" CB(L*(X) @ Ly(T)).
sel
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Outline of the Classification Problem Classification Problem
Production Process
Brief History

Group measure space constructions

o: T~ L®(X,pn)
F(X,p) pmp e o5(f)(x)=f(s1x)
[os() o= [ £ dp
The unitary element us = 05 @ As € B(L?(X) ® £5(T")) satisfies
us f ul = os(f)

for all f € L>°(X, i), identified with f ® 1 € B(L?(X) ® £»(I)).
We encode the information of I ~ X into a single vN algebra

finite
VN(X 3 T):={) fus: fi € L°(X)}" CB(L*(X) @ Ly(T)).
sel

vN(X % T) is same as the crossed product vN algebra L°(X) x T

Narutaka OZAWA II; factors with at most one Cartan subalgebra
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Group measure space constructions

vN(X % T) is a vN algebra of type II;, with the trace 7 given by
(3 feu) = (X fus(t 0 8). @00 0) = [ fidp.
S S

(It follows 7(xy) = 7(yx).)
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vN(X % T) is a vN algebra of type II;, with the trace 7 given by
(3 feu) = (X fus(t 0 8). @00 0) = [ fidp.
S S

(It follows 7(xy) = 7(yx).)
The subalgebra L>°(X) C vN(X x I') has a special property.
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Group measure space constructions

vN(X x T) is a vN algebra of type IIj, with the trace T given by
(3 feu) = (X fus(t 0 8). @00 0) = [ fidp.
S S

(It follows 7(xy) = 7(yx).)
The subalgebra L>°(X) C vN(X x I') has a special property.

Definition

A von Neumann subalgebra A C M is called a Cartan subalgebra
if it is a maximal abelian subalgebra such that the normalizer

N(A) ={u € M : unitary uvAu* = A}

generates M.

Narutaka OZAWA II; factors with at most one Cartan subalgebra
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Brief History

Orbit Equivalence Relation

Theorem (Singer, Dye, Krieger, Feldman-Moore 1977)

LetT ~ X and A ~ Y be ess-free p.m.p. actions, and
0: (X,p) = (Y,v)
be an isomorphism. Then, the isomorphism
O : L®(Y,v)>f > fobel>®X,pu)
extends to a x-isomorphism
m: VN(Y X A) = vN(X xT)
if and only if 6 preserves the orbit equivalence relation:
O(F'x) = NO(x) for p-a.e. x.
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Lack of rigidity

— —

L>°(X) C vN(X % T)
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Lack of rigidity

[~ (X, 1) L°(X) C vN(X % T) vN(X x T)

Theorem (Hakeda-Tomiyama, Sakai 1967)

vN(X % T) is injective (amenable) < T is amenable.
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Lack of rigidity

Theorem (Hakeda-Tomiyama, Sakai 1967)
vN(X % T) is injective (amenable) < T is amenable.

E.g. Solvable groups and subexponential groups are amenable.
Non-abelian free groups F, are not.
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Lack of rigidity
— —

[~ (X, 1) L>°(X) C vN(X % T)

Theorem (Hakeda-Tomiyama, Sakai 1967)
vN(X % T) is injective (amenable) < T is amenable.

E.g. Solvable groups and subexponential groups are amenable.
Non-abelian free groups F, are not.

Theorem (Connes 1974, Ornstein-Weiss, C-Feldman-W 1981)

Amenable vN and OE are unique modulo center.
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Theorem (Connes 1974, Ornstein-Weiss, C-Feldman-W 1981)

Amenable vN and OE are unique modulo center.
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Lack of rigidity

FA(n) o L9(X) C vN(X xT)

Theorem (Connes 1974, Ornstein-Weiss, C-Feldman-W 1981)

Amenable vN and OE are unique modulo center.

Theorem (Connes-Jones 1982)

OE ===p vN /s not one-to-one,
i.e. 4 a I1y-factor with non-conjugate Cartan subalgebras.
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Lack of rigidity

FA(n) o L9(X) C vN(X xT)

Theorem (Connes 1974, Ornstein-Weiss, C-Feldman-W 1981)

Amenable vN and OE are unique modulo center.

Theorem (Connes-Jones 1982)

OE ===p vN /s not one-to-one,
i.e. 4 a I1y-factor with non-conjugate Cartan subalgebras.

Theorem (Dykema 1993)
vN(l'y x2) =2 vN(IFy) for any infinite amenable groups 'y and I'5.
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Lack of rigidity
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Lack of rigidity

GP vN
r vN(I)

Theorem (Connes 1975)

3 a Il -factor which is not x-isomorphic to its complex conjugate.
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Outline of the Classification Problem Classification Problem
Production Process
Brief History

Lack of rigidity

GP vN
r vN(I)

Theorem (Connes 1975)

3 a Il -factor which is not x-isomorphic to its complex conjugate.

Theorem (Voiculescu 1994)
vN(F,) does not have a Cartan subalgebra.

Narutaka OZAWA II; factors with at most one Cartan subalgebra
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Rigidity

— —

L>°(X) C vN(X % T)
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Rigidity

[~ (X, 1) L°(X) C vN(X % T) ™ UN(X % 1)

Theorem (Furman 1999, (Monod-Shalom,) Popa, Kida, loana)
Some OE fully remembers GA.
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Rigidity

o
| O |
[~ (X, p) L>°(X) C vN(X % T) vN(X % T)

Theorem (Furman 1999, (Monod-Shalom,) Popa, Kida, loana)
Some OE fully remembers GA.

Theorem (Oz-Popa)

Some vN fully remembers OE, i.e., 3 a (non-amenable) 11;-factor
with a unique Cartan subalgebra
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Rigidity

o
| O |
[~ (X, p) L>°(X) C vN(X % T) vN(X % T)

Theorem (Furman 1999, (Monod-Shalom,) Popa, Kida, loana)
Some OE fully remembers GA.

Theorem (Oz-Popa)

Some vN fully remembers OE, i.e., 3 a (non-amenable) 11;-factor
with a unique Cartan subalgebra up to unitary conjugacy.
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Rigidity
ST

[~ (X, 1) L°(X) C vN(X % T) ™ UN(X % 1)

Theorem (Furman 1999, (Monod-Shalom,) Popa, Kida, loana)
Some OE fully remembers GA.

Theorem (Oz-Popa)

Some vN fully remembers OE, i.e., 3 a (non-amenable) 11;-factor
with a unique Cartan subalgebra up to unitary conjugacy.

Note: Popa (2000) proved vN(Z?) C vN(Z2 x SL(2,Z)) is a
unique “Cartan subalgebra with the relative property (T).”
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Open problems
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Open problems

Narutaka OZAWA II; factors with at most one Cartan subalgebra



Outline of the Classification Problem Classification Problem
o A f E Production Process
Brief History

Open problems

— —
[~ (X, p) L°(X) C vN(X xT) vN(X x T
GP Y\
r vN(I)

@ Is there vN which fully remembers GA?
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Open problems

@ Is there vN which fully remembers GA?
@ Is there vN which fully remembers GP?
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Open problems

@ Is there vN which fully remembers GA?
@ Is there vN which fully remembers GP?
o VN(Fz) % VN(F3) ?
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overing GA f E Production Process
Brief History

Open problems

@ Is there vN which fully remembers GA?
@ Is there vN which fully remembers GP?
o VN(Fz) % VN(F3) ?

Note: Popa (2004) proved vN([0,1]" x ') =2 vN(Y x A) implies
(T ~[0,1]") =2 (A ~ Y) provided that A has the property (T).
Further results by Popa and Vaes.

Narutaka OZAWA II; factors with at most one Cartan subalgebra



Recovering GA from OE Cocycle Superrigidity

OE to Cocycle (after Zimmer)

Suppose (T ~ X) o (A~ Y), i.e. 30: X = Y such that

O0(F'x) = Nf(x) for u-a.e. x.

Narutaka OZAWA II; factors with at most one Cartan subalgebra



Recovering GA from OE Cocycle Superrigidity

OE to Cocycle (after Zimmer)

Suppose (T ~ X) o (A~ Y), i.e. 30: X = Y such that
O0(F'x) = Nf(x) for u-a.e. x.
Define a: X x ' = A by

0(x) = a(x,s)0(s 1x).
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Recovering GA from OE Cocycle Superrigidity

OE to Cocycle (after Zimmer)

Suppose (T ~ X) o (A~ Y), i.e. 30: X = Y such that
O0(F'x) = Nf(x) for u-a.e. x.
Define a: X x ' = A by
0(x) = a(x,s)0(s 1x).
Then, « satisfies the cocycle identity:

a(x,s)a(s tx,t) = a(x, st).
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Recovering GA from OE Cocycle Superrigidity

OE to Cocycle (after Zimmer)

Suppose (T ~ X) o (A~ Y), i.e. 30: X = Y such that
O0(F'x) = Nf(x) for u-a.e. x.
Define a: X x ' = A by
0(x) = a(x,s)0(s 1x).
Then, « satisfies the cocycle identity:
a(x,s)a(s tx,t) = a(x, st).

Cocycles o and 3 are equivalent if 3 ¢: X — A such that

Bx,s) = d(x)alx, s)p(s " x) .

Narutaka OZAWA II; factors with at most one Cartan subalgebra
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Recovering GA from OE Cocycle Superrigidity

Cocycle Superrigidity

Theorem (Cocycle Superrigidity)
With some assumption on T ~ X (and not on \), any cocycle
a: T xX—=A

Is equivalent to a cocycle 3 which is independent on x € X.
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Cocycle Superrigidity

Theorem (Cocycle Superrigidity)
With some assumption on T ~ X (and not on \), any cocycle
a: T xX—=A

Is equivalent to a cocycle 3 which is independent on x € X.

Applied to the Zimmer cocycle, one obtains (virtual) conjugacy
('~ X) =2 (A~ Y) via the homomorphism G: T — A.

Narutaka OZAWA II; factors with at most one Cartan subalgebra



Recovering GA from OE Cocycle Superrigidity

Cocycle Superrigidity

Theorem (Cocycle Superrigidity)
With some assumption on T ~ X (and not on \), any cocycle
a: T xX—=A

Is equivalent to a cocycle 3 which is independent on x € X.

Applied to the Zimmer cocycle, one obtains (virtual) conjugacy
('~ X) =2 (A~ Y) via the homomorphism G: T — A.

@ [ higher rank lattice + A simple Lie group (Zimmer)
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Recovering GA from OE Cocycle Superrigidity

Cocycle Superrigidity

Theorem (Cocycle Superrigidity)

With some assumption on T ~ X (and not on \), any cocycle
a: T xX—=A

Is equivalent to a cocycle 3 which is independent on x € X.

Applied to the Zimmer cocycle, one obtains (virtual) conjugacy
('~ X) =2 (A~ Y) via the homomorphism G: T — A.

@ [ higher rank lattice + A simple Lie group (Zimmer)
@ [ Kazhdan (T) / product + I' ~ X malleable (Popa)
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Recovering GA from OE Cocycle Superrigidity

Cocycle Superrigidity

Theorem (Cocycle Superrigidity)
With some assumption on T ~ X (and not on \), any cocycle
a: T xX—=A

Is equivalent to a cocycle 3 which is independent on x € X.

Applied to the Zimmer cocycle, one obtains (virtual) conjugacy
('~ X) =2 (A~ Y) via the homomorphism G: T — A.

o [ higher rank lattice + A simple Lie group (Zimmer)
o [ Kazhdan (T) / product + I' ~ X malleable (Popa)
@ [ Kazhdan (T) 4+ I' ~ X profinite (loana)

Narutaka OZAWA II; factors with at most one Cartan subalgebra



Recovering GA from OE Cocycle Superrigidity

Popa’s formulation

M~ X o: T~ L2(X)
a: [ — L°(X,vN(N))
a: X xIT—=A G 2 [P(X)RQN
as(x) = a(x, s)
a(x, s)a(s71x, t) = a(x, st) as os(ay) = ag
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Popa’s formulation

M~ X o: T~ L2(X)
a: T — L°(X,vN(N))
a: X xIT—=A G 2 [P(X)RQN
as(x) = a(x, s)
a(x, s)a(s71x, t) = a(x, st) asos(ar) = ag
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Recovering GA from OE Cocycle Superrigidity

Popa’s formulation

M~ X o: T~ L2(X)
a: [ — L>(X,vN(A))
a: X xIT—=A G 2 [P(X)RQN
as(x) = a(x, s)
ax,s)a(s71x,t) = a(x, st) asos(ar) = ag
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Recovering GA from OE Cocycle Superrigidity

Popa’s formulation

M~ X o: T~ L2(X)
a: [ — L°(X,vN(N))
a: X xIT—=A G 2 [P(X)RQN
as(x) = a(x, s)
a(x, s)a(s71x, t) = a(x, st) asos(ay) = ag

Since o4(f) = us f u} in VN(X % T),
Fros—asus € WN(X xXT)®N
is a group homomorphism which extends to an inclusion

©: vN(IN) = vN(X xT)&® N.
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Recovering GA from OE Cocycle Superrigidity

Profinite Action

Definition

An ergodic action [ ~ X is profinite if X = I@ /T, for some
finite index subgroups ' > T > > --+;

or equivalently 3A; C Ay C --- C L*°(X) finite-dimensional
[-invariant vN subalgebras with dense union. (A, = ls(I/Th).)
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Recovering GA from OE Cocycle Superrigidity

Profinite Action

Definition

An ergodic action [ ~ X is profinite if X = I@ /T, for some
finite index subgroups ' > T > > --+;

or equivalently 3A; C Ay C --- C L*°(X) finite-dimensional
[-invariant vN subalgebras with dense union. (A, = ls(I/Th).)

VN1 = (UWN(T/T) 2 D) = (UM (0N (T))
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Recovering GA from OE Cocycle Superrigidity

Profinite Action

Definition

An ergodic action [ ~ X is profinite if X = I@ /T, for some
finite index subgroups ' > T > > --+;

or equivalently 3A; C Ay C --- C L*°(X) finite-dimensional
[-invariant vN subalgebras with dense union. (A, = ls(I/Th).)

VN1 = (UWN(T/T) 2 D) = (UM (0N (T))

What's behind loana’s Cocycle Superrigidity
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Recovering GA from OE Cocycle Superrigidity

Profinite Action

Definition

An ergodic action [ ~ X is profinite if X = I@ /T, for some
finite index subgroups ' > T > > --+;

or equivalently 3A; C Ay C --- C L*°(X) finite-dimensional
[-invariant vN subalgebras with dense union. (A, = ls(I/Th).)

VN1 = (UWN(T/T) 2 D) = (UM (0N (T))

What's behind loana’s Cocycle Superrigidity

©: vN(I) < yN(X x 1) & N = (U(VN((r/rn) x T) & N) )"
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Recovering GA from OE Cocycle Superrigidity

Profinite Action

Definition

An ergodic action [ ~ X is profinite if X = I@ /T, for some
finite index subgroups ' > T > > --+;

or equivalently 3A; C Ay C --- C L*°(X) finite-dimensional
[-invariant vN subalgebras with dense union. (A, = ls(I/Th).)

VN1 = (UWN(T/T) 2 D) = (UM (0N (T))

What's behind loana’s Cocycle Superrigidity

"

©: vN(I) < yN(X x 1) & N = (U(VN((r/rn) x T) & N) )
Because of the Kazhdan property (T), for a large n,
©(vN(l)) is almost contained in vN((I'/T,) x )& N.

Narutaka OZAWA II; factors with at most one Cartan subalgebra



CMAP
Weakly profinite action
Recovering OE from vN Main Results

Complete Metric Approximation Property

Definition
A group I has the CMAP if 3 f, such that
@ f,: [ — C finitely supported,

o f, — 1 pointwise,

o [|myflen < 1.

Here the Herz-Schur multiplier mg: vN(I') — vN(I') is defined by
me(D s asus) =y asf(s) us.

Narutaka OZAWA II; factors with at most one Cartan subalgebra



CMAP
Weakly profinite action
Recovering OE from vN Main Results

Complete Metric Approximation Property

Definition

A group I has the CMAP if 3 f, such that
@ f,: [ — C finitely supported,
o f, — 1 pointwise,
o flms, len < 1.

Here the Herz-Schur multiplier mg: vN(I') — vN(I') is defined by
me(D s asus) =y asf(s) us.

Theorem (De Canniere-Haagerup 1985, Cowling-Haagerup 1989)

Besides amenable groups, free groups IF, have the CMAP,
and so are discrete subgroups of SO(n,1) and SU(n, 1).
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Groups with CMAP

Theorem A (Oz-Popa)

Suppose ' CMAP and 3 A« T infinite normal amenable subgroup.
Then, 3 a N-invariant mean on {x,(N\), which is Ad(T)-invariant.
In particular, T is inner-amenable.

Proof (Assuming A is abelian).

'
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Groups with CMAP

Theorem A (Oz-Popa)

Suppose ' CMAP and 3 A« T infinite normal amenable subgroup.
Then, 3 a N-invariant mean on {x,(N\), which is Ad(T)-invariant.
In particular, T is inner-amenable.

Proof (Assuming A is abelian).
Recall vN(A) 22 L(A) via the Fourier transform >(A) 22 L2(A).

'
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Groups with CMAP

Theorem A (Oz-Popa)

Suppose ' CMAP and 3 A« T infinite normal amenable subgroup.
Then, 3 a N-invariant mean on {x,(N\), which is Ad(T)-invariant.
In particular, T is inner-amenable.

Proof (Assuming A is abelian).

Recall vN(A) 2 L(A) via the Fourier transform £2(A) 2 L2(A\).
Let 79: C(A) — C be the evaluation at the trivial character 1.

'
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Groups with CMAP

Theorem A (Oz-Popa)

Suppose ' CMAP and 3 A« T infinite normal amenable subgroup.
Then, 3 a N-invariant mean on {x,(N\), which is Ad(T)-invariant.
In particular, T is inner-amenable.

Proof (Assuming A is abelian).

Recall vN(A) 2 L(A) via the Fourier transform £2(A) 2 L2(A\).
Let 70: C(A) — C be the evaluation at the trivial character 1.
f: N — Cfin. supp. = oo ms = f € LY(A) and ||f|l1 = [|mf|eb-

'
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Groups with CMAP

Theorem A (Oz-Popa)

Suppose ' CMAP and 3 A« T infinite normal amenable subgroup.
Then, 3 a N-invariant mean on {x,(N\), which is Ad(T)-invariant.
In particular, T is inner-amenable.

Proof (Assuming A is abelian).

Recall vN(A) 22 L(A) via the Fourier transform >(A) 22 L2(A).
Let 79: C(K) — C be the evaluation at the trivial character 1.

f: N — C fin. supp. = mo0 my = f € LX(A) and ||f[|x = ||mf]lep.
Take (f,) as in Definition. Then Vs ||mg — mg, o Adg||cp — 0.

n

'
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Groups with CMAP

Theorem A (Oz-Popa)

Suppose ' CMAP and 3 A« T infinite normal amenable subgroup.
Then, 3 a N-invariant mean on {x,(N\), which is Ad(T)-invariant.
In particular, T is inner-amenable.

Proof (Assuming A is abelian).

Recall vN(A) 22 L(A) via the Fourier transform >(A) 22 L2(A).
Let 79: C(K) — C be the evaluation at the trivial character 1.

f: N — C fin. supp. = mpomg = f € Ll( ) and ||f||1 = ||mf||cb-
Take (f,) as in Definition. Then Vs ||mg — mg, o Adg||cp — 0.

Hence, if £(A) 3 &, &5 |f[r[Y? € LZ(K), then [¢]2 € t1(A) is

approximately A-invariant and approximately Ad(I)-invariant.

'
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Groups with CMAP

Theorem A (Oz-Popa)

Suppose ' CMAP and 3 A« T infinite normal amenable subgroup.
Then, 3 a N-invariant mean on {x,(N\), which is Ad(T)-invariant.
In particular, T is inner-amenable.

Proof (Assuming A is abelian).

Recall vN(A) 22 L(A) via the Fourier transform >(A) 22 L2(A).
Let 79: C(K) — C be the evaluation at the trivial character 1.

f: N — C fin. supp. = mpomg = f € Ll( ) and ||f||1 = ||mf||cb-
Take (f,) as in Definition. Then Vs ||mg — mg, o Adg||cp — 0.
Hence, if £(A) 3 &, &5 |f[r[Y? € LZ(K), then [¢]2 € t1(A) is
approximately A-invariant and approximately Ad(I)-invariant. [

'
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Groups with CMAP

Theorem A (Oz-Popa)

Suppose ' CMAP and 3 A« T infinite normal amenable subgroup.
Then, 3 a N-invariant mean on {x,(N\), which is Ad(T)-invariant.
In particular, T is inner-amenable.

The lamplighter group

(Z/2Z)\F, = (@Dy, (Z/2Z)) x F,
does not have the CMAP.
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Groups with CMAP

Theorem A (Oz-Popa)

Suppose ' CMAP and 3 A« T infinite normal amenable subgroup.
Then, 3 a N-invariant mean on {x,(N\), which is Ad(T)-invariant.
In particular, T is inner-amenable.

The lamplighter group
(Z/2Z)\F, = (@Dy, (Z/2Z)) x F,
does not have the CMAP.

Theorem (de Cornulier-Stalder-Valette)
The lamplighter group (7 /2Z)1 F, has the Haagerup property.
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von Neumann algebra with CMAP

Definition
A finite vN algebra M has the CMAP if 3 ¢, such that
@ ¢,: M — M finite rank,

@ ¢, — idys pointwise-ultraweak,
® [|gnller < 1.
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von Neumann algebra with CMAP

Definition
A finite vN algebra M has the CMAP if 3 ¢, such that
@ ¢,: M — M finite rank,

@ ¢, — idys pointwise-ultraweak,
® [|gnller < 1.

o [ has CMAP & vN(I') has CMAP (Haagerup)
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von Neumann algebra with CMAP

Definition
A finite vN algebra M has the CMAP if 3 ¢, such that
@ ¢,: M — M finite rank,

@ ¢, — idys pointwise-ultraweak,
® [|gnller < 1.

o [ has CMAP & vN(I') has CMAP (Haagerup)

@ CMAP inherits to a vN subalgebra (assuming finiteness).
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von Neumann algebra with CMAP

Definition
A finite vN algebra M has the CMAP if 3 ¢, such that
@ ¢,: M — M finite rank,

@ ¢, — idys pointwise-ultraweak,
® [|gnller < 1.

o [ has CMAP & vN(I') has CMAP (Haagerup)
@ CMAP inherits to a vN subalgebra (assuming finiteness).

@ [ has CMAP and I' ~ X profinite = vN(X x I') has CMAP.
(Note: vN(X % I') can be non-(I').)

Narutaka OZAWA II; factors with at most one Cartan subalgebra



CMAP
Weakly profinite action
Recovering OE from vN Main Results

Upgrading Theorem A

Use p: PP >3 ax®bx— (3 axb;) € C instead of 7.
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Upgrading Theorem A

Use p: PP >3 ax®bx— (3 axb;) € C instead of 7.

Theorem A+ (Oz-Popa)

Suppose that M has CMAP and P is an amenable vIN subalgebra.
Then, 3 n, € L>(P & P), such that
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Upgrading Theorem A

Use p: PP >3 ax®bx— (3 axb;) € C instead of 7.

Theorem A+ (Oz-Popa)

Suppose that M has CMAP and P is an amenable vIN subalgebra.
Then, 3 n, € L>(P & P), such that

° |

Nn — (u @ T)npll2 — 0 for every u € U(P);
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Upgrading Theorem A

Use p: PP >3 ax®bx— (3 axb;) € C instead of 7.

Theorem A+ (Oz-Popa)

Suppose that M has CMAP and P is an amenable vIN subalgebra.
Then, 3 n, € L>(P & P), such that

o ||ny — (u®T)nplla — 0 for every u € U(P);
® |7, — Ad(u ® @)nall2 — 0 for every u € N(P);
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Upgrading Theorem A

Use p: PP >3 ax®bx— (3 axb;) € C instead of 7.

Theorem A+ (Oz-Popa)

Suppose that M has CMAP and P is an amenable vIN subalgebra.
Then, 3 n, € L>(P & P), such that

o ||ny — (u®T)nplla — 0 for every u € U(P);
@ |7, — Ad(u ® T)nall2 — 0 for every u € N(P);
@ ((x® 1)nn,mn) = 7(x) = (1, (1 ® X)) for every x € M.
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Upgrading Theorem A

Use p: PP >3 ax®bx— (3 axb;) € C instead of 7.

Theorem A+ (Oz-Popa)

Suppose that M has CMAP and P is an amenable vIN subalgebra.
Then, 3 n, € L>(P & P), such that

o ||ny — (u®T)nplla — 0 for every u € U(P);
@ |7, — Ad(u ® T)nall2 — 0 for every u € N(P);
° ((x ®1)nn,mn) = 7(x) = (M, (1 @ X)) for every x € M.
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Upgrading Theorem A

Use p: PP >3 ax®bx— (3 axb;) € C instead of 7.

Theorem A+ (Oz-Popa)

Suppose that M has CMAP and P is an amenable vIN subalgebra.
Then, 3 n, € L>(P & P), such that

o ||ny — (u®T)nplla — 0 for every u € U(P);
@ |7, — Ad(u ® T)nall2 — 0 for every u € N(P);
° ((x ®1)nn,mn) = 7(x) = (M, (1 @ X)) for every x € M.

We say P C M is weakly compact if the above conclusion holds.
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Upgrading Theorem A

Use p: PP >3 ax®bx— (3 axb;) € C instead of 7.

Theorem A+ (Oz-Popa)

Suppose that M has CMAP and P is an amenable vIN subalgebra.
Then, 3 n, € L>(P & P), such that

o ||ny — (u®T)nplla — 0 for every u € U(P);
o |7, — Ad(u ® @)nall2 — 0 for every u € N(P);
® ((x® 1)nn,mn) = 7(x) = (nn, (1 @ X)np) for every x € M.

We say P C M is weakly compact if the above conclusion holds.

If M=PxTandd Py CPy,C--- C P finite-dim. I-invariant vN
subalgebras with dense union, then P C M is weakly compact with

Nn = ,Uf}r/2 S L2(Pn ® I_Dn)—l—-
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Main Results

Theorem B (Oz-Popa)

Suppose that M = Q x F, and that P C M is weakly compact.
Then, either one of the following occurs
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Main Results

Theorem B (Oz-Popa)

Suppose that M = Q x F, and that P C M is weakly compact.
Then, either one of the following occurs

@ a nonzero corner of P is unitarily conjugated into Q;
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Main Results

Theorem B (Oz-Popa)

Suppose that M = Q x F, and that P C M is weakly compact.
Then, either one of the following occurs

@ a nonzero corner of P is unitarily conjugated into Q;

@ N(P)" is amenable relative to Q.
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Main Results

Theorem B (Oz-Popa)

Suppose that M = Q x F, and that P C M is weakly compact.
Then, either one of the following occurs

@ a nonzero corner of P is unitarily conjugated into Q;
e N(P)" is amenable relative to Q.
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Main Results

Theorem B (Oz-Popa)

Suppose that M = Q x F, and that P C M is weakly compact.
Then, either one of the following occurs

@ a nonzero corner of P is unitarily conjugated into Q;
e N(P)" is amenable relative to Q.
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Main Results

Theorem B (Oz-Popa)

Suppose that M = Q x F, and that P C M is weakly compact.
Then, either one of the following occurs

@ a nonzero corner of P is unitarily conjugated into Q;
e N(P)" is amenable relative to Q.

@ P C vN(F,) diffuse amenable = N(P)" amenable.
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Main Results

Theorem B (Oz-Popa)

Suppose that M = Q x F, and that P C M is weakly compact.
Then, either one of the following occurs

@ a nonzero corner of P is unitarily conjugated into Q;
e N(P)" is amenable relative to Q.

@ P C vN(F,) diffuse amenable = N(P)" amenable.
@ Q CMAP = Q ® vN(F,) has no Cartan subalgebra.
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Main Results

Theorem B (Oz-Popa)

Suppose that M = Q x F, and that P C M is weakly compact.
Then, either one of the following occurs

@ a nonzero corner of P is unitarily conjugated into Q;
e N(P)" is amenable relative to Q.

@ P C vN(F,) diffuse amenable = N(P)" amenable.
@ Q CMAP = Q ® vN(F,) has no Cartan subalgebra.

L>®°(X) C vN(X x F,) is the unique
Cartan subalgebra.

o F, ~ X profinite =
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Proof in the case of P C vN(IF,) diffuse amenable
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Proof in the case of P C vN(IF,) diffuse amenable

Let a1,...,a, € M = vN(F,) be the standard unitary generators,
and M; = (by,...,b,) be a copy of vN(F,).
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Proof in the case of P C vN(IF,) diffuse amenable

Let a1,...,a, € M = vN(F,) be the standard unitary generators,
and M; = (by,...,b,) be a copy of vN(F,).
For t € R, define a x-homomorphism «;: M — M % My by

at(ak) = ak exp(t log by).
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Proof in the case of P C vN(IF,) diffuse amenable

Let a1,...,a, € M = vN(F,) be the standard unitary generators,
and M; = (by,...,b,) be a copy of vN(F,).
For t € R, define a x-homomorphism «;: M — M % My by

at(ak) = ak exp(t log by).

Observe that Ep; o a; is the Haagerup multiplier on M associated
|s sin(t)

with F, 3 s — ;" € R, where v¢ = 7(exp(tlog b)) = 57
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Proof in the case of P C vN(IF,) diffuse amenable

Let a1,...,a, € M = vN(F,) be the standard unitary generators,
and M; = (by,...,b,) be a copy of vN(F,).
For t € R, define a x-homomorphism «;: M — M % My by

at(ak) = ak exp(t log by).

Observe that Epj o a; is the Haagerup multiplier on M gssociated
with F, 3 s — 7|t5| € R, where y; = 7(exp(tlog bx)) = S'nfr—ft)
For a given finite subset § C N (P), choose t > 0 small enough

so that o = « satisfies a(u) =~ u for all v € F.
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Proof in the case of P C vN(IF,) diffuse amenable

Let a1,...,a, € M = vN(F,) be the standard unitary generators,
and M; = (by,...,b,) be a copy of vN(F,).
For t € R, define a x-homomorphism «;: M — M % My by

at(ak) = ak exp(t log by).

Observe that Ep; o a; is the Haagerup multiplier on M associated
with F, 3 s — 7|t5| € R, where y; = 7(exp(tlog bx)) = S'nfr—ft)

For a given finite subset § C N (P), choose t > 0 small enough
so that o = « satisfies a(u) =~ u for all v € F.

Since 1, € L?(P & P) are “almost concentrated on the diagonal,”

((Efy © @) ® 1)n, is a non-null sequence, almost Ad(g)-invariant.
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Proof in the case of P C vN(IF,) diffuse amenable

Let a1,...,a, € M = vN(F,) be the standard unitary generators,
and M; = (by,...,b,) be a copy of vN(F,).
For t € R, define a x-homomorphism «;: M — M % My by

at(ak) = ak exp(t log by).

Observe that Ep; o a; is the Haagerup multiplier on M associated
with F, 3 s — 7|t5| € R, where y; = 7(exp(tlog bx)) = S'nfr—ft)

For a given finite subset § C N (P), choose t > 0 small enough

so that o = « satisfies a(u) =~ u for all v € F.

Since 1, € L?(P & P) are “almost concentrated on the diagonal,”
((Efy © @) ® 1)n, is a non-null sequence, almost Ad(g)-invariant.
But L2(M  My) © L2(M) = @ L2(M) & L>(M) as an M-bimodule,
this implies amenability of N'(P)".
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Proof in the case of P C vN(IF,) diffuse amenable

Let a1,...,a, € M = vN(F,) be the standard unitary generators,
and M; = (by,...,b,) be a copy of vN(F,).
For t € R, define a x-homomorphism «;: M — M % My by

at(ak) = ak exp(t log by).

Observe that Ep; o a; is the Haagerup multiplier on M associated
with F, 3 s — 7|t5| € R, where y; = 7(exp(tlog bx)) = S'nfr—ft)

For a given finite subset § C N (P), choose t > 0 small enough

so that o = « satisfies a(u) =~ u for all v € F.

Since 1, € L?(P & P) are “almost concentrated on the diagonal,”
((Efy © @) ® 1)n, is a non-null sequence, almost Ad(g)-invariant.
But L2(M  My) © L2(M) = @ L2(M) & L>(M) as an M-bimodule,
this implies amenability of N'(P)". O
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Thank you to organizers
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Thank you to organizers
and Fields Institute, and
wish you all a happy holiday season!
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