Representation of Banach algebras as sets of c.b. maps

Timur Oikhberg

December 6, 2007

- Banach operator ideals
- Reflexivity and hyperreflexivity
- 2 Hyperreflexivity w.r.t. Banach ideals
 - Definitions
 - Examples of B-hyperreflexive spaces
- Representations of Banach algebras
 - General results
 - Dual Banach algebras
 - Well-separated spaces
- 4 Examples of "pathological" operator spaces
 - "Good" representations
 - Specific spaces

Suppose ${\mathcal A}$ is a unital Banach algebra.

- Suppose $\pi: \mathcal{A} \to \mathcal{B}(E)$ is a unital representation. Can we
- Does there exist a unital isometric representation

Application: more examples of "pathological" operator spaces.

Suppose ${\mathcal A}$ is a unital Banach algebra.

- Suppose $\pi: \mathcal{A} \to \mathcal{B}(E)$ is a unital representation. Can we equip E with an operator space structure (say X) s.t. $CB(X) = \pi(\mathcal{A}) + \text{small perturbations}$?
- Does there exist a unital isometric representation $\rho: \mathcal{A} \to CB(X)$ s.t. $CB(X) = \rho(\mathcal{A}) + \text{small perturbations}$?

There exist Banach algebras which are not isomorphic to CB(X) (or B(E)) as Banach algebras.

Application: more examples of "pathological" operator spaces.

◆□▶ ◆問▶ ◆豆▶ ◆豆▶ □ 夕Q○

Timur Oikhberg

Suppose $\mathcal A$ is a unital Banach algebra.

- Suppose $\pi: \mathcal{A} \to \mathcal{B}(E)$ is a unital representation. Can we equip E with an operator space structure (say X) s.t. $CB(X) = \pi(\mathcal{A}) + \text{small perturbations}$?
- Does there exist a unital isometric representation $\rho: \mathcal{A} \to CB(X)$ s.t. $CB(X) = \rho(\mathcal{A}) + \text{small perturbations}$?

There exist Banach algebras which are not isomorphic to CB(X) (or B(E)) as Banach algebras.

Application: more examples of "pathological" operator spaces.

Timur Oikhberg

Suppose A is a unital Banach algebra.

- ullet Suppose $\pi:\mathcal{A} o B(E)$ is a unital representation. Can we equip E with an operator space structure (say X) s.t. $CB(X) = \pi(A) + \text{small perturbations}$?
- Does there exist a unital isometric representation $\rho: \mathcal{A} \to CB(X)$ s.t. $CB(X) = \rho(\mathcal{A}) + \text{small perturbations}$?

There exist Banach algebras which are not isomorphic to CB(X)(or B(E)) as Banach algebras.

Application: more examples of "pathological" operator spaces.

Suppose $\mathcal A$ is a unital Banach algebra.

- Suppose $\pi: \mathcal{A} \to \mathcal{B}(E)$ is a unital representation. Can we equip E with an operator space structure (say X) s.t. $CB(X) = \pi(\mathcal{A}) + \text{small perturbations}$?
- Does there exist a unital isometric representation $\rho: \mathcal{A} \to CB(X)$ s.t. $CB(X) = \rho(\mathcal{A}) + \text{small perturbations}$?

There exist Banach algebras which are not isomorphic to CB(X) (or B(E)) as Banach algebras.

Application: more examples of "pathological" operator spaces.

4 D > 4 D > 4 E > 4 E > E 990

Timur Oikhberg

 (\mathfrak{B},β) is a Banach operator ideal if, for Banach spaces X and Y, $\mathfrak{B}(X,Y)\subset B(X,Y)$, $(\mathfrak{B}(X,Y),oldsymbol{eta})$ is a Banach space.

 $i_E: E \rightarrow X$ is an embedding, $q: Y \rightarrow F$ is a quotient map,

 (\mathfrak{B},β) is a Banach operator ideal if, for Banach spaces X and Y, $\mathfrak{B}(X,Y)\subset B(X,Y)$, $(\mathfrak{B}(X,Y),eta)$ is a Banach space. Ideal property: $\beta(BTA) \leq ||A||\beta(T)||B||$ for any $A \in B(X_0, X)$, $B \in B(Y, Y_0)$.

 $i_E: E \rightarrow X$ is an embedding, $q: Y \rightarrow F$ is a quotient map,

 (\mathfrak{B},β) is a Banach operator ideal if, for Banach spaces X and Y, $\mathfrak{B}(X,Y)\subset B(X,Y)$, $(\mathfrak{B}(X,Y),eta)$ is a Banach space. Ideal property: $\beta(BTA) \leq ||A||\beta(T)||B||$ for any $A \in B(X_0, X)$, $B \in B(Y, Y_0)$.

Convention: $\beta(T) = \infty$ if $T \notin \mathfrak{B}$.

 $i_E: E \to X$ is an embedding, $q: Y \to F$ is a quotient map,

 (\mathfrak{B},β) is a Banach operator ideal if, for Banach spaces X and Y, $\mathfrak{B}(X,Y)\subset B(X,Y)$, $(\mathfrak{B}(X,Y),\beta)$ is a Banach space.

Ideal property: $\beta(BTA) \leq ||A||\beta(T)||B||$ for any $A \in B(X_0, X)$, $B \in B(Y, Y_0)$.

Convention: $\beta(T) = \infty$ if $T \notin \mathfrak{B}$.

The ideal $\mathfrak B$ is maximal if, $\forall \ T \in B(X,Y), \ \beta(T) = \sup \beta(BTA)$ $(A \in B(X_0, X), B \in B(Y, Y_0), X_0 \text{ and } Y_0 \text{ are fin. dim.}).$

 $i_E: E \rightarrow X$ is an embedding, $q: Y \rightarrow F$ is a quotient map,

 (\mathfrak{B},β) is a Banach operator ideal if, for Banach spaces X and Y, $\mathfrak{B}(X,Y)\subset B(X,Y)$, $(\mathfrak{B}(X,Y),eta)$ is a Banach space. Ideal property: $\beta(BTA) \leq ||A||\beta(T)||B||$ for any $A \in B(X_0, X)$, $B \in B(Y, Y_0)$. Convention: $\beta(T) = \infty$ if $T \notin \mathfrak{B}$. The ideal $\mathfrak B$ is maximal if, $\forall \ T \in B(X,Y), \ \beta(T) = \sup \beta(BTA)$ $(A \in B(X_0, X), B \in B(Y, Y_0), X_0 \text{ and } Y_0 \text{ are fin. dim.}).$

Equivalently: $\forall T \in B(X, Y), \beta(T) = \sup \beta(qTi_E)$, where $i_E: E \rightarrow X$ is an embedding, $q: Y \rightarrow F$ is a quotient map, $\dim E < \infty$, and $\dim Y/F < \infty$.

$$\left(\sum_{i} \|Tx_{i}\|^{2}\right)^{1/2} \leqslant c \sup_{x^{*} \in E^{*}, \|x^{*}\| \leqslant 1} \left(\sum_{i} |x^{*}(x_{i})|^{2}\right)^{1/2}$$

 $\forall x_1, \dots, x_n \in E. \ \pi_2(T) = \text{the smallest } c \text{ that works.}$

 $\Pi_2(X,Y)$ is the set of all 2-summing operators between X and Y. If H and K are Hilbert spaces, then $\Pi_2(H,K)=\mathcal{S}_2(H,K)$, with equal norms.

Timur Oikhberg

$$\left(\sum_{i} \|Tx_{i}\|^{2}\right)^{1/2} \leqslant c \sup_{x^{*} \in E^{*}, \|x^{*}\| \leqslant 1} \left(\sum_{i} |x^{*}(x_{i})|^{2}\right)^{1/2}$$

 $\forall x_1, \dots, x_n \in E. \ \pi_2(T) = \text{the smallest } c \text{ that works.}$

 $\Pi_2(X,Y)$ is the set of all 2-summing operators between X and Y. If H and K are Hilbert spaces, then $\Pi_2(H,K)=\mathcal{S}_2(H,K)$, with equal norms.

Timur Oikhberg

$$\left(\sum_{i} \|Tx_{i}\|^{2}\right)^{1/2} \leqslant c \sup_{x^{*} \in E^{*}, \|x^{*}\| \leqslant 1} \left(\sum_{i} |x^{*}(x_{i})|^{2}\right)^{1/2}$$

 $\forall x_1, \dots, x_n \in E. \ \pi_2(T) = \text{the smallest } c \text{ that works.}$

 $\Pi_2(X, Y)$ is the set of all 2-summing operators between X and Y.

If H and K are Hilbert spaces, then $\Pi_2(H,K) = S_2(H,K)$, with equal norms.

Timur Oikhberg

$$\left(\sum_{i} \|Tx_{i}\|^{2}\right)^{1/2} \leqslant c \sup_{x^{*} \in E^{*}, \|x^{*}\| \leqslant 1} \left(\sum_{i} |x^{*}(x_{i})|^{2}\right)^{1/2}$$

 $\forall x_1, \dots, x_n \in E. \ \pi_2(T) = \text{the smallest } c \text{ that works.}$

 $\Pi_2(X, Y)$ is the set of all 2-summing operators between X and Y.

If H and K are Hilbert spaces, then $\Pi_2(H,K)=\mathcal{S}_2(H,K)$, with equal norms.

Timur Oikhberg

 $\mathcal{A} \hookrightarrow \mathcal{B}(X,Y)$ is reflexive if, for $T \in \mathcal{B}(X,Y)$: $\{Tx \in \overline{Ax} \text{ for any } x \in X\} \iff \{T \in A\}.$

$$\operatorname{dist}(T, \mathcal{A}) := \inf_{a \in \mathcal{A}} \|T - a\|$$

$$\leqslant C \sup_{x \in X, \|x\| = 1} \operatorname{dist}(Tx, \mathcal{A}x).$$

 $i_E: E \hookrightarrow X$ is an embedding, $q_F: Y \to Y/F$ is a quotient (can

$$\begin{split} \mathcal{A} &\hookrightarrow \mathcal{B}(X,Y) \text{ is reflexive if, for } T \in \mathcal{B}(X,Y) \text{:} \\ \{ \mathit{Tx} \in \overline{\mathcal{A}x} \text{ for any } x \in X \} &\iff \{ \mathit{T} \in \mathcal{A} \}. \\ \mathcal{A} &\hookrightarrow \mathcal{B}(X,Y) \text{ is } \textit{C-hyperreflexive if, for every } \mathit{T} \in \mathcal{B}(X,Y), \\ \operatorname{dist}(\mathit{T},\mathcal{A}) &:= \inf_{a \in \mathcal{A}} \|\mathit{T} - a\| \\ &\leqslant \mathit{C} \sup_{x \in X, \|x\| = 1} \operatorname{dist}(\mathit{Tx}, \mathcal{A}x). \end{split}$$

Equivalently: $\inf_{a \in \mathcal{A}} \|T - a\| \leq C \sup \|q_{\mathcal{A}(E)} Ti_E\|$, where $i_E : E \hookrightarrow X$ is an embedding, $q_F : Y \to Y/F$ is a quotient (can take \sup with $E = \operatorname{span}[x]$).

Examples of hyperreflexive spaces: 1-dim. spaces of operators; fin. dim. reflexive spaces of operators; nest algebras (in B(H)); many von Neumann algebras.

$$\mathcal{A} \hookrightarrow B(X,Y) \text{ is reflexive if, for } T \in B(X,Y) \text{:} \\ \{Tx \in \overline{\mathcal{A}x} \text{ for any } x \in X\} \iff \{T \in \mathcal{A}\}. \\ \mathcal{A} \hookrightarrow B(X,Y) \text{ is } \text{C-hyperreflexive if, for every } T \in B(X,Y), \\ \operatorname{dist}(T,\mathcal{A}) := \inf_{a \in \mathcal{A}} \|T-a\| \\ \leqslant C \sup_{x \in X, \|x\|=1} \operatorname{dist}(Tx,\mathcal{A}x).$$

Equivalently: $\inf_{a \in \mathcal{A}} \|T - a\| \leqslant C \sup \|q_{\mathcal{A}(E)} T i_E\|$, where $i_E : E \hookrightarrow X$ is an embedding, $q_F : Y \to Y/F$ is a quotient (can take sup with $E = \operatorname{span}[x]$).

$$\mathcal{A} \hookrightarrow B(X,Y) \text{ is reflexive if, for } T \in B(X,Y) \text{:} \\ \{Tx \in \overline{\mathcal{A}x} \text{ for any } x \in X\} \Longleftrightarrow \{T \in \mathcal{A}\}. \\ \mathcal{A} \hookrightarrow B(X,Y) \text{ is } \text{C-hyperreflexive if, for every } T \in B(X,Y), \\ \operatorname{dist}(T,\mathcal{A}) := \inf_{a \in \mathcal{A}} \|T-a\| \\ \leqslant C \sup_{x \in X, \|x\|=1} \operatorname{dist}(Tx,\mathcal{A}x).$$

Equivalently: $\inf_{a \in \mathcal{A}} ||T - a|| \leq C \sup ||q_{\mathcal{A}(E)} T_{iE}||$, where $i_E: E \hookrightarrow X$ is an embedding, $q_F: Y \to Y/F$ is a quotient (can take sup with $E = \operatorname{span}[x]$).

Examples of hyperreflexive spaces: 1-dim. spaces of operators; fin. dim. reflexive spaces of operators; nest algebras (in B(H)); many von Neumann algebras.

Suppose $\mathfrak B$ is a a maximal Banach ideal, $\mathcal A \hookrightarrow \mathcal B(X,Y)$, $T \in B(X, Y)$. Define

$$d_{\mathcal{A},\mathfrak{B}}(T) := \sup \beta(uTv)$$

sup taken over all (fin. dim.) $E \hookrightarrow X$.

$$A \hookrightarrow B(X, Y)$$
 is $C - \mathfrak{B}$ -hyperreflexive if, $\forall T \in B(X, Y)$,

$$\operatorname{dist}_{\mathfrak{B}}(T,\mathcal{A}) := \inf_{a \in \mathcal{A}} \beta(T-a) \leqslant Cd_{\mathcal{A},\mathfrak{B}}(T)$$

Suppose $\mathfrak B$ is a a maximal Banach ideal, $\mathcal A \hookrightarrow \mathcal B(X,Y)$, $T \in B(X, Y)$. Define

$$d_{\mathcal{A},\mathfrak{B}}(T) := \sup \beta(uTv),$$

with sup is taken over all fin. rank contractions u, v with

uAv = 0. In other words, $d_{A,B}(T) = \sup \beta(q_{A(E)}Ti_E)$, with the sup taken over all (fin. dim.) $E \hookrightarrow X$.

$$A \hookrightarrow B(X, Y)$$
 is $C - \mathfrak{B}$ -hyperreflexive if, $\forall T \in B(X, Y)$,

$$\operatorname{dist}_{\mathfrak{B}}(T,\mathcal{A}) := \inf_{a \in \mathcal{A}} \beta(T-a) \leqslant \operatorname{Cd}_{\mathcal{A},\mathfrak{B}}(T)$$

Suppose $\mathfrak B$ is a a maximal Banach ideal, $\mathcal A \hookrightarrow \mathcal B(X,Y)$, $T \in B(X, Y)$. Define

$$d_{\mathcal{A},\mathfrak{B}}(T) := \sup \beta(uTv),$$

with sup is taken over all fin. rank contractions u, v with $u\mathcal{A}v=0$. In other words, $d_{\mathcal{A},\mathfrak{B}}(T)=\sup eta(q_{\mathcal{A}(E)}Ti_E)$, with the sup taken over all (fin. dim.) $E \hookrightarrow X$.

$$\operatorname{dist}_{\mathfrak{B}}(T,\mathcal{A}) := \inf_{a \in \mathcal{A}} \beta(T-a) \leqslant \operatorname{Cd}_{\mathcal{A},\mathfrak{B}}(T)$$

Suppose $\mathfrak B$ is a a maximal Banach ideal, $\mathcal A \hookrightarrow \mathcal B(X,Y)$, $\mathcal T \in \mathcal B(X,Y)$. Define

$$d_{\mathcal{A},\mathfrak{B}}(T) := \sup \beta(uTv),$$

with sup is taken over all fin. rank contractions u, v with $u\mathcal{A}v=0$. In other words, $d_{\mathcal{A},\mathfrak{B}}(T)=\sup\beta(q_{\mathcal{A}(E)}Ti_E)$, with the sup taken over all (fin. dim.) $E\hookrightarrow X$.

$$A \hookrightarrow B(X, Y)$$
 is $C - \mathfrak{B}$ -hyperreflexive if, $\forall T \in B(X, Y)$,

$$\operatorname{dist}_{\mathfrak{B}}(\mathcal{T},\mathcal{A}) := \inf_{a \in \mathcal{A}} \beta(\mathcal{T} - a) \leqslant \textit{Cd}_{\mathcal{A},\mathfrak{B}}(\mathcal{T})$$

 $(\operatorname{dist}_{\mathfrak{B}}(T,\mathcal{A}) \text{ and } d_{\mathcal{A},\mathfrak{B}}(T) \text{ may be infinite!}).$

 $\mathcal{A} \hookrightarrow \mathcal{B}(X,Y)$ is \mathfrak{B} -hyperreflexive if it is $\mathcal{C} - \mathfrak{B}$ -hyperreflexive for some \mathcal{C}

Suppose \mathfrak{B} is a maximal Banach ideal, $\mathcal{A} \hookrightarrow \mathcal{B}(X,Y)$, $T \in B(X, Y)$. Define

$$d_{\mathcal{A},\mathfrak{B}}(T) := \sup \beta(uTv),$$

with sup is taken over all fin. rank contractions u, v with $u\mathcal{A}v=0$. In other words, $d_{\mathcal{A},\mathfrak{B}}(T)=\sup eta(q_{\mathcal{A}(E)}Ti_E)$, with the sup taken over all (fin. dim.) $E \hookrightarrow X$.

$$A \hookrightarrow B(X, Y)$$
 is $C - \mathfrak{B}$ -hyperreflexive if, $\forall T \in B(X, Y)$,

$$\operatorname{dist}_{\mathfrak{B}}(\mathcal{T},\mathcal{A}) := \inf_{a \in \mathcal{A}} \beta(\mathcal{T} - a) \leqslant \textit{Cd}_{\mathcal{A},\mathfrak{B}}(\mathcal{T})$$

 $(\operatorname{dist}_{\mathfrak{B}}(T,\mathcal{A}) \text{ and } d_{\mathcal{A},\mathfrak{B}}(T) \text{ may be infinite!}).$

 $\mathcal{A} \hookrightarrow \mathcal{B}(X,Y)$ is \mathfrak{B} -hyperreflexive if it is $C-\mathfrak{B}$ -hyperreflexive for some C.

Theorem. For any Banach space E, $span[I_E]$ is

Theorem [Asplund and Ptak; Shulman]. Any 1-dimensional

Theorem. Any von Neumann algebra is Π_2 -hyperreflexive.

Theorem. For any Banach space E, $span[I_E]$ is

Theorem [Asplund and Ptak; Shulman]. Any 1-dimensional

Theorem. Any von Neumann algebra is Π_2 -hyperreflexive.

Theorem. For any Banach space E, $\operatorname{span}[I_E]$ is Π_2 -hyperreflexive.

Theorem [Asplund and Ptak; Shulman]. Any 1-dimensional

Theorem. Any von Neumann algebra is Π_2 -hyperreflexive.

Theorem. For any Banach space E, $\operatorname{span}[I_E]$ is Π_2 -hyperreflexive.

Theorem. Suppose E is a Banach space with the BAP. Then \exists $T \in B(E)$ s.t. span[T] is not Π_2 -hyperreflexive.

Theorem [Asplund and Ptak; Shulman]. Any 1-dimensional

Theorem. Any von Neumann algebra is Π_2 -hyperreflexive.

Theorem. For any Banach space E, $\operatorname{span}[I_E]$ is Π_2 -hyperreflexive.

Theorem. Suppose E is a Banach space with the BAP. Then \exists $T \in B(E)$ s.t. span[T] is not Π_2 -hyperreflexive.

Theorem [Asplund and Ptak; Shulman]. Any 1-dimensional subspace of B(E,F) is hyperreflexive.

Suppose $a \in B(E, F)$. The infinite ampliation of a:

$$a^{(\infty)}=\left(egin{array}{ccc} a&0&\dots\ 0&a&\dots\ 0&0&\ddots \end{array}
ight)\in B(\ell_2(E),\ell_2(F)).$$

For $A \subset B(E,F)$, $A^{(\infty)} = \{a^{(\infty)} \mid a \in A\} \subset B(\ell_2(E),\ell_2(F))$.

Theorem. Suppose E and F are reflexive Banach spaces, and $\mathcal{A} \hookrightarrow \mathcal{B}(E,F)$ is $\sigma(\mathcal{B}(E,F),E\widehat{\otimes}F^*)$ -closed. Then $\mathcal{A}^{(\infty)}$ is Π_2 -hyperreflexive.

Timur Oikhberg

Suppose $a \in B(E, F)$. The infinite ampliation of a:

$$a^{(\infty)}=\left(egin{array}{ccc} a&0&\dots\ 0&a&\dots\ 0&0&\ddots \end{array}
ight)\in B(\ell_2(E),\ell_2(F)).$$

For
$$A \subset B(E, F)$$
, $A^{(\infty)} = \{a^{(\infty)} \mid a \in A\} \subset B(\ell_2(E), \ell_2(F))$.

Theorem. Suppose E and F are reflexive Banach spaces, and $\mathcal{A} \hookrightarrow \mathcal{B}(E,F)$ is $\sigma(\mathcal{B}(E,F),E\widehat{\otimes}F^*)$ -closed. Then $\mathcal{A}^{(\infty)}$ is Π_2 -hyperreflexive.

Timur Oikhberg

Suppose $a \in B(E, F)$. The infinite ampliation of a:

$$a^{(\infty)}=\left(egin{array}{ccc} a&0&\dots\ 0&a&\dots\ 0&0&\ddots \end{array}
ight)\in B(\ell_2(E),\ell_2(F)).$$

For
$$A \subset B(E, F)$$
, $A^{(\infty)} = \{a^{(\infty)} \mid a \in A\} \subset B(\ell_2(E), \ell_2(F))$.

Theorem. Suppose E and F are reflexive Banach spaces, and $\mathcal{A} \hookrightarrow \mathcal{B}(E,F)$ is $\sigma(\mathcal{B}(E,F),E\widehat{\otimes}F^*)$ -closed. Then $\mathcal{A}^{(\infty)}$ is Π_2 -hyperreflexive.

4□ > 4□ > 4 = > 4 = > = 900

Timur Oikhberg

Theorem. Suppose E is a separable reflexive Banach space, A is a unital Banach algebra, and $\pi:\mathcal{A}\to B(E)$ is a unital faithful contractive isomorphic representation s.t. $\pi(A)$) is Π_2 -hyperreflexive. Then there exists an operator space X, isometric to E, such that $CB(X) = \pi(A) + \Pi_2(X)$. More precisely:

- $\forall \ a \in \mathcal{A} \ and \ S \in \Pi_2(X), \ \|\pi(a)\|_{cb} \leqslant \|a\|, \ and \ \|S\|_{cb} \leqslant \pi_2(S).$
- There exists a constant C s.t. any $T \in CB(X)$ can be written

Remark. The same conclusion holds if π satisfies a weaker

Theorem. Suppose E is a separable reflexive Banach space, A is a unital Banach algebra, and $\pi:\mathcal{A}\to B(E)$ is a unital faithful contractive isomorphic representation s.t. $\pi(A)$) is Π_2 -hyperreflexive. Then there exists an operator space X, isometric to E, such that $CB(X) = \pi(A) + \Pi_2(X)$. More precisely:

- \forall $a \in \mathcal{A}$ and $S \in \Pi_2(X)$, $\|\pi(a)\|_{cb} \leqslant \|a\|$, and $\|S\|_{cb} \leqslant \pi_2(S)$.
- ullet There exists a constant C s.t. any $T \in CB(X)$ can be written

Remark. The same conclusion holds if π satisfies a weaker

Theorem. Suppose E is a separable reflexive Banach space, A is a unital Banach algebra, and $\pi:\mathcal{A}\to B(E)$ is a unital faithful contractive isomorphic representation s.t. $\pi(A)$) is Π_2 -hyperreflexive. Then there exists an operator space X, isometric to E, such that $CB(X) = \pi(A) + \Pi_2(X)$. More precisely:

- \forall $a \in \mathcal{A}$ and $S \in \Pi_2(X)$, $\|\pi(a)\|_{cb} \leqslant \|a\|$, and $\|S\|_{cb} \leqslant \pi_2(S)$.
- There exists a constant C s.t. any $T \in CB(X)$ can be written as $T = \pi(a) + S$, with $a \in A$, $S \in \Pi_2(X)$, and $||a|| + \pi_2(S) \leqslant C||T||_{cb}.$

Remark. The same conclusion holds if π satisfies a weaker

Theorem. Suppose E is a separable reflexive Banach space, A is a unital Banach algebra, and $\pi: A \to B(E)$ is a unital faithful contractive isomorphic representation s.t. $\pi(A)$ is Π_2 -hyperreflexive. Then there exists an operator space X, isometric to E, such that $CB(X) = \pi(A) + \Pi_2(X)$. More precisely:

- \forall $a \in \mathcal{A}$ and $S \in \Pi_2(X)$, $\|\pi(a)\|_{cb} \leqslant \|a\|$, and $\|S\|_{cb} \leqslant \pi_2(S)$.
- There exists a constant C s.t. any $T \in CB(X)$ can be written as $T = \pi(a) + S$, with $a \in A$, $S \in \Pi_2(X)$, and $\|a\| + \pi_2(S) \leqslant C\|T\|_{cb}$.

If π is isometric, then $\|\pi(a)\|_{cb} = \|a\|$ for any $a \in A$.

Remark. The same conclusion holds if π satisfies a weaker technical condition: $\pi(\text{Ba}(A))$ is Π_2 -ASHR.

Theorem. Suppose E is a separable reflexive Banach space, A is a unital Banach algebra, and $\pi:\mathcal{A}\to\mathcal{B}(\mathsf{E})$ is a unital faithful contractive isomorphic representation s.t. $\pi(A)$) is Π_2 -hyperreflexive. Then there exists an operator space X, isometric to E, such that $CB(X) = \pi(A) + \Pi_2(X)$. More precisely:

- \forall $a \in \mathcal{A}$ and $S \in \Pi_2(X)$, $\|\pi(a)\|_{cb} \leqslant \|a\|$, and $\|S\|_{cb} \leqslant \pi_2(S)$.
- There exists a constant C s.t. any $T \in CB(X)$ can be written as $T = \pi(a) + S$, with $a \in A$, $S \in \Pi_2(X)$, and $||a|| + \pi_2(S) \leqslant C||T||_{cb}.$

If π is isometric, then $\|\pi(a)\|_{cb} = \|a\|$ for any $a \in A$.

Remark. The same conclusion holds if π satisfies a weaker technical condition: $\pi(\text{Ba}(A))$ is Π_2 -ASHR.

Theorem. Suppose E is a separable reflexive Banach space, A is a unital Banach algebra which is a dual Banach space, and $\pi:\mathcal{A}\to\mathcal{B}(E)$ is a unital faithful weak*-to-weak* continuous contractive representation. Then there exists an operator space X, isometric to $\ell_2(E)$, such that $CB(X) = \pi(\mathcal{A})^{(\infty)} + \Pi_2(X)$. More

- For every $a \in \mathcal{A}$ and $S \in \Pi_2(X)$, $\|\pi(a)\|_{cb} \leqslant \|a\|$, and

Theorem. Suppose E is a separable reflexive Banach space, A is a unital Banach algebra which is a dual Banach space, and $\pi:\mathcal{A}\to B(E)$ is a unital faithful weak*-to-weak* continuous contractive representation. Then there exists an operator space X, isometric to $\ell_2(E)$, such that $CB(X) = \pi(A)^{(\infty)} + \Pi_2(X)$. More precisely:

- For every $a \in \mathcal{A}$ and $S \in \Pi_2(X)$, $\|\pi(a)\|_{cb} \leqslant \|a\|$, and $||S||_{cb} \leqslant \pi_2(S)$.
- For any $T \in CB(X)$ there exist unique $a \in A$ and $S \in \Pi_2(X)$

Theorem. Suppose E is a separable reflexive Banach space, A is a unital Banach algebra which is a dual Banach space, and $\pi:\mathcal{A}\to B(E)$ is a unital faithful weak*-to-weak* continuous contractive representation. Then there exists an operator space X, isometric to $\ell_2(E)$, such that $CB(X) = \pi(A)^{(\infty)} + \Pi_2(X)$. More precisely:

- For every $a \in \mathcal{A}$ and $S \in \Pi_2(X)$, $\|\pi(a)\|_{cb} \leqslant \|a\|$, and $||S||_{cb} \leqslant \pi_2(S)$.
- For any $T \in CB(X)$ there exist unique $a \in A$ and $S \in \Pi_2(X)$ s.t. $T = \pi(a)^{(\infty)} + S$, and $\max\{\|a\|, \pi_2(S)\} \leq 120\|T\|_{cb}$.

Theorem. Suppose E is a separable reflexive Banach space, \mathcal{A} is a unital Banach algebra which is a dual Banach space, and $\pi: \mathcal{A} \to \mathcal{B}(E)$ is a unital faithful weak*-to-weak* continuous contractive representation. Then there exists an operator space X, isometric to $\ell_2(E)$, such that $CB(X) = \pi(\mathcal{A})^{(\infty)} + \Pi_2(X)$. More precisely:

- For every $a \in \mathcal{A}$ and $S \in \Pi_2(X)$, $\|\pi(a)\|_{cb} \leqslant \|a\|$, and $\|S\|_{cb} \leqslant \pi_2(S)$.
- For any $T \in CB(X)$ there exist unique $a \in A$ and $S \in \Pi_2(X)$ s.t. $T = \pi(a)^{(\infty)} + S$, and $\max\{\|a\|, \pi_2(S)\} \leqslant 120\|T\|_{cb}$.

If π is an isometry, then $\|\mathbf{a}\| = \|\pi(\mathbf{a})^{(\infty)}\|_{cb}$ for any $\mathbf{a} \in \mathcal{A}$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 釣へで

Timur Oikhberg

$\ensuremath{\mathcal{A}}$ is called a dual Banach algebra if:

- ullet \mathcal{A} is a dual Banach space.
- ullet Multiplication on ${\mathcal A}$ is separately weak* continuous.

- Any von Neumann algebra.
- The measure algebra M(G), where G is a locally compact

$\ensuremath{\mathcal{A}}$ is called a dual Banach algebra if:

- ullet ${\cal A}$ is a dual Banach space.
- ullet Multiplication on ${\mathcal A}$ is separately weak* continuous.

- Any von Neumann algebra.
- The measure algebra M(G), where G is a locally compact

- ullet ${\cal A}$ is a dual Banach space.
- ullet Multiplication on ${\mathcal A}$ is separately weak* continuous.

Examples of dual Banach algebras:

- Any von Neumann algebra.
- The measure algebra M(G), where G is a locally compact

- ullet ${\cal A}$ is a dual Banach space.
- ullet Multiplication on ${\mathcal A}$ is separately weak* continuous.

Examples of dual Banach algebras:

- Any von Neumann algebra.
- The measure algebra M(G), where G is a locally compact

- ullet ${\cal A}$ is a dual Banach space.
- ullet Multiplication on ${\mathcal A}$ is separately weak* continuous.

Examples of dual Banach algebras:

- Any von Neumann algebra.
- The measure algebra M(G), where G is a locally compact

- ullet ${\cal A}$ is a dual Banach space.
- ullet Multiplication on ${\mathcal A}$ is separately weak* continuous.

Examples of dual Banach algebras:

- Any von Neumann algebra.
- The measure algebra M(G), where G is a locally compact group.

Theorem. Suppose A is a unital dual Banach algebra, with a separable predual. Then there exists a separable reflexive operator space X, and a unital isometric weak*-to-weak* continuous representation $\pi: \mathcal{A} \to CB(X)$, s.t. $CB(X) = \pi(\mathcal{A}) + \Pi_2(X)$.

- For every $a \in \mathcal{A}$ and $S \in \Pi_2(X)$, $\|\pi(a)\|_{cb} = \|\pi(a)\| = \|a\|$,

Theorem. Suppose \mathcal{A} is a unital dual Banach algebra, with a separable predual. Then there exists a separable reflexive operator space X, and a unital isometric weak*-to-weak* continuous representation $\pi: \mathcal{A} \to CB(X)$, s.t. $CB(X) = \pi(\mathcal{A}) + \Pi_2(X)$. More precisely:

- For every $a \in \mathcal{A}$ and $S \in \Pi_2(X)$, $\|\pi(a)\|_{cb} = \|\pi(a)\| = \|a\|$, and $\|S\|_{cb} \leqslant \pi_2(S)$.
- Any $T \in CB(X)$ can be written as $T = \pi(a) + S$, with $a \in \mathcal{A}$, $S \in \Pi_2(X)$, $||a|| \leq ||T||$, and $\pi_2(S) \leq 120||T||_{cb}$

Timur Oikhberg

Theorem. Suppose \mathcal{A} is a unital dual Banach algebra, with a separable predual. Then there exists a separable reflexive operator space X, and a unital isometric weak*-to-weak* continuous representation $\pi: \mathcal{A} \to CB(X)$, s.t. $CB(X) = \pi(\mathcal{A}) + \Pi_2(X)$. More precisely:

- For every $a \in \mathcal{A}$ and $S \in \Pi_2(X)$, $\|\pi(a)\|_{cb} = \|\pi(a)\| = \|a\|$, and $\|S\|_{cb} \leqslant \pi_2(S)$.
- Any $T \in CB(X)$ can be written as $T = \pi(a) + S$, with $a \in \mathcal{A}$, $S \in \Pi_2(X)$, $||a|| \leq ||T||$, and $\pi_2(S) \leq 120||T||_{cb}$.

Timur Oikhberg

Proof. It follows from the recent results of M. Daws that, for ${\cal A}$ as above, \exists a separable reflexive Banach space E and a unital faithful weak*-to-weak* continuous representation $\rho: \mathcal{A} \to B(E)$. Define

$$\pi: \mathcal{A} \to \mathcal{B}(\ell_2(E)): a \mapsto \rho(a)^{(\infty)}.$$

Then $\pi(A)$ is Π_2 -hyperreflexive. We can construct an operator space X, isometric to $\ell_2(E)$, s.t. $CB(X) = \pi(A) + \Pi_2(X)$.

- E_i is isometric to $\ell_2^{n_i}$.
- If $i \neq j$, then $||u||_{cb} = ||u||_2 \, \forall \, u \in CB(E_i^*, E_j)$ ($||\cdot||_2$ is the
- $\forall u \in CB(E_i^*, E_i)$,

$$\frac{\|u\|_1}{4+2^{-i}} \leqslant \|u\|_{cb} \leqslant \|u\|_1$$

• $\forall i, \forall u \in B(E_i), ||u|| = ||u||_{cb}$ (E_i is 1-homogeneous).

- E_i is isometric to $\ell_2^{n_i}$.
- If $i \neq j$, then $||u||_{cb} = ||u||_2 \, \forall \, u \in CB(E_i^*, E_j)$ ($||\cdot||_2$ is the
- $\forall u \in CB(E_i^*, E_i)$,

$$\frac{\|u\|_1}{4+2^{-i}} \leqslant \|u\|_{cb} \leqslant \|u\|_1$$

• $\forall i, \forall u \in B(E_i), ||u|| = ||u||_{cb}$ (E_i is 1-homogeneous).

- E_i is isometric to $\ell_2^{n_i}$.
- If $i \neq j$, then $\|u\|_{cb} = \|u\|_2 \ \forall \ u \in CB(E_i^*, E_j)$ ($\|\cdot\|_2$ is the Hilbert-Schmidt norm).
- $\forall u \in CB(E_i^*, E_i)$,

$$\frac{\|u\|_1}{4+2^{-i}} \leqslant \|u\|_{cb} \leqslant \|u\|_1$$

• $\forall i, \forall u \in B(E_i), ||u|| = ||u||_{cb}$ (E_i is 1-homogeneous).

- E_i is isometric to $\ell_2^{n_i}$.
- If $i \neq j$, then $\|u\|_{cb} = \|u\|_2 \ \forall \ u \in \mathit{CB}(E_i^*, E_j)$ ($\|\cdot\|_2$ is the Hilbert-Schmidt norm).
- $\forall u \in CB(E_i^*, E_i)$,

$$\frac{\|u\|_1}{4+2^{-i}} \leqslant \|u\|_{cb} \leqslant \|u\|_1$$

 $(\|\cdot\|_1)$ is the trace class norm).

• $\forall i, \forall u \in B(E_i), \|u\| = \|u\|_{cb}$ (E_i is 1-homogeneous).

- E_i is isometric to $\ell_2^{n_i}$.
- If $i \neq j$, then $||u||_{cb} = ||u||_2 \ \forall \ u \in CB(E_i^*, E_j)$ ($||\cdot||_2$ is the Hilbert-Schmidt norm).
- $\forall u \in CB(E_i^*, E_i)$,

$$\frac{\|u\|_1}{4+2^{-i}} \leqslant \|u\|_{cb} \leqslant \|u\|_1$$

 $(\|\cdot\|_1)$ is the trace class norm).

• $\forall i, \forall u \in B(E_i), ||u|| = ||u||_{cb}$ (E_i is 1-homogeneous).

Timur Oikhberg

- ullet Suppose ${\mathcal A}$ is a dual Banach algebra, E is a separable reflexive
- If A is a von Neumann algebra, then A is Π_2 -hyperreflexive.

- Suppose A is a dual Banach algebra, E is a separable reflexive
- If A is a von Neumann algebra, then A is Π_2 -hyperreflexive.

Question: When does this happen?

- Suppose A is a dual Banach algebra, E is a separable reflexive
- If A is a von Neumann algebra, then A is Π_2 -hyperreflexive.

Question: When does this happen?

- ullet Suppose ${\mathcal A}$ is a dual Banach algebra, E is a separable reflexive Banach space, $\rho: \mathcal{A} \to B(E)$ is a contractive unital weak*-continuous representation. Consider $\pi = \rho^{(\infty)} : \mathcal{A} \to \mathcal{B}(\ell_2(E))$. Then $\pi(\mathrm{Ba}(\mathcal{A}))$ is Π_2 -ASHR. If ρ
- If A is a von Neumann algebra, then A is Π_2 -hyperreflexive.

Question: When does this happen?

- ullet Suppose ${\mathcal A}$ is a dual Banach algebra, E is a separable reflexive Banach space, $\rho: \mathcal{A} \to B(E)$ is a contractive unital weak*-continuous representation. Consider $\pi = \rho^{(\infty)} : \mathcal{A} \to \mathcal{B}(\ell_2(E))$. Then $\pi(\mathrm{Ba}(\mathcal{A}))$ is Π_2 -ASHR. If ρ is an isomorphism, then $\pi(A)$ is Π_2 -hyperreflexive.
- If A is a von Neumann algebra, then A is Π_2 -hyperreflexive.

Question: When does this happen?

- ullet Suppose ${\mathcal A}$ is a dual Banach algebra, E is a separable reflexive Banach space, $\rho: \mathcal{A} \to B(E)$ is a contractive unital weak*-continuous representation. Consider $\pi = \rho^{(\infty)} : \mathcal{A} \to \mathcal{B}(\ell_2(E))$. Then $\pi(\operatorname{Ba}(\mathcal{A}))$ is Π_2 -ASHR. If ρ is an isomorphism, then $\pi(A)$ is Π_2 -hyperreflexive.
- If A is a von Neumann algebra, then A is Π_2 -hyperreflexive.

- η is an infinite ordinal, $J(\eta)$ is the long James space (viewed as a set of diagonal operators on $\ell_2(\mathcal{I})$ for the appropriate index set \mathcal{I}), $\mathcal{A} = J(\eta) + \mathbb{C}\mathbf{1}$, π is the identity representation. Then $\pi(\text{Ba}(A))$ is Π_2 -ASHR.
- ullet Suppose C>1. Let ${\mathcal A}$ be the space of all complex sequences

- η is an infinite ordinal, $J(\eta)$ is the long James space (viewed as a set of diagonal operators on $\ell_2(\mathcal{I})$ for the appropriate index set \mathcal{I}), $\mathcal{A} = J(\eta) + \mathbb{C}\mathbf{1}$, π is the identity representation. Then $\pi(\text{Ba}(A))$ is Π_2 -ASHR.
- ullet Suppose C>1. Let ${\mathcal A}$ be the space of all complex sequences $a=(a_j)_{j\in\mathbb{Z}}$, with the norm $\|a\|=\sum_{j\in\mathbb{Z}}C^{|j|}|a_j|$. \mathcal{A} is a unital Banach algebra with the convolution product:

 $(a \star b)_j = \sum_k a_k b_{j-k}.$

- η is an infinite ordinal, $J(\eta)$ is the long James space (viewed as a set of diagonal operators on $\ell_2(\mathcal{I})$ for the appropriate index set \mathcal{I}), $\mathcal{A} = J(\eta) + \mathbb{C}\mathbf{1}$, π is the identity representation. Then $\pi(\text{Ba}(A))$ is Π_2 -ASHR.
- ullet Suppose C>1. Let ${\mathcal A}$ be the space of all complex sequences $a=(a_j)_{j\in\mathbb{Z}}$, with the norm $\|a\|=\sum_{j\in\mathbb{Z}}C^{|j|}|a_j|$. \mathcal{A} is a unital Banach algebra with the convolution product: $(a \star b)_j = \sum_k a_k b_{j-k}$. Fix $m \in \mathbb{N}$. Consider $\pi : \mathcal{A} \to B(\ell_2(\mathbb{Z})) : (a_j) \mapsto \sum_j a_j T^{mj}$,

- η is an infinite ordinal, $J(\eta)$ is the long James space (viewed as a set of diagonal operators on $\ell_2(\mathcal{I})$ for the appropriate index set \mathcal{I}), $\mathcal{A} = J(\eta) + \mathbb{C}\mathbf{1}$, π is the identity representation. Then $\pi(\mathrm{Ba}(\mathcal{A}))$ is Π_2 -ASHR.
- Suppose C>1. Let $\mathcal A$ be the space of all complex sequences $a=(a_j)_{j\in\mathbb Z}$, with the norm $\|a\|=\sum_{j\in\mathbb Z}C^{|j|}|a_j|$. $\mathcal A$ is a unital Banach algebra with the convolution product: $(a\star b)_j=\sum_k a_k b_{j-k}$. Fix $m\in\mathbb N$. Consider $\pi:\mathcal A\to B(\ell_2(\mathbb Z)):(a_j)\mapsto \sum_j a_j T^{mj}$, where T is the bilateral shift. Then $\pi(\operatorname{Ba}(\mathcal A))$ is Π_2 -ASHR.

4□ ト 4団 ト 4 里 ト 4 里 ・ 夕 Q ○

Timur Oikhberg

- Any Y as above fails the Operator Approximation Property.
- X as above is completely hereditarily indecomposable. That is, any inf. dim. $Y \hookrightarrow X$ is completely indecomposable: if $P \in CB(Y)$, and $P^2 = P$, then either $\dim \ker P < \infty$, or $\dim \operatorname{ran} P < \infty$
- Any compact c.b. maps on X is "completely nuclear," with the completely nuclear norm equivalent to the c.b. norm

Idea of the proof. Build an operator space around the identity representation of $A=\mathbb{C}I_{\ell}$.

Timur Oikhberg

- Any Y as above fails the Operator Approximation Property.
- X as above is completely hereditarily indecomposable. That is, any inf. dim. $Y \hookrightarrow X$ is completely indecomposable: if
- Any compact c.b. maps on X is "completely nuclear," with

- Any Y as above fails the Operator Approximation Property.
- X as above is completely hereditarily indecomposable. That is, any inf. dim. $Y \hookrightarrow X$ is completely indecomposable: if $P \in CB(Y)$, and $P^2 = P$, then either $\dim \ker P < \infty$, or $\dim \operatorname{ran} P < \infty$.
- Any compact c.b. maps on X is "completely nuclear," with

- Any Y as above fails the Operator Approximation Property.
- X as above is completely hereditarily indecomposable. That is, any inf. dim. $Y \hookrightarrow X$ is completely indecomposable: if $P \in CB(Y)$, and $P^2 = P$, then either $\dim \ker P < \infty$, or $\dim \operatorname{ran} P < \infty$.
- Any compact c.b. maps on X is "completely nuclear," with the completely nuclear norm equivalent to the c.b. norm.

- Any Y as above fails the Operator Approximation Property.
- X as above is completely hereditarily indecomposable. That is, any inf. dim. $Y \hookrightarrow X$ is completely indecomposable: if $P \in CB(Y)$, and $P^2 = P$, then either $\dim \ker P < \infty$, or $\dim \operatorname{ran} P < \infty$.
- Any compact c.b. maps on X is "completely nuclear," with the completely nuclear norm equivalent to the c.b. norm.

Idea of the proof. Build an operator space around the identity representation of $\mathcal{A} = \mathbb{C}I_{\ell_2}$.

and the function $\alpha \mapsto P_{\alpha}x$ is continuous for any $x \in X$.

X has the Completely Bounded Approximation Property (CBAP) if \exists a net $(u_i) \subset CB(X)$ of fin. rank operators, s.t. $\sup_i \|u_i\|_{cb} < \infty$, and $u_i \rightarrow I_X$ pointwise.

and the function $\alpha \mapsto P_{\alpha}x$ is continuous for any $x \in X$.

X has the Completely Bounded Approximation Property (CBAP) if \exists a net $(u_i) \subset CB(X)$ of fin. rank operators, s.t. $\sup_i ||u_i||_{cb} < \infty$, and $u_i \rightarrow I_X$ pointwise.

X is the Complete Transfinite Basis (CTB) of length η , where η is an ordinal, if there exist projections $(P_{\alpha})_{0 \leqslant \alpha \leqslant \eta} \subset CB(X)$ s.t. $\sup_{\alpha} \|P_{\alpha}\|_{cb} < \infty$, $P_{\eta} = I_X$, $P_0 = 0$, $\operatorname{rank}(P_{\alpha+} - P_{\alpha}) = 1 \ \forall \ \alpha$, and the function $\alpha \mapsto P_{\alpha}x$ is continuous for any $x \in X$.

representation of $\mathcal{A}=J(\omega^2)+\mathbb{C} 1$ into the diagonal operators on

No such examples of Banach spaces are known.

X has the Completely Bounded Approximation Property (CBAP) if \exists a net $(u_i) \subset CB(X)$ of fin. rank operators, s.t. $\sup_i ||u_i||_{cb} < \infty$, and $u_i \rightarrow I_X$ pointwise.

X is the Complete Transfinite Basis (CTB) of length η , where η is an ordinal, if there exist projections $(P_{\alpha})_{0 \leqslant \alpha \leqslant \eta} \subset CB(X)$ s.t. $\sup_{\alpha} \|P_{\alpha}\|_{cb} < \infty$, $P_{\eta} = I_X$, $P_0 = 0$, $\operatorname{rank}(P_{\alpha+} - P_{\alpha}) = 1 \ \forall \ \alpha$, and the function $\alpha \mapsto P_{\alpha}x$ is continuous for any $x \in X$.

representation of $\mathcal{A}=J(\omega^2)+\mathbb{C}\mathbf{1}$ into the diagonal operators on

No such examples of Banach spaces are known.

X has the Completely Bounded Approximation Property (CBAP) if \exists a net $(u_i) \subset CB(X)$ of fin. rank operators, s.t. $\sup_i \|u_i\|_{cb} < \infty$, and $u_i \to I_X$ pointwise.

X is the Complete Transfinite Basis (CTB) of length η , where η is an ordinal, if there exist projections $(P_{\alpha})_{0\leqslant \alpha\leqslant \eta}\subset CB(X)$ s.t. $\sup_{\alpha}\|P_{\alpha}\|_{cb}<\infty$, $P_{\eta}=I_{X}$, $P_{0}=0$, $\operatorname{rank}(P_{\alpha+}-P_{\alpha})=1\ \forall\ \alpha$, and the function $\alpha\mapsto P_{\alpha}x$ is continuous for any $x\in X$.

Idea of the proof. Build an operator space around the representation of $\mathcal{A}=J(\omega^2)+\mathbb{C}\mathbf{1}$ into the diagonal operators on

Timur Oikhberg

Theorem. There exists an operator space X such that, for every arepsilon > 0, there exists $f \in \mathit{CB}(X^*)$ s.t. $\|f\| = f(I_X) = 1$, and $|f(TS) - f(T)f(S)| < \varepsilon ||T||_{cb} ||S||_{cb}$ for any $T, S \in CB(X)$, yet ||f - g|| > 1/2 whenever $g \in CB(X)^*$ is multiplicative.

Theorem. There exists an operator space X such that, for every arepsilon > 0, there exists $f \in \mathit{CB}(X^*)$ s.t. $\|f\| = f(I_X) = 1$, and $|f(TS) - f(T)f(S)| < \varepsilon ||T||_{cb} ||S||_{cb}$ for any $T, S \in CB(X)$, yet ||f - g|| > 1/2 whenever $g \in CB(X)^*$ is multiplicative.

The answer is not known if we consider B(X) instead of CB(X).