The Effros-Ruan conjecture for bilinear forms on $$\mathbf{C}^*$-algebras}$

(Joint work with Uffe Haagerup)

Magdalena Musat University of Memphis

Workshop on operator spaces and quantum groups Fields Institute, Toronto December 11, 2007

Theorem (Grothendieck 1956):

Let K_1 and K_2 be compact spaces. Let $u : C(K_1) \times C(K_2) \to \mathbb{K}$ be a bounded bilinear form, where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Then there exist probability measures μ_1 and μ_2 on K_1 and K_2 , respectively, such that

$$|u(f,g)| \le K_G^{\mathbb{K}} ||u|| \left(\int_{K_1} |f|^2 \, d\mu_1 \right)^{1/2} \left(\int_{K_2} |g|^2 \, d\mu_2 \right)^{1/2}$$

for all $f \in C(K_1)$ and $g \in C(K_2)$, where $K_G^{\mathbb{K}}$ is a universal constant.

Remarks about Grothendieck's constant $K_G^{\mathbb{K}}$:

• $K_G^{\mathbb{R}} \neq K_G^{\mathbb{C}}$.

•
$$\frac{\pi}{2} \le K_G^{\mathbb{R}} \le \frac{\pi}{2\log(1+\sqrt{2})} = 1.782...$$

•
$$\frac{4}{\pi} \le K_G^{\mathbb{C}} < 1.40491$$
.

Theorem:

Any bounded linear operator $T: C(K_1) \to C(K_2)^*$ factors through a Hilbert space H,

such that $||R|| ||S|| \leq K_G^{\mathbb{K}} ||T||$.

Remark: As an interesting application, it follows that the Fourier transform $\mathcal{F}: L^1(\mathbb{R}) \to C_0(\mathbb{R})$ is <u>not</u> onto.

Conjecture (Grothendieck):

Let A be a C*-algebra and $u : A \times A \to \mathbb{C}$ a bounded bilinear form. Then there exist $f, g \in S(A)$ such that for all $a, b \in A$,

$$|u(a,b)| \le k ||u|| f(|a|^2)^{1/2} g(|b|^2)^{1/2},$$

where $|x| = \left(\frac{x^* x + x x^*}{2}\right)^{1/2}$, for all $x \in A$.

Grothendieck Inequality (Haagerup 1985) (extension of Pisier's result from 1978):

Let A and B be C^{*}-algebras and let $u : A \times B \to \mathbb{C}$ be a bounded bilinear form. There exist $f_1, f_2 \in S(A)$ and $g_1, g_2 \in S(B)$ such that

$$|u(a,b)| \le ||u|| (f_1(aa^*) + f_2(a^*a))^{1/2} (g_1(b^*b) + g_2(bb^*))^{1/2},$$

for all $a \in A$ and $b \in B$.

Corollary (Haagerup 1985):

Any bounded linear operator $T : A \to B^*$, where A and B are C^{*}-algebras, factors through a Hilbert space H,

such that $||R|| ||S|| \le 2||T||$.

Let A and B be C^{*}-algebras. Then A is an operator space with the C^{*}-norm on $M_n(A)$, $n \in \mathbb{N}$, while B^* is an operator space with the isometric identification $M_n(B^*) := \operatorname{CB}(B, M_n(\mathbb{C}))$, $n \in \mathbb{N}$.

Let $u : A \times B \to \mathbb{C}$ be a bounded bilinear form. There exists a unique bounded linear operator $\widetilde{u} : A \to B^*$ such that

$$u(a,b) = \langle \widetilde{u}(a), b \rangle, \quad a \in A, b \in B.$$

The bilinear form u is called *jointly completely bounded* (j.c.b., for short) if $\widetilde{u} : A \to B^*$ is completely bounded, in which case we set

$$\|u\|_{jcb} := \|\widetilde{u}\|_{cb} \,.$$

Remark: It is easily checked that

$$\|u\|_{\rm jcb} = \sup_{n\in\mathbb{N}} \|u_n\|\,,$$

where $u_n: M_n(A) \otimes M_n(B) \to M_n(\mathbb{C}) \otimes M_n(\mathbb{C})$, $n \in \mathbb{N}$, is given by

$$u_n\left(\sum_{i=1}^k a_i \otimes c_i, \sum_{j=1}^l b_j \otimes d_j\right) = \sum_{i=1}^k \sum_{j=1}^l u(a_i, b_j)c_i \otimes d_j,$$

for $a_i \in A$, $b_j \in B$, c_i , $d_j \in M_n(\mathbb{C})$, $k, l \in \mathbb{N}$. Moreover, for all C*-algebras $C, D, a_i \in A, b_j \in B, c_i \in C, d_j \in D$,

$$\left\|\sum_{i=1}^{k}\sum_{j=1}^{l}u(a_{i},b_{j})c_{i}\otimes d_{j}\right\|_{C\otimes_{\min}D} \leq \left\|u\|_{jcb}\left\|\sum_{i=1}^{k}a_{i}\otimes c_{i}\right\|_{A\otimes_{\min}C}\left\|\sum_{j=1}^{l}b_{j}\otimes d_{j}\right\|_{B\otimes_{\min}D}\right\|_{B\otimes_{\min}D}.$$

(Cf. Pisier-Shlyakhtenko (Invent., 2002))

Conjecture (Effros-Ruan 1991):

Let A and B be C*-algebras and let $u : A \times B \to \mathbb{C}$ be a jointly completely bounded bilinear form. Then there exist $f_1, f_2 \in S(A)$ and $g_1, g_2 \in S(B)$ such that for all $a \in A$ and $b \in B$,

$$|u(a,b)| \le K ||u||_{jcb} \left(f_1(aa^*)^{1/2} g_1(b^*b)^{1/2} + f_2(a^*a)^{1/2} g_2(bb^*)^{1/2} \right)$$
(1)

where K is a universal constant.

Theorem (Pisier-Shlyakhtenko 2002):

Let $E \subseteq A$ and $F \subseteq F$ be *exact* operator spaces sitting in C^{*}-algebras A and B. Let $u : E \times F \to \mathbb{C}$ be a j.c.b. bilinear form. Then there exist $f_1, f_2 \in S(A)$ and $g_1, g_2 \in S(B)$ such that the inequality (1) holds for all $a \in E$ and $b \in F$ with $K = 2\sqrt{2} \exp(E)\exp(F)$.

Theorem (Pisier-Shlyakhtenko 2002):

If either A or B is an *exact* C^{*}-algebra and $u : A \times B \to \mathbb{C}$ is a j.c.b. bilinear form, then there exist $f_1, f_2 \in S(A)$ and $g_1, g_2 \in S(B)$ such that the inequality (1) holds for all $a \in A$ and $b \in B$ with $K = 2\sqrt{2}$.

Recall that an operator space E is called *exact* if there is $C \ge 1$ such that for every finite dimensional subspace $F \subseteq E$, there exists $n \in \mathbb{N}$ and a subspace $G \subseteq M_n(\mathbb{C})$ with $d_{cb}(F,G) \le C$. The infimum of all such constants C is denoted by ex(E).

Theorem (Kirchberg, Pisier): A C*-algebra is exact if and only if it is exact as an operator space. For any exact C*-algebra A, ex(A) = 1.

Theorem (Haagerup-M. 2007)

The Effros-Ruan conjecture holds for arbitrary C*-algebras A and B with K = 1, and this is the best possible constant.

Corollary A:

Let A and B be C*-algebras. Any completely bounded linear map $T: A \to B^*$ admits a factorization through $H_r \oplus K_c$, where H and K are Hilbert spaces,

satisfying $||R||_{cb} ||S||_{cb} \le 2||T||_{cb}$.

Corollary B:

Let A be a C*-algebra. If $T : A \to OH$ is a completely bounded linear map, then there exist $f_1, f_2 \in S(A)$ such that for all $a \in A$,

$$||T(a)|| \le \sqrt{2} ||T||_{cb} f_1(aa^*)^{1/4} f_2(a^*a)^{1/4}$$

(Only an improvement of constant in the corresponding result by Pisier-Shlyakhtenko; they had this with constant $2^{9/4}$.)

Corollary C:

Let E be an operator space such that E and its dual E^* embed completely isomorphically into preduals M_* and N_* , respectively, of von Neumann algebras M and N. Then E is cb-isomorphic to a quotient of a subspace of $H_r \oplus K_c$, for some Hilbert spaces H and K.

Corollary D:

Let E be an operator space, and let $E \subseteq A$ and $E^* \subseteq B$ be completely isometric embeddings into C*-algebras A and B such that both subspaces are cb-complemented. Then E is cb-isomorphic to $H_r \oplus K_c$, for some Hilbert spaces H and K.

(These are non-commutative analogues of the classical result asserting that if X is a Banach space such that both X and its dual X^* embed into L_1 -spaces, then X is isomorphic to a Hilbert space. Corollaries C and D above are obtained by adjusting the proof of the corresponding results by Pisier-Shlyakhtenko.)

Corollary E:

Let A_0 , A, B_0 and B be C^{*}-algebras such that $A_0 \subseteq A$ and $B_0 \subseteq B$. Then any j.c.b. bilinear form $u_0 : A_0 \times B_0 \to \mathbb{C}$ extends to a bilinear form $u : A \times B \to \mathbb{C}$ such that

$$||u||_{\text{jcb}} \le 2||u_0||_{\text{jcb}}.$$

Let A and B be C*-algebras. Denote by $\mathrm{Bil}(A\,,B)$ the set of bounded bilinear forms on $A\times B\,.$

Lemma (Pisier-Shlyakhtenko 2002, Xu 2006):

Let $u \in Bil(A, B)$. Assume that for all $a \in A$ and $b \in B$,

$$|u(a,b)| \le \kappa \left(f_1(aa^*)^{1/2} g_1(b^*b)^{1/2} + f_2(a^*a)^{1/2} g_2(bb^*)^{1/2} \right)$$
(2)

for some constant $\kappa \in [0, \infty]$ and some $f_1, f_2 \in S(A), g_1, g_2 \in S(B)$. Then u can be decomposed as $u = u_1 + u_2$, where $u_1, u_2 \in Bil(A, B)$ such that for all $a \in A$ and $b \in B$,

Definition: For $u \in Bil(A, B)$, let $||u||_{ER} \in [0, \infty]$ be the infimum of all constants $\kappa \in [0, \infty]$ for which the inequality (2) holds, for some choice of $f_1, f_2 \in S(A)$ and $g_1, g_2 \in S(B)$.

Proposition:

(*i*) If $u \in Bil(A, B)$, then $||u||_{ER} \le ||u||_{jcb} \le 2||u||_{ER}$.

(*ii*) Let c_1, c_2 denote the best constants in the inequalities

$$c_1 \|u\|_{ER} \le \|u\|_{jcb} \le c_2 \|u\|_{ER},$$

where A and B are arbitrary C*-algebras and $u \in Bil(A, B)$. Then $c_1 = 1$ and $c_2 = 2$.

Proposition:

Let $u \in Bil(A, B)$ with $||u||_{jcb} < \infty$. Then for all C*-algebras C, D, all $a_1, \ldots, a_k \in A$, $b_1, \ldots, b_l \in B$, $c_1, \ldots, c_k \in C$, $d_1, \ldots, d_l \in D$, where $k, l \in \mathbb{N}$,

$$\left\|\sum_{i=1}^{k}\sum_{j=1}^{l}u(a_{i},b_{j})c_{i}\otimes d_{j}\right\|_{C\otimes_{\max}D} \leq 2\|u\|_{jcb}\left\|\sum_{i=1}^{k}a_{i}\otimes c_{i}\right\|_{A\otimes_{\min}C}\left\|\sum_{j=1}^{l}b_{j}\otimes d_{j}\right\|_{B\otimes_{\min}D}$$

Proof: Follows from our main theorem, together with the splitting lemma above.

Let $E \subseteq A$ and $F \subseteq B$ be operator spaces sitting in C*-algebras A and B. Denote by $\operatorname{Bil}(E, F)$ the set of bounded bilinear forms on $E \times F$. For any $u \in \operatorname{Bil}(E, F)$, $||u||_{ER}$ is well-defined.

By the Pisier-Shlyakhtenko operator space version of Grothendieck's inequality, if E and F are exact, then for any $u \in Bil(E, F)$,

$$||u||_{ER} \le 2\sqrt{2} \exp(E) \exp(F) ||u||_{\text{jcb}}.$$

The next result (essentially contained in Pisier–Shlyakhtenko 2002) gives a complete characterization of those maps $u \in \operatorname{Bil}(E, F)$, for which $||u||_{ER} < \infty$.

Theorem:

Let $u \in Bil(E, F)$. The following statements are equivalent:

- $(i) \|u\|_{ER} < \infty.$
- (*ii*) There exists a constant $\delta \in [0, \infty]$ such that for all C*-algebras Cand D, and all $a_1, \ldots, a_k \in E, b_1, \ldots, b_l \in F, c_1, \ldots, c_k \in C, d_1, \ldots, d_l \in D$, where $k, l \in \mathbb{N}$,

$$\left\| \sum_{i=1}^{k} \sum_{j=1}^{l} u(a_{i}, b_{j}) c_{i} \otimes d_{j} \right\|_{C \otimes_{\max} D} \leq \delta \left\| \sum_{i=1}^{k} a_{i} \otimes c_{i} \right\|_{E \otimes_{\min} C} \left\| \sum_{j=1}^{l} b_{j} \otimes d_{j} \right\|_{F \otimes_{\min} D}$$

Moreover, if $\delta(u)$ denotes the best constant in the inequality above, then one has

•

$$\frac{1}{2} \|u\|_{\rm ER} \le \delta(u) \le 2 \|u\|_{\rm ER} \,.$$

Some preliminaries on Powers factors and Tomita-Takesaki theory

Let $0 < \lambda < 1$ be fixed, and let (\mathcal{M}, ϕ) be the Powers factor of type III_{λ} with product state ϕ , that is,

$$(\mathcal{M}, \phi) = \bigotimes_{n=1}^{\infty} (M_2(\mathbb{C}), \omega_{\lambda}),$$

where $\phi = \bigotimes_{n=1}^{\infty} \omega_{\lambda}$, $\omega_{\lambda}(\cdot) = \operatorname{Tr}(h_{\lambda} \cdot)$ and $h_{\lambda} = \begin{pmatrix} \frac{\lambda}{1+\lambda} & 0\\ 0 & \frac{1}{1+\lambda} \end{pmatrix}$.

The modular automorphism group $(\sigma_t^{\phi})_{t \in \mathbb{R}}$ of ϕ is given by

$$\sigma_t^{\phi} = \bigotimes_{n=1}^{\infty} \sigma_t^{\omega_{\lambda}} \,,$$

where for any matrix $x = [x_{ij}]_{1 \le i,j \le 2} \in M_2(\mathbb{C})$ and any $t \in \mathbb{R}$,

$$\sigma_t^{\omega_\lambda}(x) = h_\lambda^{it} x h_\lambda^{-it} = \begin{pmatrix} x_{11} & \lambda^{it} x_{12} \\ \lambda^{-it} x_{21} & x_{22} \end{pmatrix}$$

Therefore $\sigma_t^{\omega_{\lambda}}$ and σ_t^{ϕ} are periodic in $t \in \mathbb{R}$ with minimal period

$$t_0 := -\frac{2\pi}{\log \lambda} \,.$$

Let \mathcal{M}_{ϕ} denote the centralizer of ϕ , that is,

$$\mathcal{M}_{\phi} := \{ x \in \mathcal{M} : \sigma_t^{\phi}(x) = x , \forall t \in \mathbb{R} \}.$$

Theorem (Connes 1973):

The relative commutant of \mathcal{M}_{ϕ} in \mathcal{M} is trivial, i.e.,

 $\mathcal{M}_{\phi}^{\prime}\cap\mathcal{M}=\mathbb{C}\mathbf{1}$.

Theorem (Haagerup 1989):

For all $x \in \mathcal{M}$,

$$\phi(x) \cdot \mathbf{1} \in \overline{\operatorname{conv}\{vxv^* : v \in \mathcal{U}(\mathcal{M}_{\phi})\}}^{\|\cdot\|},$$

where $\mathcal{U}(\mathcal{M}_{\phi})$ denotes the unitary group on \mathcal{M}_{ϕ} .

Corollary 1 (Strong version of the Dixmier averaging process): There exists a net $\{\alpha_i\}_{i\in I} \subseteq \operatorname{conv}\{\operatorname{ad}(v) : v \in \mathcal{U}(\mathcal{M}_{\phi})\}$ such that

$$\lim_{i \in I} \|\alpha_i(x) - \phi(x) \cdot \mathbf{1}\| = 0, \quad x \in \mathcal{M}.$$

We identify \mathcal{M} with $\pi_{\phi}(\mathcal{M})$, where $(\pi_{\phi}, H_{\phi}, \xi_{\phi})$ is the GNS representation of \mathcal{M} associated to the state ϕ . Then

$$H_{\phi} := \overline{\mathcal{M}\xi_{\phi}} = L^2(\mathcal{M}, \phi)$$

By Tomita-Takesaki theory, the operator S_0 defined by

$$S_0(x\xi_\phi) = x^*\xi_\phi, \quad x \in \mathcal{M}$$

is closable. Its closure $S := \overline{S_0}$ has a unique polar decomposition

$$S = J\Delta^{1/2} \,,$$

where Δ is a positive self-adjoint unbounded operator on $L^2(\mathcal{M}, \phi)$ and J is a conjugate-linear involution. Moreover, for all $t \in \mathbb{R}$,

$$\sigma_t^{\phi}(x) = \Delta^{it} x \Delta^{-it} \,, \quad x \in \mathcal{M}$$

and $J\mathcal{M}J = \mathcal{M}'$, where \mathcal{M}' denotes the commutant of \mathcal{M} .

Theorem (Takesaki 1973):

For all $n \in \mathbb{Z}$, set

$$\mathcal{M}_n := \{ x \in \mathcal{M} : \sigma_t^{\phi}(x) = \lambda^{int} x, \ \forall t \in \mathbb{R} \}$$

= $\{ x \in \mathcal{M} : \phi(xy) = \lambda^n \phi(yx), \ \forall y \in \mathcal{M} \}.$

In particular, $\mathcal{M}_0 = \mathcal{M}_\phi$. Moreover, for all $n \in \mathbb{Z}$,

$$\mathcal{M}_n \neq \{0\}$$

and $\Delta(\eta) = \lambda^n \eta$, for every $\eta \in \overline{\mathcal{M}_n \xi_\phi}$. Furthermore,
 $L^2(\mathcal{M}, \phi) = \bigoplus_{n=-\infty}^{\infty} \overline{\mathcal{M}_n \xi_\phi}.$

Corollary 2:

For every $n \in \mathbb{Z}$, there exists $c_n \in \mathcal{M}$ such that

$$\phi(c_n^*c_n) = \lambda^{-n/2}, \quad \phi(c_nc_n^*) = \lambda^{n/2}$$

and, moreover, $\langle c_n J c_n J \xi_{\phi}, \xi_{\phi} \rangle_{H_{\phi}} = 1$.

Since \mathcal{M} is an injective factor, it follows (cf. Effros-Lance and Connes 1976) that the map $c \otimes d \mapsto cd$ ($c \in \mathcal{M}, d \in \mathcal{M}'$) extends uniquely to a C*-algebra isomorphism

$$C^*(\mathcal{M},\mathcal{M}')\simeq \mathcal{M}\otimes_{\min}\mathcal{M}'.$$

In the following, let A and B be C^{*}-algebras and let

 $u:A\times B\to \mathbb{C}$

be a jointly completely bounded bilinear form.

Lemma 3:

There is a bounded bilinear form $\widehat{u} : (A \otimes_{\min} \mathcal{M}) \times (B \otimes_{\min} \mathcal{M}') \to \mathbb{C}$ such that for all $a \in A$, $b \in B$, $c \in \mathcal{M}$, $d \in \mathcal{M}'$,

$$\widehat{u}(a \otimes c, b \otimes d) = u(a, b) \langle cd\xi_{\phi}, \xi_{\phi} \rangle_{H_{\phi}}.$$

Moreover,

$$\|\widehat{u}\| \le \|u\|_{\rm jcb}\,.$$

Proof: Consider $a_1, \ldots, a_k \in A$, $b_1, \ldots, b_l \in B$, $c_1, \ldots, c_k \in \mathcal{M}$ and $d_1, \ldots, d_l \in \mathcal{M}'$, where $k, l \in \mathbb{N}$. Then

$$\begin{aligned} \left| \sum_{i=1}^{k} \sum_{j=1}^{l} u(a_{i}, b_{j}) \langle c_{i}d_{j}\xi_{\phi}, \xi_{\phi} \rangle_{H_{\phi}} \right| \\ & \leq \left\| \sum_{i=1}^{k} \sum_{j=1}^{l} u(a_{i}, b_{j})c_{i}d_{j} \right\|_{\mathcal{B}(L^{2}(\mathcal{M}, \phi))} \\ & = \left\| \sum_{i=1}^{k} \sum_{j=1}^{l} u(a_{i}, b_{j})c_{i} \otimes d_{j} \right\|_{\mathcal{M}\otimes\min\mathcal{M}'} \\ & \leq \|u\|_{jcb} \left\| \sum_{i=1}^{k} a_{i} \otimes c_{i} \right\|_{A\otimes\min\mathcal{M}} \left\| \sum_{j=1}^{l} b_{j} \otimes d_{j} \right\|_{B\otimes\min\mathcal{M}'} \end{aligned}$$

Corollary 4:

There exist $\widehat{f}_1, \widehat{f}_2 \in S(A \otimes_{\min} \mathcal{M})$ and $\widehat{g}_1, \widehat{g}_2 \in S(B \otimes_{\min} \mathcal{M}')$ such that for all $x \in A \otimes_{\min} M$ and $y \in B \otimes_{\min} \mathcal{M}'$, $|\widehat{u}(x,y)| \leq ||u||_{\text{jcb}} (\widehat{f}_1(xx^*) + \widehat{f}_2(x^*x))^{1/2} (\widehat{g}_1(y^*y) + \widehat{g}_2(yy^*))^{1/2}.$

Lemma 5:

Let
$$v \in \mathcal{U}(\mathcal{M}_{\phi})$$
 and set $v' := JvJ \in \mathcal{M}'$. Then
 $\widehat{u}((\mathrm{Id}_A \otimes \mathrm{ad}(v))(x), (\mathrm{Id}_B \otimes \mathrm{ad}(v'))(y)) = \widehat{u}(x, y),$
for all $x \in A \otimes_{\min} \mathcal{M}$ and $y \in B \otimes_{\min} \mathcal{M}'$.

Proposition 6:

There exist
$$f_1, f_2 \in S(A), g_1, g_2 \in S(B)$$
 and $\phi' \in S(\mathcal{M}')$ so that
 $|\widehat{u}(x,y)| \leq ||u||_{\text{jcb}} \Big[((f_1 \otimes \phi)(xx^*) + (f_2 \otimes \phi)(x^*x))^{1/2} \cdot ((g_1 \otimes \phi')(y^*y) + (g_2 \otimes \phi')(yy^*))^{1/2} \Big],$

for all $x \in A \otimes_{\min} \mathcal{M}$ and $y \in B \otimes_{\min} \mathcal{M}'$.

Proof: For all $\alpha, \beta \geq 0$, $\sqrt{\alpha\beta} \leq (\alpha + \beta)/2$. By Corollary 4, it follows that for all $x \in A \otimes_{\min} \mathcal{M}$ and $y \in B \otimes_{\min} \mathcal{M}'$,

$$|\widehat{u}(x,y)| \leq \frac{1}{2} ||u||_{\text{jcb}} \left(\widehat{f}_1(xx^*) + \widehat{f}_2(x^*x) + \widehat{g}_1(y^*y) + \widehat{g}_2(yy^*) \right)$$
(3)
Let $v \in \mathcal{U}(\mathcal{M}_{\phi})$ and $v' := JvJ$. By Lemma 5 and (3),

$$\begin{aligned} |\widehat{u}(x,y)| &\leq \frac{1}{2} \|u\|_{\text{jcb}} \Big[\widehat{f}_1((\text{Id}_A \otimes \text{ad}(v))(xx^*)) + \widehat{f}_2((\text{Id}_A \otimes \text{ad}(v))(x^*x)) \\ &\quad + \widehat{g}_1((\text{Id}_B \otimes \text{ad}(v'))(y^*y)) + \widehat{g}_2((\text{Id}_B \otimes \text{ad}(v'))(yy^*)) \Big] \end{aligned}$$
(4)

Choose a net $(\alpha_i)_{i \in I} \subseteq \operatorname{conv} \{ \operatorname{ad}(v) : v \in \mathcal{U}(\mathcal{M}_{\phi}) \}$ such that

$$\lim_{i \in I} \|\alpha_i(c) - \phi(c) \cdot \mathbf{1}\| = 0, \quad c \in \mathcal{M}.$$

For $i \in I$, set $\alpha'_i(d) = J\alpha_i(JdJ)J$, for all $d \in \mathcal{M}'$.

By convexity we can replace $\operatorname{ad}(v)$ and $\operatorname{ad}(v')$ in the inequality (4) by α_i and α'_i , respectively, to get

$$\begin{aligned} |\widehat{u}(x,y)| &\leq \frac{1}{2} \|u\|_{\text{jcb}} \Big[\widehat{f}_1((\text{Id}_A \otimes \alpha_i)(xx^*)) + \widehat{f}_2((\text{Id}_A \otimes \alpha_i)(x^*x)) + \\ &\quad + \widehat{g}_1((\text{Id}_B \otimes \alpha'_i)(y^*y)) + \widehat{g}_2((\text{Id}_B \otimes \alpha'_i)(yy^*)) \Big] \,. \end{aligned}$$

In the limit, this gives the inequality

$$\begin{aligned} |\widehat{u}(x,y)| &\leq \frac{1}{2} \|u\|_{\text{jcb}} \Big[(f_1 \otimes \phi)(xx^*) + (f_2 \otimes \phi)(x^*x) + \\ &+ (g_1 \otimes \phi')(y^*y) + (g_2 \otimes \phi')(yy^*) \Big], \end{aligned}$$
(5)

where $f_i(a) := \widehat{f}_i(a \otimes \mathbf{1}), a \in A, g_i := \widehat{g}_i(b \otimes \mathbf{1}), b \in B$, for i = 1, 2and $\phi'(d) = \overline{\phi(JdJ)}$, for all $d \in \mathcal{M}'$.

Substituting x by $t^{1/2}x$ and y by $t^{-1/2}y$ in (5) for t > 0, we get

$$\begin{aligned} |\widehat{u}(x,y)| &\leq \frac{1}{2} \|u\|_{\rm jcb} \Big[t \left((f_1 \otimes \phi)(xx^*) + (f_2 \otimes \phi)(x^*x) \right) + \\ &+ t^{-1} \left((g_1 \otimes \phi')(y^*y) + (g_2 \otimes \phi')(yy^*) \right) \Big] \end{aligned}$$
(6)

Since for all $\alpha, \beta > 0$,

$$\inf_{t>0} \left(t\alpha + t^{-1}\beta \right) = 2\sqrt{\alpha\beta} \,,$$

the conclusion follows by taking infimum over t > 0 in (6).

Lemma 7:

For any $\alpha, \beta \geq 0$,

$$\inf_{n \in \mathbb{Z}} \left(\lambda^n \alpha + \lambda^{-1} \beta \right) \le \left(\lambda^{1/2} + \lambda^{-1/2} \right) \sqrt{\alpha \beta} \,.$$

Proof of the Effros-Ruan conjecture:

Let $0 < \lambda < 1$ and let (\mathcal{M}, ϕ) be the Powers factor of type III_{λ} with product state ϕ , as before. Set

$$C(\lambda) := \sqrt{(\lambda^{1/2} + \lambda^{-1/2})/2}.$$

Let $u : A \times B \to \mathbb{C}$ be a j.c.b. bilinear form on C*-algebras A, B. Let $f_1, f_2 \in S(A)$ and $g_1, g_2 \in S(B)$ be states as in Proposition 6. We will prove that for all $a \in A$ and $b \in B$,

$$|u(a,b)| \le C(\lambda) ||u||_{\rm jcb} \left(f_1(aa^*)^{\frac{1}{2}} g_1(b^*b)^{\frac{1}{2}} + f_2(a^*a)^{\frac{1}{2}} g_2(bb^*)^{\frac{1}{2}} \right)$$
(7)

that is, the Effros-Ruan conjecture holds with constant $C(\lambda)$. Since $C(\lambda) \to 1$ as $\lambda \to 1$, by a simple compactness argument it follows that the conjecture also holds with constant 1.

To prove (7), let $n \in \mathbb{Z}$ and choose $c_n \in \mathcal{M}$ as in Corollary 2. Then

$$\phi(c_n^*c_n) = \lambda^{-n/2}, \quad \phi(c_n c_n^*) = \lambda^{n/2}$$

and $\langle c_n J c_n J \xi_{\phi}, \xi_{\phi} \rangle_{H_{\phi}} = 1$.

Then, for all $a \in A$ and $b \in B$,

$$\widehat{u}(a \otimes c_n, b \otimes Jc_n J) = u(a, b) \langle c_n J c_n J \xi_\phi, \xi_\phi \rangle_{H_\phi} = u(a, b).$$

By Proposition 6, it follows that

$$\begin{aligned} |u(a,b)|^2 &= |\widehat{u}(a \otimes c_n, b \otimes Jc_n J)|^2 \\ &\leq ||u||_{jcb}^2 \Big[(f_1(aa^*)\phi(c_n c_n^*) + f_2(a^*a)\phi(c_n^* c_n)) \cdot \\ &\cdot (g_1(b^*b)\phi(c_n^* c_n) + g_2(bb^*)\phi(c_n c_n^*)) \Big] \\ &= ||u||_{jcb}^2 \Big[\left(\lambda^{n/2} f_1(aa^*) + \lambda^{-n/2} f_2(a^*a) \right) \cdot \\ &\cdot \left(\lambda^{-n/2} g_1(b^*b) + \lambda^{n/2} g_2(bb^*) \right) \Big] \\ &= ||u||_{jcb}^2 \Big[f_1(aa^*)g_1(b^*b) + f_2(a^*a)g_2(bb^*) + \\ &+ \lambda^n f_1(aa^*)g_2(bb^*) + \lambda^{-n} f_2(a^*a)g_1(b^*b) \Big] . \end{aligned}$$

Since $\lambda^{1/2} + \lambda^{-1/2} = 2C(\lambda)^2$, we deduce by Lemma 7 that

$$\begin{aligned} |u(a,b)|^2 &\leq \|u\|_{\rm jcb}^2 \Big[f_1(aa^*)g_1(b^*b) + f_2(a^*a)g_2(bb^*) + \\ &+ 2C(\lambda)^2 f_1(a^*a)^{\frac{1}{2}}g_1(b^*b)^{\frac{1}{2}}f_2(aa^*)^{\frac{1}{2}}g_2(bb^*)^{\frac{1}{2}} \Big] \\ &\leq C(\lambda)^2 \|u\|_{\rm jcb}^2 \Big[f_1(aa^*)^{\frac{1}{2}}g_1(b^*b)^{\frac{1}{2}} + f_2(a^*a)^{\frac{1}{2}}g_2(bb^*)^{\frac{1}{2}} \Big]^2, \end{aligned}$$

wherein we have used the fact that $C(\lambda) > 1$.

The inequality (7) follows now by taking square roots, and the proof is complete.