The Effros-Ruan conjecture for bilinear forms on C^{*}-algebras

(Joint work with Uffe Haagerup)

Magdalena Musat
University of Memphis

Workshop on operator spaces and quantum groups
Fields Institute, Toronto
December 11, 2007

Theorem (Grothendieck 1956):

Let K_{1} and K_{2} be compact spaces. Let $u: C\left(K_{1}\right) \times C\left(K_{2}\right) \rightarrow \mathbb{K}$ be a bounded bilinear form, where $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. Then there exist probability measures μ_{1} and μ_{2} on K_{1} and K_{2}, respectively, such that

$$
|u(f, g)| \leq K_{G}^{\mathbb{K}}\|u\|\left(\int_{K_{1}}|f|^{2} d \mu_{1}\right)^{1 / 2}\left(\int_{K_{2}}|g|^{2} d \mu_{2}\right)^{1 / 2}
$$

for all $f \in C\left(K_{1}\right)$ and $g \in C\left(K_{2}\right)$, where $K_{G}^{\mathbb{K}}$ is a universal constant.

Remarks about Grothendieck's constant $K_{G}^{\mathbb{K}}$:

- $K_{G}^{\mathbb{R}} \neq K_{G}^{\mathbb{C}}$.
- $\frac{\pi}{2} \leq K_{G}^{\mathbb{R}} \leq \frac{\pi}{2 \log (1+\sqrt{2})}=1.782 \ldots$
- $\frac{4}{\pi} \leq K_{G}^{\mathbb{C}}<1.40491$.

Theorem:

Any bounded linear operator $T: C\left(K_{1}\right) \rightarrow C\left(K_{2}\right)^{*}$ factors through a Hilbert space H,

such that $\|R\|\|S\| \leq K_{G}^{\mathbb{K}}\|T\|$.

Remark: As an interesting application, it follows that the Fourier transform $\mathcal{F}: L^{1}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})$ is not onto.

Conjecture (Grothendieck):
Let A be a C^{*}-algebra and $u: A \times A \rightarrow \mathbb{C}$ a bounded bilinear form. Then there exist $f, g \in S(A)$ such that for all $a, b \in A$,

$$
|u(a, b)| \leq k\|u\| f\left(|a|^{2}\right)^{1 / 2} g\left(|b|^{2}\right)^{1 / 2}
$$

where $|x|=\left(\frac{x^{*} x+x x^{*}}{2}\right)^{1 / 2}$, for all $x \in A$.

Grothendieck Inequality (Haagerup 1985) (extension of Pisier's result from 1978):
Let A and B be C^{*}-algebras and let $u: A \times B \rightarrow \mathbb{C}$ be a bounded bilinear form. There exist $f_{1}, f_{2} \in S(A)$ and $g_{1}, g_{2} \in S(B)$ such that

$$
|u(a, b)| \leq\|u\|\left(f_{1}\left(a a^{*}\right)+f_{2}\left(a^{*} a\right)\right)^{1 / 2}\left(g_{1}\left(b^{*} b\right)+g_{2}\left(b b^{*}\right)\right)^{1 / 2}
$$

for all $a \in A$ and $b \in B$.

Corollary (Haagerup 1985):

Any bounded linear operator $T: A \rightarrow B^{*}$, where A and B are C^{*} algebras, factors through a Hilbert space H,

such that $\|R\|\|S\| \leq 2\|T\|$.

Let A and B be C^{*}-algebras. Then A is an operator space with the C^{*}-norm on $M_{n}(A), n \in \mathbb{N}$, while B^{*} is an operator space with the isometric identification $M_{n}\left(B^{*}\right):=\mathrm{CB}\left(B, M_{n}(\mathbb{C})\right), n \in \mathbb{N}$.

Let $u: A \times B \rightarrow \mathbb{C}$ be a bounded bilinear form. There exists a unique bounded linear operator $\widetilde{u}: A \rightarrow B^{*}$ such that

$$
u(a, b)=\langle\widetilde{u}(a), b\rangle, \quad a \in A, b \in B .
$$

The bilinear form u is called jointly completely bounded (j.c.b., for short) if $\widetilde{u}: A \rightarrow B^{*}$ is completely bounded, in which case we set

$$
\|u\|_{j c b}:=\|\widetilde{u}\|_{c b} .
$$

Remark: It is easily checked that

$$
\|u\|_{\mathrm{jcb}}=\sup _{n \in \mathbb{N}}\left\|u_{n}\right\|,
$$

where $u_{n}: M_{n}(A) \otimes M_{n}(B) \rightarrow M_{n}(\mathbb{C}) \otimes M_{n}(\mathbb{C}), n \in \mathbb{N}$, is given by

$$
u_{n}\left(\sum_{i=1}^{k} a_{i} \otimes c_{i}, \sum_{j=1}^{l} b_{j} \otimes d_{j}\right)=\sum_{i=1}^{k} \sum_{j=1}^{l} u\left(a_{i}, b_{j}\right) c_{i} \otimes d_{j},
$$

for $a_{i} \in A, b_{j} \in B, c_{i}, d_{j} \in M_{n}(\mathbb{C}), k, l \in \mathbb{N}$.
Moreover, for all C^{*}-algebras $C, D, a_{i} \in A, b_{j} \in B, c_{i} \in C, d_{j} \in D$,

$$
\begin{aligned}
& \left\|\sum_{i=1}^{k} \sum_{j=1}^{l} u\left(a_{i}, b_{j}\right) c_{i} \otimes d_{j}\right\|_{C \otimes_{\min } D} \leq \\
& \|u\|_{\mathrm{j} \mathrm{jb}}\left\|_{i=1}^{k} a_{i} \otimes c_{i}\right\|_{A \otimes_{\min } C}\left\|\sum_{j=1}^{l} b_{j} \otimes d_{j}\right\|_{B \otimes_{\min } D} .
\end{aligned}
$$

(Cf. Pisier-Shlyakhtenko (Invent., 2002))

Conjecture (Effros-Ruan 1991):
Let A and B be C^{*}-algebras and let $u: A \times B \rightarrow \mathbb{C}$ be a jointly completely bounded bilinear form. Then there exist $f_{1}, f_{2} \in S(A)$ and $g_{1}, g_{2} \in S(B)$ such that for all $a \in A$ and $b \in B$,

$$
\begin{equation*}
|u(a, b)| \leq K\|u\|_{j c b}\left(f_{1}\left(a a^{*}\right)^{1 / 2} g_{1}\left(b^{*} b\right)^{1 / 2}+f_{2}\left(a^{*} a\right)^{1 / 2} g_{2}\left(b b^{*}\right)^{1 / 2}\right) \tag{1}
\end{equation*}
$$

where K is a universal constant.

Theorem (Pisier-Shlyakhtenko 2002):
Let $E \subseteq A$ and $F \subseteq F$ be exact operator spaces sitting in C^{*}-algebras A and B. Let $u: E \times F \rightarrow \mathbb{C}$ be a j.c.b. bilinear form. Then there exist $f_{1}, f_{2} \in S(A)$ and $g_{1}, g_{2} \in S(B)$ such that the inequality (1) holds for all $a \in E$ and $b \in F$ with $K=2 \sqrt{2} \operatorname{ex}(E) \operatorname{ex}(F)$.

Theorem (Pisier-Shlyakhtenko 2002):
If either A or B is an exact C^{*}-algebra and $u: A \times B \rightarrow \mathbb{C}$ is a j.c.b. bilinear form, then there exist $f_{1}, f_{2} \in S(A)$ and $g_{1}, g_{2} \in S(B)$ such that the inequality (1) holds for all $a \in A$ and $b \in B$ with $K=2 \sqrt{2}$.

Recall that an operator space E is called exact if there is $C \geq 1$ such that for every finite dimensional subspace $F \subseteq E$, there exists $n \in \mathbb{N}$ and a subspace $G \subseteq M_{n}(\mathbb{C})$ with $d_{\mathrm{cb}}(F, G) \leq C$. The infimum of all such constants C is denoted by ex (E).

Theorem (Kirchberg, Pisier): A C ${ }^{*}$-algebra is exact if and only if it is exact as an operator space. For any exact C^{*}-algebra $A, \operatorname{ex}(A)=1$.

Theorem (Haagerup-M. 2007)

The Effros-Ruan conjecture holds for arbitrary C^{*}-algebras A and B with $K=1$, and this is the best possible constant.

Corollary A:

Let A and B be C^{*}-algebras. Any completely bounded linear map $T: A \rightarrow B^{*}$ admits a factorization through $H_{r} \oplus K_{c}$, where H and K are Hilbert spaces,

satisfying $\|R\|_{c b}\|S\|_{c b} \leq 2\|T\|_{c b}$.

Corollary B:

Let A be a C^{*}-algebra. If $T: A \rightarrow O H$ is a completely bounded linear map, then there exist $f_{1}, f_{2} \in S(A)$ such that for all $a \in A$,

$$
\|T(a)\| \leq \sqrt{2}\|T\|_{c b} f_{1}\left(a a^{*}\right)^{1 / 4} f_{2}\left(a^{*} a\right)^{1 / 4} .
$$

(Only an improvement of constant in the corresponding result by PisierShlyakhtenko; they had this with constant $2^{9 / 4}$.)

Corollary C:

Let E be an operator space such that E and its dual E^{*} embed completely isomorphically into preduals M_{*} and N_{*}, respectively, of von Neumann algebras M and N. Then E is cb-isomorphic to a quotient of a subspace of $H_{r} \oplus K_{c}$, for some Hilbert spaces H and K.

Corollary D:

Let E be an operator space, and let $E \subseteq A$ and $E^{*} \subseteq B$ be completely isometric embeddings into C^{*}-algebras A and B such that both subspaces are cb-complemented. Then E is cb-isomorphic to $H_{r} \oplus K_{c}$, for some Hilbert spaces H and K.
(These are non-commutative analogues of the classical result asserting that if X is a Banach space such that both X and its dual X^{*} embed into L_{1}-spaces, then X is isomorphic to a Hilbert space. Corollaries C and D above are obtained by adjusting the proof of the corresponding results by Pisier-Shlyakhtenko.)

Corollary E:

Let A_{0}, A, B_{0} and B be C^{*}-algebras such that $A_{0} \subseteq A$ and $B_{0} \subseteq B$. Then any j.c.b. bilinear form $u_{0}: A_{0} \times B_{0} \rightarrow \mathbb{C}$ extends to a bilinear form $u: A \times B \rightarrow \mathbb{C}$ such that

$$
\|u\|_{\mathrm{jcb}} \leq 2\left\|u_{0}\right\|_{\mathrm{jcb}}
$$

Let A and B be C^{*}-algebras. Denote by $\operatorname{Bil}(A, B)$ the set of bounded bilinear forms on $A \times B$.

Lemma (Pisier-Shlyakhtenko 2002, Xu 2006):
Let $u \in \operatorname{Bil}(A, B)$. Assume that for all $a \in A$ and $b \in B$,

$$
\begin{equation*}
|u(a, b)| \leq \kappa\left(f_{1}\left(a a^{*}\right)^{1 / 2} g_{1}\left(b^{*} b\right)^{1 / 2}+f_{2}\left(a^{*} a\right)^{1 / 2} g_{2}\left(b b^{*}\right)^{1 / 2}\right) \tag{2}
\end{equation*}
$$

for some constant $\kappa \in[0, \infty]$ and some $f_{1}, f_{2} \in S(A), g_{1}, g_{2} \in S(B)$. Then u can be decomposed as $u=u_{1}+u_{2}$, where $u_{1}, u_{2} \in \operatorname{Bil}(A, B)$ such that for all $a \in A$ and $b \in B$,

$$
\begin{aligned}
\left|u_{1}(a, b)\right| & \leq \kappa f_{1}\left(a a^{*}\right)^{1 / 2} g_{1}\left(b^{*} b\right)^{1 / 2} \\
\left|u_{2}(a, b)\right| & \leq \kappa f_{2}\left(a^{*} a\right)^{1 / 2} g_{2}\left(b b^{*}\right)^{1 / 2}
\end{aligned}
$$

Definition: For $u \in \operatorname{Bil}(A, B)$, let $\|u\|_{E R} \in[0, \infty]$ be the infimum of all constants $\kappa \in[0, \infty]$ for which the inequality (2) holds, for some choice of $f_{1}, f_{2} \in S(A)$ and $g_{1}, g_{2} \in S(B)$.

Proposition:

(i) If $u \in \operatorname{Bil}(A, B)$, then $\|u\|_{E R} \leq\|u\|_{j c b} \leq 2\|u\|_{E R}$.
(ii) Let c_{1}, c_{2} denote the best constants in the inequalities

$$
c_{1}\|u\|_{E R} \leq\|u\|_{j c b} \leq c_{2}\|u\|_{E R},
$$

where A and B are arbitrary C^{*}-algebras and $u \in \operatorname{Bil}(A, B)$. Then $c_{1}=1$ and $c_{2}=2$.

Proposition:

Let $u \in \operatorname{Bil}(A, B)$ with $\|u\|_{\text {jcb }}<\infty$. Then for all C^{*}-algebras C, D, all $a_{1}, \ldots, a_{k} \in A, b_{1}, \ldots, b_{l} \in B, c_{1}, \ldots, c_{k} \in C, d_{1}, \ldots, d_{l} \in D$, where $k, l \in \mathbb{N}$,

$$
\begin{aligned}
& \left\|\sum_{i=1}^{k} \sum_{j=1}^{l} u\left(a_{i}, b_{j}\right) c_{i} \otimes d_{j}\right\|_{C \otimes_{\max } D} \leq \\
& 2\|u\|_{\mathrm{jcb}}\left\|\sum_{i=1}^{k} a_{i} \otimes c_{i}\right\|_{A \otimes_{\min } C}\left\|\sum_{j=1}^{l} b_{j} \otimes d_{j}\right\|_{B \otimes_{\min } D} .
\end{aligned}
$$

Proof: Follows from our main theorem, together with the splitting lemma above.

Let $E \subseteq A$ and $F \subseteq B$ be operator spaces sitting in C^{*}-algebras A and B. Denote by $\operatorname{Bil}(E, F)$ the set of bounded bilinear forms on $E \times F$. For any $u \in \operatorname{Bil}(E, F),\|u\|_{E R}$ is well-defined.

By the Pisier-Shlyakhtenko operator space version of Grothendieck's inequality, if E and F are exact, then for any $u \in \operatorname{Bil}(E, F)$,

$$
\|u\|_{E R} \leq 2 \sqrt{2} \operatorname{ex}(E) \operatorname{ex}(F)\|u\|_{\mathrm{jcb}} .
$$

The next result (essentially contained in Pisier-Shlyakhtenko 2002) gives a complete characterization of those maps $u \in \operatorname{Bil}(E, F)$, for which $\|u\|_{E R}<\infty$.

Theorem:

Let $u \in \operatorname{Bil}(E, F)$. The following statements are equivalent:
(i) $\|u\|_{E R}<\infty$.
(ii) There exists a constant $\delta \in[0, \infty]$ such that for all C^{*}-algebras C and D, and all $a_{1}, \ldots, a_{k} \in E, b_{1}, \ldots, b_{l} \in F, c_{1}, \ldots, c_{k} \in C$, $d_{1}, \ldots, d_{l} \in D$, where $k, l \in \mathbb{N}$,

$$
\begin{aligned}
& \left\|\sum_{i=1}^{k} \sum_{j=1}^{l} u\left(a_{i}, b_{j}\right) c_{i} \otimes d_{j}\right\|_{C \otimes_{\max } D} \leq \\
& \delta\left\|\sum_{i=1}^{k} a_{i} \otimes c_{i}\right\|_{E \otimes_{\min } C}\left\|\sum_{j=1}^{l} b_{j} \otimes d_{j}\right\|_{F \otimes_{\min } D}
\end{aligned}
$$

Moreover, if $\delta(u)$ denotes the best constant in the inequality above, then one has

$$
\frac{1}{2}\|u\|_{\mathrm{ER}} \leq \delta(u) \leq 2\|u\|_{\mathrm{ER}}
$$

Some preliminaries on Powers factors and Tomita-Takesaki theory

Let $0<\lambda<1$ be fixed, and let (\mathcal{M}, ϕ) be the Powers factor of type III_{λ} with product state ϕ, that is,

$$
(\mathcal{M}, \phi)=\bigotimes_{n=1}^{\infty}\left(M_{2}(\mathbb{C}), \omega_{\lambda}\right)
$$

where $\phi=\bigotimes_{n=1}^{\infty} \omega_{\lambda}, \omega_{\lambda}(\cdot)=\operatorname{Tr}\left(h_{\lambda} \cdot\right)$ and $h_{\lambda}=\left(\begin{array}{cc}\frac{\lambda}{1+\lambda} & 0 \\ 0 & \frac{1}{1+\lambda}\end{array}\right)$.
The modular automorphism group $\left(\sigma_{t}^{\phi}\right)_{t \in \mathbb{R}}$ of ϕ is given by

$$
\sigma_{t}^{\phi}=\bigotimes_{n=1}^{\infty} \sigma_{t}^{\omega_{\lambda}}
$$

where for any matrix $x=\left[x_{i j}\right]_{1 \leq i, j \leq 2} \in M_{2}(\mathbb{C})$ and any $t \in \mathbb{R}$,

$$
\sigma_{t}^{\omega_{\lambda}}(x)=h_{\lambda}^{i t} x h_{\lambda}^{-i t}=\left(\begin{array}{cc}
x_{11} & \lambda^{i t} x_{12} \\
\lambda^{-i t} x_{21} & x_{22}
\end{array}\right) .
$$

Therefore $\sigma_{t}^{\omega_{\lambda}}$ and σ_{t}^{ϕ} are periodic in $t \in \mathbb{R}$ with minimal period

$$
t_{0}:=-\frac{2 \pi}{\log \lambda}
$$

Let \mathcal{M}_{ϕ} denote the centralizer of ϕ, that is,

$$
\mathcal{M}_{\phi}:=\left\{x \in \mathcal{M}: \sigma_{t}^{\phi}(x)=x, \forall t \in \mathbb{R}\right\}
$$

Theorem (Connes 1973):
The relative commutant of \mathcal{M}_{ϕ} in \mathcal{M} is trivial, i.e.,

$$
\mathcal{M}_{\phi}^{\prime} \cap \mathcal{M}=\mathbb{C} 1
$$

Theorem (Haagerup 1989):
For all $x \in \mathcal{M}$,

$$
\phi(x) \cdot \mathbf{1} \in \overline{\operatorname{conv}\left\{v x v^{*}: v \in \mathcal{U}\left(\mathcal{M}_{\phi}\right)\right\}}{ }^{\|\cdot\|}
$$

where $\mathcal{U}\left(\mathcal{M}_{\phi}\right)$ denotes the unitary group on \mathcal{M}_{ϕ}.

Corollary 1 (Strong version of the Dixmier averaging process):
There exists a net $\left\{\alpha_{i}\right\}_{i \in I} \subseteq \operatorname{conv}\left\{\operatorname{ad}(v): v \in \mathcal{U}\left(\mathcal{M}_{\phi}\right)\right\}$ such that

$$
\lim _{i \in I}\left\|\alpha_{i}(x)-\phi(x) \cdot \mathbf{1}\right\|=0, \quad x \in \mathcal{M}
$$

We identify \mathcal{M} with $\pi_{\phi}(\mathcal{M})$, where $\left(\pi_{\phi}, H_{\phi}, \xi_{\phi}\right)$ is the GNS representation of \mathcal{M} associated to the state ϕ. Then

$$
H_{\phi}:=\overline{\mathcal{M} \xi_{\phi}}=L^{2}(\mathcal{M}, \phi)
$$

By Tomita-Takesaki theory, the operator S_{0} defined by

$$
S_{0}\left(x \xi_{\phi}\right)=x^{*} \xi_{\phi}, \quad x \in \mathcal{M}
$$

is closable. Its closure $S:=\overline{S_{0}}$ has a unique polar decomposition

$$
S=J \Delta^{1 / 2}
$$

where Δ is a positive self-adjoint unbounded operator on $L^{2}(\mathcal{M}, \phi)$ and J is a conjugate-linear involution.

Moreover, for all $t \in \mathbb{R}$,

$$
\sigma_{t}^{\phi}(x)=\Delta^{i t} x \Delta^{-i t}, \quad x \in \mathcal{M}
$$

and $J \mathcal{M} J=\mathcal{M}^{\prime}$, where \mathcal{M}^{\prime} denotes the commutant of \mathcal{M}.

Theorem (Takesaki 1973):
For all $n \in \mathbb{Z}$, set

$$
\begin{aligned}
\mathcal{M}_{n} & :=\left\{x \in \mathcal{M}: \sigma_{t}^{\phi}(x)=\lambda^{i n t} x, \forall t \in \mathbb{R}\right\} \\
& =\left\{x \in \mathcal{M}: \phi(x y)=\lambda^{n} \phi(y x), \forall y \in \mathcal{M}\right\} .
\end{aligned}
$$

In particular, $\mathcal{M}_{0}=\mathcal{M}_{\phi}$. Moreover, for all $n \in \mathbb{Z}$,

$$
\mathcal{M}_{n} \neq\{0\}
$$

and $\Delta(\eta)=\lambda^{n} \eta$, for every $\eta \in \overline{\mathcal{M}_{n} \xi_{\phi}}$. Furthermore,

$$
L^{2}(\mathcal{M}, \phi)=\bigoplus_{n=-\infty}^{\infty} \overline{\mathcal{M}_{n} \xi_{\phi}} .
$$

Corollary 2 :

For every $n \in \mathbb{Z}$, there exists $c_{n} \in \mathcal{M}$ such that

$$
\phi\left(c_{n}^{*} c_{n}\right)=\lambda^{-n / 2}, \quad \phi\left(c_{n} c_{n}^{*}\right)=\lambda^{n / 2}
$$

and, moreover, $\left\langle c_{n} J c_{n} J \xi_{\phi}, \xi_{\phi}\right\rangle_{H_{\phi}}=1$.

Since \mathcal{M} is an injective factor, it follows (cf. Effros-Lance and Connes 1976) that the map $c \otimes d \mapsto c d\left(c \in \mathcal{M}, d \in \mathcal{M}^{\prime}\right)$ extends uniquely to a C^{*}-algebra isomorphism

$$
C^{*}\left(\mathcal{M}, \mathcal{M}^{\prime}\right) \simeq \mathcal{M} \otimes_{\min } \mathcal{M}^{\prime}
$$

In the following, let A and B be C^{*}-algebras and let

$$
u: A \times B \rightarrow \mathbb{C}
$$

be a jointly completely bounded bilinear form.

Lemma 3:

There is a bounded bilinear form $\widehat{u}:\left(A \otimes_{\min } \mathcal{M}\right) \times\left(B \otimes_{\min } \mathcal{M}^{\prime}\right) \rightarrow \mathbb{C}$ such that for all $a \in A, b \in B, c \in \mathcal{M}, d \in \mathcal{M}^{\prime}$,

$$
\widehat{u}(a \otimes c, b \otimes d)=u(a, b)\left\langle c d \xi_{\phi}, \xi_{\phi}\right\rangle_{H_{\phi}}
$$

Moreover,

$$
\|\widehat{u}\| \leq\|u\|_{\mathrm{jcb}}
$$

Proof: Consider $a_{1}, \ldots, a_{k} \in A, b_{1}, \ldots, b_{l} \in B, c_{1}, \ldots, c_{k} \in \mathcal{M}$ and $d_{1}, \ldots, d_{l} \in \mathcal{M}^{\prime}$, where $k, l \in \mathbb{N}$. Then

$$
\left|\sum_{i=1}^{k} \sum_{j=1}^{l} u\left(a_{i}, b_{j}\right)\left\langle c_{i} d_{j} \xi_{\phi}, \xi_{\phi}\right\rangle_{H_{\phi}}\right|
$$

$$
\begin{aligned}
& \leq\left\|\sum_{i=1}^{k} \sum_{j=1}^{l} u\left(a_{i}, b_{j}\right) c_{i} d_{j}\right\|_{\mathcal{B}\left(L^{2}(\mathcal{M}, \phi)\right)} \\
& =\left\|\sum_{i=1}^{k} \sum_{j=1}^{l} u\left(a_{i}, b_{j}\right) c_{i} \otimes d_{j}\right\|_{\mathcal{M} \otimes_{\min } \mathcal{M}^{\prime}} \\
& \leq\|u\|_{\mathrm{jcb}}\left\|\sum_{i=1}^{k} a_{i} \otimes c_{i}\right\|_{A \otimes_{\min } \mathcal{M}}\left\|\sum_{j=1}^{l} b_{j} \otimes d_{j}\right\|_{B \otimes_{\min } \mathcal{M}^{\prime}} .
\end{aligned}
$$

Corollary 4:

There exist $\widehat{f}_{1}, \widehat{f_{2}} \in S\left(A \otimes_{\min } \mathcal{M}\right)$ and $\widehat{g_{1}}, \widehat{g_{2}} \in S\left(B \otimes_{\min } \mathcal{M}^{\prime}\right)$ such that for all $x \in A \otimes_{\min } M$ and $y \in B \otimes_{\min } \mathcal{M}^{\prime}$,

$$
|\widehat{u}(x, y)| \leq\|u\|_{\mathrm{jcb}}\left(\widehat{f_{1}}\left(x x^{*}\right)+\widehat{f_{2}}\left(x^{*} x\right)\right)^{1 / 2}\left(\widehat{g_{1}}\left(y^{*} y\right)+\widehat{g_{2}}\left(y y^{*}\right)\right)^{1 / 2} .
$$

Lemma 5:

Let $v \in \mathcal{U}\left(\mathcal{M}_{\phi}\right)$ and set $v^{\prime}:=J v J \in \mathcal{M}^{\prime}$. Then

$$
\widehat{u}\left(\left(\operatorname{Id}_{A} \otimes \operatorname{ad}(v)\right)(x),\left(\operatorname{Id}_{B} \otimes \operatorname{ad}\left(v^{\prime}\right)\right)(y)\right)=\widehat{u}(x, y),
$$

for all $x \in A \otimes_{\min } \mathcal{M}$ and $y \in B \otimes_{\min } \mathcal{M}^{\prime}$.

Proposition 6:

There exist $f_{1}, f_{2} \in S(A), g_{1}, g_{2} \in S(B)$ and $\phi^{\prime} \in S\left(\mathcal{M}^{\prime}\right)$ so that

$$
\begin{aligned}
|\widehat{u}(x, y)| \leq\|u\|_{\mathrm{jcb}}\left[\left(\left(f_{1} \otimes \phi\right)\left(x x^{*}\right)+\left(f_{2} \otimes \phi\right)\left(x^{*} x\right)\right)^{1 / 2}\right. \\
\left.\cdot\left(\left(g_{1} \otimes \phi^{\prime}\right)\left(y^{*} y\right)+\left(g_{2} \otimes \phi^{\prime}\right)\left(y y^{*}\right)\right)^{1 / 2}\right],
\end{aligned}
$$

for all $x \in A \otimes_{\min } \mathcal{M}$ and $y \in B \otimes_{\min } \mathcal{M}^{\prime}$.
Proof: For all $\alpha, \beta \geq 0, \sqrt{\alpha \beta} \leq(\alpha+\beta) / 2$. By Corollary 4, it follows that for all $x \in A \otimes_{\min } \mathcal{M}$ and $y \in B \otimes_{\min } \mathcal{M}^{\prime}$,

$$
\begin{equation*}
|\widehat{u}(x, y)| \leq \frac{1}{2}\|u\|_{\mathrm{jcb}}\left(\widehat{f}_{1}\left(x x^{*}\right)+\widehat{f}_{2}\left(x^{*} x\right)+\widehat{g_{1}}\left(y^{*} y\right)+\widehat{g_{2}}\left(y y^{*}\right)\right) \tag{3}
\end{equation*}
$$

Let $v \in \mathcal{U}\left(\mathcal{M}_{\phi}\right)$ and $v^{\prime}:=J v J$. By Lemma 5 and (3),

$$
\begin{align*}
|\widehat{u}(x, y)| \leq & \frac{1}{2}\|u\|_{\mathrm{jcb}}\left[\widehat{f}_{1}\left(\left(\operatorname{Id}_{A} \otimes \operatorname{ad}(v)\right)\left(x x^{*}\right)\right)+\widehat{f}_{2}\left(\left(\operatorname{Id}_{A} \otimes \operatorname{ad}(v)\right)\left(x^{*} x\right)\right)\right. \\
& \left.+\widehat{g}_{1}\left(\left(\operatorname{Id}_{B} \otimes \operatorname{ad}\left(v^{\prime}\right)\right)\left(y^{*} y\right)\right)+\widehat{g}_{2}\left(\left(\operatorname{Id}_{B} \otimes \operatorname{ad}\left(v^{\prime}\right)\right)\left(y y^{*}\right)\right)\right] \tag{4}
\end{align*}
$$

Choose a net $\left(\alpha_{i}\right)_{i \in I} \subseteq \operatorname{conv}\left\{\operatorname{ad}(v): v \in \mathcal{U}\left(\mathcal{M}_{\phi}\right)\right\}$ such that

$$
\lim _{i \in I}\left\|\alpha_{i}(c)-\phi(c) \cdot \mathbf{1}\right\|=0, \quad c \in \mathcal{M}
$$

For $i \in I$, set $\alpha_{i}^{\prime}(d)=J \alpha_{i}(J d J) J$, for all $d \in \mathcal{M}^{\prime}$.
By convexity we can replace $\operatorname{ad}(v)$ and $\operatorname{ad}\left(v^{\prime}\right)$ in the inequality (4) by α_{i} and α_{i}^{\prime}, respectively, to get

$$
\begin{aligned}
|\widehat{u}(x, y)| \leq \frac{1}{2}\|u\|_{\mathrm{jcb}}[& \widehat{f}_{1}\left(\left(\operatorname{Id}_{A} \otimes \alpha_{i}\right)\left(x x^{*}\right)\right)+\widehat{f}_{2}\left(\left(\operatorname{Id}_{A} \otimes \alpha_{i}\right)\left(x^{*} x\right)\right)+ \\
& \left.+\widehat{g}_{1}\left(\left(\operatorname{Id}_{B} \otimes \alpha_{i}^{\prime}\right)\left(y^{*} y\right)\right)+\widehat{g}_{2}\left(\left(\operatorname{Id}_{B} \otimes \alpha_{i}^{\prime}\right)\left(y y^{*}\right)\right)\right] .
\end{aligned}
$$

In the limit, this gives the inequality

$$
\begin{align*}
|\widehat{u}(x, y)| \leq \frac{1}{2}\|u\|_{\mathrm{jcb}}[& \left(f_{1} \otimes \phi\right)\left(x x^{*}\right)+\left(f_{2} \otimes \phi\right)\left(x^{*} x\right)+ \\
& \left.+\left(g_{1} \otimes \phi^{\prime}\right)\left(y^{*} y\right)+\left(g_{2} \otimes \phi^{\prime}\right)\left(y y^{*}\right)\right] \tag{5}
\end{align*}
$$

where $f_{i}(a):=\widehat{f}_{i}(a \otimes \mathbf{1}), a \in A, g_{i}:=\widehat{g}_{i}(b \otimes \mathbf{1}), b \in B$, for $i=1,2$ and $\phi^{\prime}(d)=\overline{\phi(J d J)}$, for all $d \in \mathcal{M}^{\prime}$.

Substituting x by $t^{1 / 2} x$ and y by $t^{-1 / 2} y$ in (5) for $t>0$, we get

$$
\begin{align*}
|\widehat{u}(x, y)| \leq \frac{1}{2}\|u\|_{\mathrm{jcb}}[& t\left(\left(f_{1} \otimes \phi\right)\left(x x^{*}\right)+\left(f_{2} \otimes \phi\right)\left(x^{*} x\right)\right)+ \\
& \left.+t^{-1}\left(\left(g_{1} \otimes \phi^{\prime}\right)\left(y^{*} y\right)+\left(g_{2} \otimes \phi^{\prime}\right)\left(y y^{*}\right)\right)\right] \tag{6}
\end{align*}
$$

Since for all $\alpha, \beta>0$,

$$
\inf _{t>0}\left(t \alpha+t^{-1} \beta\right)=2 \sqrt{\alpha \beta}
$$

the conclusion follows by taking infimum over $t>0$ in (6).

Lemma 7:

For any $\alpha, \beta \geq 0$,

$$
\inf _{n \in \mathbb{Z}}\left(\lambda^{n} \alpha+\lambda^{-1} \beta\right) \leq\left(\lambda^{1 / 2}+\lambda^{-1 / 2}\right) \sqrt{\alpha \beta}
$$

Proof of the Effros-Ruan conjecture:

Let $0<\lambda<1$ and let (\mathcal{M}, ϕ) be the Powers factor of type III_{λ} with product state ϕ, as before. Set

$$
C(\lambda):=\sqrt{\left(\lambda^{1 / 2}+\lambda^{-1 / 2}\right) / 2}
$$

Let $u: A \times B \rightarrow \mathbb{C}$ be a j.c.b. bilinear form on C^{*}-algebras A, B. Let $f_{1}, f_{2} \in S(A)$ and $g_{1}, g_{2} \in S(B)$ be states as in Proposition 6. We will prove that for all $a \in A$ and $b \in B$,

$$
\begin{equation*}
|u(a, b)| \leq C(\lambda)\|u\|_{\mathrm{jcb}}\left(f_{1}\left(a a^{*}\right)^{\frac{1}{2}} g_{1}\left(b^{*} b\right)^{\frac{1}{2}}+f_{2}\left(a^{*} a\right)^{\frac{1}{2}} g_{2}\left(b b^{*}\right)^{\frac{1}{2}}\right) \tag{7}
\end{equation*}
$$

that is, the Effros-Ruan conjecture holds with constant $C(\lambda)$. Since $C(\lambda) \rightarrow 1$ as $\lambda \rightarrow 1$, by a simple compactness argument it follows that the conjecture also holds with constant 1.

To prove (7), let $n \in \mathbb{Z}$ and choose $c_{n} \in \mathcal{M}$ as in Corollary 2. Then

$$
\phi\left(c_{n}^{*} c_{n}\right)=\lambda^{-n / 2}, \quad \phi\left(c_{n} c_{n}^{*}\right)=\lambda^{n / 2}
$$

and $\left\langle c_{n} J c_{n} J \xi_{\phi}, \xi_{\phi}\right\rangle_{H_{\phi}}=1$.
Then, for all $a \in A$ and $b \in B$,

$$
\widehat{u}\left(a \otimes c_{n}, b \otimes J c_{n} J\right)=u(a, b)\left\langle c_{n} J c_{n} J \xi_{\phi}, \xi_{\phi}\right\rangle_{H_{\phi}}=u(a, b) .
$$

By Proposition 6, it follows that

$$
\begin{aligned}
&|u(a, b)|^{2}=\left|\widehat{u}\left(a \otimes c_{n}, b \otimes J c_{n} J\right)\right|^{2} \\
& \leq\|u\|_{\mathrm{jcb}}^{2}\left[\left(f_{1}\left(a a^{*}\right) \phi\left(c_{n} c_{n}^{*}\right)+f_{2}\left(a^{*} a\right) \phi\left(c_{n}^{*} c_{n}\right)\right) \cdot\right. \\
&\left.\cdot\left(g_{1}\left(b^{*} b\right) \phi\left(c_{n}^{*} c_{n}\right)+g_{2}\left(b b^{*}\right) \phi\left(c_{n} c_{n}^{*}\right)\right)\right] \\
&=\|u\|_{\mathrm{jcb}}^{2}\left[\left(\lambda^{n / 2} f_{1}\left(a a^{*}\right)+\lambda^{-n / 2} f_{2}\left(a^{*} a\right)\right) \cdot\right. \\
&\left.\cdot\left(\lambda^{-n / 2} g_{1}\left(b^{*} b\right)+\lambda^{n / 2} g_{2}\left(b b^{*}\right)\right)\right] \\
&=\|u\|_{\mathrm{jcb}}^{2}\left[f_{1}\left(a a^{*}\right) g_{1}\left(b^{*} b\right)+f_{2}\left(a^{*} a\right) g_{2}\left(b b^{*}\right)+\right. \\
&\left.+\lambda^{n} f_{1}\left(a a^{*}\right) g_{2}\left(b b^{*}\right)+\lambda^{-n} f_{2}\left(a^{*} a\right) g_{1}\left(b^{*} b\right)\right] .
\end{aligned}
$$

Since $\lambda^{1 / 2}+\lambda^{-1 / 2}=2 C(\lambda)^{2}$, we deduce by Lemma 7 that

$$
\begin{aligned}
&|u(a, b)|^{2} \leq\|u\|_{\mathrm{jcb}}^{2}\left[f_{1}\left(a a^{*}\right) g_{1}\left(b^{*} b\right)+f_{2}\left(a^{*} a\right) g_{2}\left(b b^{*}\right)+\right. \\
&\left.+2 C(\lambda)^{2} f_{1}\left(a^{*} a\right)^{\frac{1}{2}} g_{1}\left(b^{*} b\right)^{\frac{1}{2}} f_{2}\left(a a^{*}\right)^{\frac{1}{2}} g_{2}\left(b b^{*}\right)^{\frac{1}{2}}\right] \\
& \leq C(\lambda)^{2}\|u\|_{\mathrm{jcb}}^{2}\left[f_{1}\left(a a^{*}\right)^{\frac{1}{2}} g_{1}\left(b^{*} b\right)^{\frac{1}{2}}+f_{2}\left(a^{*} a\right)^{\frac{1}{2}} g_{2}\left(b b^{*}\right)^{\frac{1}{2}}\right]^{2}
\end{aligned}
$$

wherein we have used the fact that $C(\lambda)>1$.

The inequality (7) follows now by taking square roots, and the proof is complete.

