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Theorem (Grothendieck 1956):

Let K1 and K2 be compact spaces. Let u : C(K1) × C(K2) → K
be a bounded bilinear form, where K = R or C . Then there exist

probability measures µ1 and µ2 on K1 and K2 , respectively, such that

|u(f, g)| ≤ KK
G‖u‖

(∫

K1

|f |2 dµ1

)1/2 (∫

K2

|g|2 dµ2

)1/2

for all f ∈ C(K1) and g ∈ C(K2) , where KK
G is a universal constant.

Remarks about Grothendieck’s constant KK
G :

• KR
G 6= KC

G .

• π
2 ≤ KR

G ≤ π
2 log(1+

√
2)

= 1.782...

• 4
π ≤ KC

G < 1.40491 .

Theorem:

Any bounded linear operator T : C(K1) → C(K2)
∗ factors through a

Hilbert space H ,

C(K1)
T //

R ##GGGGGGGGG
C(K2)

∗

H
S

::uuuuuuuuu

such that ‖R‖‖S‖ ≤ KK
G‖T‖ .

Remark: As an interesting application, it follows that the Fourier

transform F : L1(R) → C0(R) is not onto.
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Conjecture (Grothendieck):

Let A be a C∗-algebra and u : A × A → C a bounded bilinear form.

Then there exist f , g ∈ S(A) such that for all a , b ∈ A ,

|u(a, b)| ≤ k‖u‖f (|a|2)1/2g(|b|2)1/2,

where |x| =
(

x∗x+xx∗
2

)1/2
, for all x ∈ A .

Grothendieck Inequality (Haagerup 1985) (extension of Pisier’s

result from 1978):

Let A and B be C∗-algebras and let u : A × B → C be a bounded

bilinear form. There exist f1 , f2 ∈ S(A) and g1 , g2 ∈ S(B) such that

|u(a, b)| ≤ ‖u‖(f1(aa∗) + f2(a
∗a))1/2(g1(b

∗b) + g2(bb
∗))1/2 ,

for all a ∈ A and b ∈ B .

Corollary (Haagerup 1985):

Any bounded linear operator T : A → B∗ , where A and B are C∗-
algebras, factors through a Hilbert space H ,

A
T //

R ÃÃA
AA

AA
AA

B∗

H
S

=={{{{{{{{

such that ‖R‖‖S‖ ≤ 2‖T‖ .
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Let A and B be C∗-algebras. Then A is an operator space with the

C∗-norm on Mn(A) , n ∈ N , while B∗ is an operator space with the

isometric identification Mn(B∗) := CB(B,Mn(C)) , n ∈ N.

Let u : A×B → C be a bounded bilinear form. There exists a unique

bounded linear operator ũ : A → B∗ such that

u(a, b) = 〈ũ(a) , b〉 , a ∈ A , b ∈ B .

The bilinear form u is called jointly completely bounded (j.c.b., for

short) if ũ : A → B∗ is completely bounded, in which case we set

‖u‖jcb := ‖ũ‖cb .

Remark: It is easily checked that

‖u‖jcb = sup
n∈N

‖un‖ ,

where un : Mn(A)⊗Mn(B) → Mn(C)⊗Mn(C) , n ∈ N, is given by

un




k∑
i=1

ai ⊗ ci ,

l∑
j=1

bj ⊗ dj


 =

k∑
i=1

l∑
j=1

u(ai, bj)ci ⊗ dj ,

for ai ∈ A , bj ∈ B , ci , dj ∈ Mn(C) , k , l ∈ N .

Moreover, for all C∗-algebras C ,D , ai ∈ A , bj ∈ B , ci ∈ C , dj ∈ D ,∥∥∥∥∥∥

k∑
i=1

l∑
j=1

u(ai , bj)ci ⊗ dj

∥∥∥∥∥∥
C⊗minD

≤

‖u‖jcb

∥∥∥∥∥
k∑

i=1

ai ⊗ ci

∥∥∥∥∥
A⊗minC

∥∥∥∥∥∥

l∑
j=1

bj ⊗ dj

∥∥∥∥∥∥
B⊗minD

.

(Cf. Pisier-Shlyakhtenko (Invent., 2002))
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Conjecture (Effros-Ruan 1991):

Let A and B be C∗-algebras and let u : A × B → C be a jointly

completely bounded bilinear form. Then there exist f1 , f2 ∈ S(A)

and g1 , g2 ∈ S(B) such that for all a ∈ A and b ∈ B ,

|u(a, b)| ≤ K‖u‖jcb

(
f1(aa∗)1/2g1(b

∗b)1/2 + f2(a
∗a)1/2g2(bb

∗)1/2
)

(1)

where K is a universal constant.

Theorem (Pisier-Shlyakhtenko 2002):

Let E ⊆ A and F ⊆ F be exact operator spaces sitting in C∗-algebras

A and B . Let u : E × F → C be a j.c.b. bilinear form. Then there

exist f1 , f2 ∈ S(A) and g1 , g2 ∈ S(B) such that the inequality (1)

holds for all a ∈ E and b ∈ F with K = 2
√

2 ex(E)ex(F ) .

Theorem (Pisier-Shlyakhtenko 2002):

If either A or B is an exact C∗-algebra and u : A×B → C is a j.c.b.

bilinear form, then there exist f1 , f2 ∈ S(A) and g1 , g2 ∈ S(B) such

that the inequality (1) holds for all a ∈ A and b ∈ B with K = 2
√

2 .

Recall that an operator space E is called exact if there is C ≥ 1 such

that for every finite dimensional subspace F ⊆ E , there exists n ∈ N
and a subspace G ⊆ Mn(C) with dcb(F, G) ≤ C . The infimum of all

such constants C is denoted by ex(E) .

Theorem (Kirchberg, Pisier): A C∗-algebra is exact if and only if it

is exact as an operator space. For any exact C∗-algebra A , ex(A) = 1.
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Theorem (Haagerup-M. 2007)

The Effros-Ruan conjecture holds for arbitrary C∗-algebras A and B

with K = 1 , and this is the best possible constant.

Corollary A:

Let A and B be C∗-algebras. Any completely bounded linear map

T : A → B∗ admits a factorization through Hr ⊕Kc , where H and

K are Hilbert spaces,

A
T //

R %%JJJJJJJJJJ B∗

Hr ⊕Kc

S

99ssssssssss

satisfying ‖R‖cb‖S‖cb ≤ 2‖T‖cb .

Corollary B:

Let A be a C∗-algebra. If T : A → OH is a completely bounded linear

map, then there exist f1 , f2 ∈ S(A) such that for all a ∈ A ,

‖T (a)‖ ≤
√

2‖T‖cbf1(aa∗)1/4f2(a
∗a)1/4 .

(Only an improvement of constant in the corresponding result by Pisier-

Shlyakhtenko; they had this with constant 29/4 .)
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Corollary C:

Let E be an operator space such that E and its dual E∗ embed com-

pletely isomorphically into preduals M∗ and N∗ , respectively, of von

Neumann algebras M and N . Then E is cb-isomorphic to a quotient

of a subspace of Hr ⊕Kc , for some Hilbert spaces H and K .

Corollary D:

Let E be an operator space, and let E ⊆ A and E∗ ⊆ B be com-

pletely isometric embeddings into C∗-algebras A and B such that both

subspaces are cb-complemented. Then E is cb-isomorphic to Hr⊕Kc ,

for some Hilbert spaces H and K .

(These are non-commutative analogues of the classical result asserting

that if X is a Banach space such that both X and its dual X∗ embed

into L1-spaces, then X is isomorphic to a Hilbert space. Corollaries C

and D above are obtained by adjusting the proof of the corresponding

results by Pisier-Shlyakhtenko.)

Corollary E:

Let A0 , A , B0 and B be C∗-algebras such that A0 ⊆ A and B0 ⊆ B .

Then any j.c.b. bilinear form u0 : A0 × B0 → C extends to a bilinear

form u : A×B → C such that

‖u‖jcb ≤ 2‖u0‖jcb .
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Let A and B be C∗-algebras. Denote by Bil(A , B) the set of bounded

bilinear forms on A×B .

Lemma (Pisier-Shlyakhtenko 2002, Xu 2006):

Let u ∈ Bil(A , B) . Assume that for all a ∈ A and b ∈ B ,

|u(a, b)| ≤ κ
(
f1(aa∗)1/2g1(b

∗b)1/2 + f2(a
∗a)1/2g2(bb

∗)1/2
)

(2)

for some constant κ ∈ [0,∞] and some f1 , f2 ∈ S(A) , g1 , g2 ∈ S(B) .

Then u can be decomposed as u = u1 + u2 , where u1 , u2 ∈ Bil(A , B)

such that for all a ∈ A and b ∈ B ,

|u1(a , b)| ≤ κf1(aa∗)1/2g1(b
∗b)1/2

|u2(a , b)| ≤ κf2(a
∗a)1/2g2(bb

∗)1/2.

Definition: For u ∈ Bil(A , B) , let ‖u‖ER ∈ [0,∞] be the infimum

of all constants κ ∈ [0,∞] for which the inequality (2) holds, for some

choice of f1 , f2 ∈ S(A) and g1 , g2 ∈ S(B) .

Proposition:

(i) If u ∈ Bil(A , B) , then ‖u‖ER ≤ ‖u‖jcb ≤ 2‖u‖ER .

(ii) Let c1 , c2 denote the best constants in the inequalities

c1‖u‖ER ≤ ‖u‖jcb ≤ c2‖u‖ER ,

where A and B are arbitrary C∗-algebras and u ∈ Bil(A , B) . Then

c1 = 1 and c2 = 2 .
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Proposition:

Let u ∈ Bil(A , B) with ‖u‖jcb < ∞. Then for all C∗-algebras C , D ,

all a1, . . . , ak ∈ A , b1, . . . , bl ∈ B , c1, . . . , ck ∈ C , d1, . . . , dl ∈ D ,

where k , l ∈ N ,
∥∥∥∥∥∥

k∑
i=1

l∑
j=1

u(ai , bj)ci ⊗ dj

∥∥∥∥∥∥
C⊗maxD

≤

2‖u‖jcb

∥∥∥∥∥
k∑

i=1

ai ⊗ ci

∥∥∥∥∥
A⊗minC

∥∥∥∥∥∥

l∑
j=1

bj ⊗ dj

∥∥∥∥∥∥
B⊗minD

.

Proof: Follows from our main theorem, together with the splitting

lemma above.

Let E ⊆ A and F ⊆ B be operator spaces sitting in C∗-algebras A

and B . Denote by Bil(E ,F ) the set of bounded bilinear forms on

E × F . For any u ∈ Bil(E ,F ) , ‖u‖ER is well-defined.

By the Pisier-Shlyakhtenko operator space version of Grothendieck’s

inequality, if E and F are exact, then for any u ∈ Bil(E ,F ) ,

‖u‖ER ≤ 2
√

2 ex(E)ex(F )‖u‖jcb .

9



The next result (essentially contained in Pisier–Shlyakhtenko 2002)

gives a complete characterization of those maps u ∈ Bil(E ,F ) , for

which ‖u‖ER < ∞ .

Theorem:

Let u ∈ Bil(E , F ). The following statements are equivalent:

(i) ‖u‖ER < ∞ .

(ii) There exists a constant δ ∈ [0,∞] such that for all C∗-algebras C

and D , and all a1, . . . , ak ∈ E, b1, . . . , bl ∈ F , c1, . . . , ck ∈ C,

d1, . . . , dl ∈ D , where k , l ∈ N ,
∥∥∥∥∥∥

k∑
i=1

l∑
j=1

u(ai , bj)ci ⊗ dj

∥∥∥∥∥∥
C⊗maxD

≤

δ

∥∥∥∥∥
k∑

i=1

ai ⊗ ci

∥∥∥∥∥
E⊗minC

∥∥∥∥∥∥

l∑
j=1

bj ⊗ dj

∥∥∥∥∥∥
F⊗minD

.

Moreover, if δ(u) denotes the best constant in the inequality above,

then one has
1

2
‖u‖ER ≤ δ(u) ≤ 2‖u‖ER .

10



Some preliminaries on Powers factors and Tomita-Takesaki theory

Let 0 < λ < 1 be fixed, and let (M , φ) be the Powers factor of type

IIIλ with product state φ , that is,

(M , φ) =

∞⊗
n=1

(M2(C) , ωλ) ,

where φ =
⊗∞

n=1 ωλ , ωλ( · ) = Tr(hλ · ) and hλ =

(
λ

1+λ 0

0 1
1+λ

)
.

The modular automorphism group (σφ
t )t∈R of φ is given by

σφ
t =

∞⊗
n=1

σ
ωλ
t ,

where for any matrix x = [xij]1≤i,j≤2 ∈ M2(C) and any t ∈ R ,

σ
ωλ
t (x) = hit

λxh−it
λ =

(
x11 λitx12

λ−itx21 x22

)
.

Therefore σ
ωλ
t and σφ

t are periodic in t ∈ R with minimal period

t0 := − 2π

log λ
.

Let Mφ denote the centralizer of φ , that is,

Mφ := {x ∈M : σφ
t (x) = x , ∀t ∈ R} .
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Theorem (Connes 1973):

The relative commutant of Mφ in M is trivial, i.e.,

M′
φ ∩M = C1 .

Theorem (Haagerup 1989):

For all x ∈M ,

φ(x) · 1 ∈ conv{vxv∗ : v ∈ U(Mφ)}‖·‖ ,

where U(Mφ) denotes the unitary group on Mφ .

Corollary 1 (Strong version of the Dixmier averaging process):

There exists a net {αi}i∈I ⊆ conv{ad(v) : v ∈ U(Mφ)} such that

lim
i∈I
‖αi(x)− φ(x) · 1‖ = 0 , x ∈M .

We identify M with πφ(M) , where (πφ , Hφ , ξφ) is the GNS represen-

tation of M associated to the state φ . Then

Hφ := Mξφ = L2(M , φ) .

By Tomita-Takesaki theory, the operator S0 defined by

S0(xξφ) = x∗ξφ , x ∈M
is closable. Its closure S := S0 has a unique polar decomposition

S = J∆1/2 ,

where ∆ is a positive self-adjoint unbounded operator on L2(M , φ)

and J is a conjugate-linear involution.
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Moreover, for all t ∈ R ,

σφ
t (x) = ∆itx∆−it , x ∈M

and JMJ = M′ , where M′ denotes the commutant of M .

Theorem (Takesaki 1973):

For all n ∈ Z , set

Mn := {x ∈M : σφ
t (x) = λintx , ∀t ∈ R}

= {x ∈M : φ(xy) = λnφ(yx) , ∀y ∈M} .

In particular, M0 = Mφ . Moreover, for all n ∈ Z ,

Mn 6= {0}
and ∆(η) = λnη , for every η ∈Mnξφ . Furthermore,

L2(M , φ) =

∞⊕
n=−∞

Mnξφ .

Corollary 2:

For every n ∈ Z , there exists cn ∈M such that

φ(c∗ncn) = λ−n/2 , φ(cnc
∗
n) = λn/2

and, moreover, 〈cnJcnJξφ , ξφ〉Hφ
= 1 .

Since M is an injective factor, it follows (cf. Effros-Lance and Connes

1976) that the map c ⊗ d 7→ cd (c ∈ M , d ∈ M′) extends uniquely

to a C∗-algebra isomorphism

C∗(M ,M′) 'M⊗min M′ .
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In the following, let A and B be C∗-algebras and let

u : A×B → C
be a jointly completely bounded bilinear form.

Lemma 3:

There is a bounded bilinear form û : (A⊗minM)× (B⊗minM′) → C
such that for all a ∈ A , b ∈ B , c ∈M , d ∈M′ ,

û(a⊗ c , b⊗ d) = u(a , b)〈cdξφ , ξφ〉Hφ
.

Moreover,

‖û‖ ≤ ‖u‖jcb .

Proof: Consider a1, . . . , ak ∈ A , b1, . . . , bl ∈ B , c1, . . . , ck ∈M and

d1, . . . , dl ∈M′ , where k, l ∈ N . Then∣∣∣∣∣∣

k∑
i=1

l∑
j=1

u(ai , bj)〈cidjξφ , ξφ〉Hφ

∣∣∣∣∣∣

≤
∥∥∥∥∥∥

k∑
i=1

l∑
j=1

u(ai , bj)cidj

∥∥∥∥∥∥
B(L2(M ,φ))

=

∥∥∥∥∥∥

k∑
i=1

l∑
j=1

u(ai , bj)ci ⊗ dj

∥∥∥∥∥∥
M⊗minM′

≤ ‖u‖jcb

∥∥∥∥∥
k∑

i=1

ai ⊗ ci

∥∥∥∥∥
A⊗minM

∥∥∥∥∥∥

l∑
j=1

bj ⊗ dj

∥∥∥∥∥∥
B⊗minM′

.
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Corollary 4:

There exist f̂1 , f̂2 ∈ S(A ⊗min M) and ĝ1 , ĝ2 ∈ S(B ⊗min M′) such

that for all x ∈ A⊗min M and y ∈ B ⊗min M′ ,

|û(x, y)| ≤ ‖u‖jcb(f̂1(xx∗) + f̂2(x
∗x))1/2(ĝ1(y

∗y) + ĝ2(yy∗))1/2 .

Lemma 5:

Let v ∈ U(Mφ) and set v′ := JvJ ∈M′ . Then

û((IdA ⊗ ad(v))(x) , (IdB ⊗ ad(v′))(y)) = û(x , y) ,

for all x ∈ A⊗min M and y ∈ B ⊗min M′ .

Proposition 6:

There exist f1 , f2 ∈ S(A) , g1 , g2 ∈ S(B) and φ′ ∈ S(M′) so that

|û(x, y)| ≤ ‖u‖jcb

[
((f1 ⊗ φ)(xx∗) + (f2 ⊗ φ)(x∗x))1/2 ·
· ((g1 ⊗ φ′)(y∗y) + (g2 ⊗ φ′)(yy∗))1/2

]
,

for all x ∈ A⊗min M and y ∈ B ⊗min M′ .

Proof: For all α , β ≥ 0 ,
√

αβ ≤ (α + β)/2 . By Corollary 4, it

follows that for all x ∈ A⊗min M and y ∈ B ⊗min M′ ,

|û(x, y)| ≤ 1

2
‖u‖jcb

(
f̂1(xx∗) + f̂2(x

∗x) + ĝ1(y
∗y) + ĝ2(yy∗)

)
(3)

Let v ∈ U(Mφ) and v′ := JvJ . By Lemma 5 and (3) ,

|û(x, y)| ≤ 1

2
‖u‖jcb

[
f̂1((IdA ⊗ ad(v))(xx∗)) + f̂2((IdA ⊗ ad(v))(x∗x))

+ĝ1((IdB ⊗ ad(v′))(y∗y)) + ĝ2((IdB ⊗ ad(v′))(yy∗))
]

(4)
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Choose a net (αi)i∈I ⊆ conv{ad(v) : v ∈ U(Mφ)} such that

lim
i∈I
‖αi(c)− φ(c) · 1‖ = 0 , c ∈M .

For i ∈ I , set α′i(d) = Jαi(JdJ)J , for all d ∈M′ .

By convexity we can replace ad(v) and ad(v′) in the inequality (4) by

αi and α′i , respectively, to get

|û(x, y)| ≤ 1

2
‖u‖jcb

[
f̂1((IdA ⊗ αi)(xx∗)) + f̂2((IdA ⊗ αi)(x

∗x)) +

+ĝ1((IdB ⊗ α′i)(y
∗y)) + ĝ2((IdB ⊗ α′i)(yy∗))

]
.

In the limit, this gives the inequality

|û(x, y)| ≤ 1

2
‖u‖jcb

[
(f1 ⊗ φ)(xx∗) + (f2 ⊗ φ)(x∗x) +

+(g1 ⊗ φ′)(y∗y) + (g2 ⊗ φ′)(yy∗)
]
, (5)

where fi(a) := f̂i(a⊗ 1) , a ∈ A , gi := ĝi(b⊗ 1) , b ∈ B , for i = 1 , 2

and φ′(d) = φ(JdJ) , for all d ∈M′ .

Substituting x by t1/2x and y by t−1/2y in (5) for t > 0 , we get

|û(x, y)| ≤ 1

2
‖u‖jcb

[
t ((f1 ⊗ φ)(xx∗) + (f2 ⊗ φ)(x∗x)) +

+t−1 ((g1 ⊗ φ′)(y∗y) + (g2 ⊗ φ′)(yy∗))
]

(6)

Since for all α , β > 0 ,

inf
t>0

(tα + t−1β) = 2
√

αβ ,

the conclusion follows by taking infimum over t > 0 in (6). ¤
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Lemma 7:

For any α , β ≥ 0 ,

inf
n∈Z

(λnα + λ−1β) ≤ (λ1/2 + λ−1/2)
√

αβ .

Proof of the Effros-Ruan conjecture:

Let 0 < λ < 1 and let (M , φ) be the Powers factor of type IIIλ with

product state φ , as before. Set

C(λ) :=
√(

λ1/2 + λ−1/2
)
/2 .

Let u : A × B → C be a j.c.b. bilinear form on C∗-algebras A , B .

Let f1 , f2 ∈ S(A) and g1 , g2 ∈ S(B) be states as in Proposition 6.

We will prove that for all a ∈ A and b ∈ B ,

|u(a, b)| ≤ C(λ)‖u‖jcb

(
f1(aa∗)

1
2g1(b

∗b)
1
2 + f2(a

∗a)
1
2g2(bb

∗)
1
2

)
(7)

that is, the Effros-Ruan conjecture holds with constant C(λ) . Since

C(λ) → 1 as λ → 1 , by a simple compactness argument it follows

that the conjecture also holds with constant 1.

To prove (7) , let n ∈ Z and choose cn ∈M as in Corollary 2. Then

φ(c∗ncn) = λ−n/2 , φ(cnc
∗
n) = λn/2

and 〈cnJcnJξφ , ξφ〉Hφ
= 1 .

Then, for all a ∈ A and b ∈ B ,

û(a⊗ cn , b⊗ JcnJ) = u(a , b)〈cnJcnJξφ , ξφ〉Hφ
= u(a, b) .
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By Proposition 6, it follows that

|u(a, b)|2 = |û(a⊗ cn , b⊗ JcnJ)|2
≤ ‖u‖2

jcb

[
(f1(aa∗)φ(cnc

∗
n) + f2(a

∗a)φ(c∗ncn)) ·
· (g1(b

∗b)φ(cn
∗cn) + g2(bb

∗)φ(cncn
∗))

]

= ‖u‖2
jcb

[ (
λn/2f1(aa∗) + λ−n/2f2(a

∗a)
)
·

·
(
λ−n/2g1(b

∗b) + λn/2g2(bb
∗)

) ]

= ‖u‖2
jcb

[
f1(aa∗)g1(b

∗b) + f2(a
∗a)g2(bb

∗) +

+λnf1(aa∗)g2(bb
∗) + λ−nf2(a

∗a)g1(b
∗b)

]
.

Since λ1/2 + λ−1/2 = 2C(λ)2 , we deduce by Lemma 7 that

|u(a, b)|2 ≤ ‖u‖2
jcb

[
f1(aa∗)g1(b

∗b) + f2(a
∗a)g2(bb

∗) +

+2C(λ)2f1(a
∗a)

1
2g1(b

∗b)
1
2f2(aa∗)

1
2g2(bb

∗)
1
2

]

≤ C(λ)2‖u‖2
jcb

[
f1(aa∗)

1
2g1(b

∗b)
1
2 + f2(a

∗a)
1
2g2(bb

∗)
1
2

]2

,

wherein we have used the fact that C(λ) > 1 .

The inequality (7) follows now by taking square roots, and the proof is

complete.
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