The Effros-Ruan conjecture for bilinear forms on
C*-algebras
(Joint work with Uffe Haagerup)

Magdalena Musat
University of Memphis

Workshop on operator spaces and quantum groups

Fields Institute, Toronto
December 11, 2007



Theorem (Grothendieck 1956):

Let K7 and K3 be compact spaces. Let v @ C(K;p) x C(K;y) — K
be a bounded bilinear form, where K = R or C. Then there exist
probability measures 11 and s on K5 and Ky, respectively, such that

1/2 1/2
ulf, )] < KE|Jul ( rdem) ( \gmm)
K, Ky

for all f € C(K7) and g € C(K>), where K& is a universal constant.

Remarks about Grothendieck’s constant K g{ :

K < —T—— =1.782...

P
2 2log(14+v/2)

IA

o 1 < KE < 1.40491.

Theorem:

Any bounded linear operator T': C'(K7) — C(K>)* factors through a
Hilbert space H,

C(K))—L——~C(Ky)

(K1)
]
H
such that || R||||S]| < KEHTH .

Remark: As an interesting application, it follows that the Fourier
transform F : L'(R) — Cy(R) is not onto.
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Conjecture (Grothendieck):

Let A be a C*-algebra and u : A x A — C a bounded bilinear form.
Then there exist f,g € S(A) such that for all a,b € A,

1/2 1/2
u(a, b)] < kllull £(|a®) " g(b])",
where |z| = (M)lﬂ, forall z € A.
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Grothendieck Inequality (Haagerup 1985) (extension of Pisier’s
result from 1978):

Let A and B be C*-algebras and let u : A x B — C be a bounded
bilinear form. There exist fi, fo € S(A) and gy, g2 € S(B) such that

[u(a,b)| < |lull(filaa®) + fa(a*a))?(g1(b"b) + go(bb))"/?,
foralla e Aand b € B.

Corollary (Haagerup 1985):

Any bounded linear operator T' : A — B*. where A and B are C*-
algebras, factors through a Hilbert space H ,

A—T>B*
AH%

such that || R||||S] < 2||T|.



Let A and B be C*-algebras. Then A is an operator space with the
C*-norm on M,(A), n € N, while B* is an operator space with the
isometric identification M,,(B*) := CB(B, M,,(C)), n € N.

Let u : A x B — C be a bounded bilinear form. There exists a unique
bounded linear operator w : A — B* such that

u(a,b) = (u(a),b), acA,beB.
The bilinear form u is called jointly completely bounded (j.c.b., for

short) if u : A — B* is completely bounded, in which case we set

el jen = [llles -

Remark: It is easily checked that

[ulljen = sup [lun]|
neN

where u,, : M,(A) @ M,,(B) — M,(C)® M,(C), n € N, is given by
k l kool
Unp ZCLZ'@CZ‘,ij@dj :ZZu(ai,bj)ciG@dj,
i=1 j=1 i=1 j=1
fora,e A, bje€ B, c¢;,dj e M,(C), k,l e N.
Moreover, for all C*-algebras C', D, a; € A, b € B,¢c; € C',d; € D,
kool
> > ula,b)e@d <
i=1 j=1 Oy D
k

Zai®ci

1=1

e ljen

l
Z b; ®d;
=1

A®pinC
(Cf. Pisier-Shlyakhtenko (Invent., 2002))

B®minD
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Conjecture (Effros-Ruan 1991):

Let A and B be C*-algebras and let v : A x B — C be a jointly
completely bounded bilinear form. Then there exist fi, fo € S(A)
and g1, g2 € S(B) such that for alla € Aand b € B,

u(a, )] < Kllulljo (filaa) 2o 570)7 + fola’a) Pa(bb)2) (1)

where K is a universal constant.

Theorem (Pisier-Shlyakhtenko 2002):

Let £ C A and F' C F be ezxact operator spaces sitting in C*-algebras
Aand B. Let u: E x F' — C be aj.c.b. bilinear form. Then there
exist f1,fo € S(A) and ¢1,g90 € S(B) such that the inequality (1)
holds for all @ € E and b € F with K = 2v/2ex(E)ex(F) .

Theorem (Pisier-Shlyakhtenko 2002):

If either A or B is an exact C*-algebra and u: Ax B — Cisaj.c.b.
bilinear form, then there exist f, fo € S(A) and g1, g2 € S(B) such
that the inequality (1) holds for all @ € A and b € B with K = 2v/2.

Recall that an operator space E is called exact if there is C' > 1 such

that for every finite dimensional subspace F' C E', there exists n € N
and a subspace G C M,(C) with du,(F,G) < C'. The infimum of all
such constants C' is denoted by ex(F) .

Theorem (Kirchberg, Pisier): A C*-algebra is exact if and only if it
is exact as an operator space. For any exact C*-algebra A | ex(A) = 1.
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Theorem (Haagerup-M. 2007)

The Effros-Ruan conjecture holds for arbitrary C*-algebras A and B
with iK' = 1, and this is the best possible constant.

Corollary A:

Let A and B be C*-algebras. Any completely bounded linear map
T : A — B* admits a factorization through H, & K., where H and
K are Hilbert spaces,

T B*

%

H. & K,
satistying || B||eo||Slep < 2[|T'[[ep -

Corollary B:

Let A be a C*-algebra. If T': A — OH is a completely bounded linear
map, then there exist fi, fo € S(A) such that for all a € A,

IT(a)ll < V2Tl fi(aa®) " fo(a”a) /"

(Only an improvement of constant in the corresponding result by Pisier-
Shlyakhtenko; they had this with constant 2%/* )



Corollary C:

Let E be an operator space such that £ and its dual £* embed com-
pletely isomorphically into preduals M, and N, , respectively, of von
Neumann algebras M and N . Then E is cb-isomorphic to a quotient
of a subspace of H, ® K., for some Hilbert spaces H and K .

Corollary D:

Let E be an operator space, and let £ C A and E* C B be com-
pletely isometric embeddings into C*-algebras A and B such that both
subspaces are ch-complemented. Then E is cb-isomorphic to H, ® K.,
for some Hilbert spaces H and K .

(These are non-commutative analogues of the classical result asserting
that if X is a Banach space such that both X and its dual X* embed
into Li-spaces, then X is isomorphic to a Hilbert space. Corollaries C
and D above are obtained by adjusting the proof of the corresponding
results by Pisier-Shlyakhtenko.)

Corollary E:

Let Ay, A, By and B be C*-algebras such that A C A and By C B.
Then any j.c.b. bilinear form ug : Ag X By — C extends to a bilinear
form u : A x B — C such that

ullien < 2|uolfjen -



Let A and B be C*-algebras. Denote by Bil(A , B) the set of bounded
bilinear forms on A X B .

Lemma (Pisier-Shlyakhtenko 2002, Xu 2006):
Let uw € Bil(A, B). Assume that for alla € Aand b € B,

u(a, )] < 5 (filaa") 2D + lata) Pgp(0h) ) (2)

for some constant x € [0, o] and some f1, fo € S(A), g1,92 € S(B).
Then u can be decomposed as u = uy + ug , where uy , us € Bil(A | B)
such that for alla € Aand b € B,

ur(a,b)| < kfi(aa)?g,(b7b)"?
us(a,b)] < kfalaa)g(bb*)"/>.

Definition: For u € Bil(A, B), let ||u||gr € [0, oc] be the infimum
of all constants k € [0, co| for which the inequality (2) holds, for some
choice of f1, fo € S(A) and g1, g0 € S(B).

Proposition:

(i) It w € Bil(A, B), then [[ullgr < [Jul[ja < 2[[ullzr-
(27) Let ¢1, co denote the best constants in the inequalities

cilluller < ulljo < caolluller,

where A and B are arbitrary C*-algebras and v € Bil(A, B). Then
ci=1and cp = 2.



Proposition:

Let u € Bil(A, B) with ||ul|je, < co. Then for all C*-algebras C', D,
all ai,...,0qr € A, bl,...,bl € B, Cl,...,Cp € C, dl,...,dl < D,
where k,l € N,

k
>N ulai,by)e @d; <
=1 =l C®maxD
k l
QHUHij ZCL@@CZ' ij@dj
i=1 ARminC || 171

B®minD

Proof: Follows from our main theorem, together with the splitting
lemma above.

Let £ C A and F C B be operator spaces sitting in C*-algebras A
and B. Denote by Bil(F, F') the set of bounded bilinear forms on
E x F. For any u € Bil(E, F), ||u||gr is well-defined.

By the Pisier-Shlyakhtenko operator space version of Grothendieck’s
inequality, if £ and F’ are exact, then for any u € Bil(E, F) |

ullsr < 2V2 ex(E)ex(F)]juler



The next result (essentially contained in Pisier—Shlyakhtenko 2002)
gives a complete characterization of those maps u € Bil(E, F), for
which ||u||pr < 00.

Theorem:

Let u € Bil(E, F'). The following statements are equivalent:
(@) lullzr < oo

(22) There exists a constant § € [0, oo] such that for all C*-algebras C
and D, and all ay,...,a;, € E, by,...,0p € F, ¢q,...,¢c; € C,
di,...,d; € D, where k,l € N,

koo
> ulai,by)e @ d; <
=1 =1 CmaxD
k z
) Zai@)ci ij@)dj
=1 E®@uinC || =1

F®minD

Moreover, if §(u) denotes the best constant in the inequality above,

then one has {
§HUHER < 0(u) < 2||ullgr -
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Some preliminaries on Powers factors and Tomita-Takesaki theory

Let 0 < A < 1 be fixed, and let (M, ¢) be the Powers factor of type
[IT) with product state ¢, that is,

0

(M ) ¢) - ®(M2((C) 7w)\) 3

n=1

A
where ¢ = ).~ wy, wa( ) = Tr(hy-) and hy = ( 16A i)
1+

The modular automorphism group (af Jter Of ¢ is given by

o0
of =R o,
n=1
where for any matrix = [x;;]1<i j<o € M2(C) and any t € R,

it
T r11 AT
71 (@) = Rwhy® = < Nitwy  xm )

Therefore o, and Uf are periodic in ¢ € R with minimal period

27

typ = — :
! log A

Let My denote the centralizer of ¢, that is,
My ={zeM:ol(zx)=xz,Vt € R}.
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Theorem (Connes 1973):

The relative commutant of M in M is trivial, i.e.,

MyNM=C1.
Theorem (Haagerup 1989):

For all x € M |
-l

o(x) -1 € conv{vzv' i v e U My)}
where U(M,) denotes the unitary group on M, .

Corollary 1 (Strong version of the Dixmier averaging process):

There exists a net {«; }ier C conv{ad(v) : v € U(My)} such that

lim [|a;(x) — p(x) - 1| =0, xe€ M.

iel

We identify M with m4(M) , where (74, Hy , €,) is the GNS represen-
tation of M associated to the state ¢. Then

Hy = M¢Ey = LA (M, ¢).
By Tomita-Takesaki theory, the operator Sy defined by

SQ(CU§¢) = l‘*f¢, r e M
is closable. Its closure S := Sy has a unique polar decomposition

S = JAY?,

where A is a positive self-adjoint unbounded operator on L*(M , ¢)
and J is a conjugate-linear involution.
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Moreover, for all t € R,
of(x) = A"zAT" ze M
and JMJ = M’ where M’ denotes the commutant of M .

Theorem (Takesaki 1973):
For all n € Z, set
M, = {xeM:ol(x) ="z, VteR}
= {z e M:¢(zy) = N"o(yx), Yy € M}.
In particular, My = M. Moreover, for all n € Z,

M., # {0}
and A(n) = \"n, for every n € M, &, . Furthermore,

L*(M,¢)= 5 M.& .
Corollary 2:
For every n € Z , there exists ¢, € M such that
¢(C;Cn) =\"2 5 ¢(Cnc;;) = \"/?

and, moreover, (c¢,Jc,JEy, §¢>H¢ =1.

Since M is an injective factor, it follows (cf. Effros-Lance and Connes
1976) that the map c® d +— cd (¢ € M ,d € M) extends uniquely
to a C*-algebra isomorphism

C*(./\/l ,./\/l/) ~ M Qi M.
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In the following, let A and B be C*-algebras and let
u:AxB—C

be a jointly completely bounded bilinear form.

Lemma 3:

There is a bounded bilinear form 4 : (A ®pin M) X (B Qpin M') — C
such that forallac€c A, be B, ce M.de M’

ufla®c,b®d)=ul(a,b)(cdss, ) n,
Moreover,
[l < fleafjen -

Proof: Consider ay,...,a; € A, by,....,bj € B,cy,...,c; € M and
dy,...,d; € M", where k,l € N. Then

k [
DO ulai, b){eidiés o) m,

1=1 j=1

Z Z u(a;, bj)cid

i=1 j=1

IA

B(L*(M ,9))

k [
= ZZu(ai,bj)c ® d

=1 j=1 M@ i M

[
> bied

. =1
A®mmM J B®minMI

k

ZG,Z'@CZ'

1=1

< [Jufljen
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Corollary 4:

There exist J?l : ]?2 € S(A Qun M) and g1, 9> € S(B Quin M’) such
that forall z € A @y M and y € B Qi M’ |

[z, )| < Nullo(Filea") + Palo'o) 2 (@i(y"y) + Galuy")*.

Lemma 5:

Let v € U(My) and set v’ == JvJ € M. Then

u((lds @ ad(v))(x), (Idp ® ad(v'))(y)) = u(z,y),
forall x € A Quin M and y € B Qin M.

Proposition 6:
There exist f1, fo € S(A), g1,90 € S(B) and ¢' € S(M') so that

[, y)| < lullies| (1 @ ¢)(w2") + (fo ® ¢)(a"x))" -
(91 ® &) (y™y) + (2 @ &) (yy)"
forall z € A ®pin M and y € B Quuin M’ .

Proof: For all a,3 > 0, vaf < (a+ 3)/2. By Corollary 4, it
follows that for all x € A ®upyn M and y € B Qpin M’

~ 1 N % T % A~/ x ~ *
[ale, y)l < Sllullien (fl(m )+ folz™z) + G1(y"y) + Ga2(yy )) (3)
Let v € U(My) and V' := JvJ. By Lemma 5 and (3),

e, 1)) < Sllullo [ (144 @ ad() (@) + Fol (14 ® ad(0) (")

+1((Idp @ ad(v'))(y*y)) + g2((Idp ® ad(v’))(yy*»} (4)
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Choose a net (a;);er C conv{ad(v) : v € U(My)} such that
i las(c) = 6(c) - 1] =0, ¢ M.
1

Fori e I, set al(d) = Jay(JdJ)J , for all d € M'.

By convexity we can replace ad(v) and ad(v’) in the inequality (4) by
a; and o , respectively, to get

e, v)] < 3lullo [Fi(101 ® 0)(wz") + Fl(1ds ® @) (")) +
+31((1dp @ f)(y'y)) + G((1dp @ a))(yy"))]
In the limit, this gives the inequality
e, )| < 5l [( @ O)as) + (5@ o)(a"x) +
Ha @)Yy + (92 ® cb’)(yy*)] : (5)

where fi(a) := ﬁ(a@l),aEA,gi =g(b®1),be B, fori=1,2
and ¢'(d) = ¢(JdJ), for all d € M’.

Substituting x by t'/2z and y by t~'/2y in (5) for t > 0, we get

e, )| < gllull [t (Fr © )aa®) + (2 @ )a'n)) +
7 (91 @ &)Yy + (@ d)yy") | (6)

Since for all o, 5 > 0,

) 1 .
%gg(toz+t B) =2\/af,

the conclusion follows by taking infimum over ¢ > 0 in (6). ]
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Lemma 7:

For any oo, 3 > 0,
inf (N'a+A713) < A2+ A7) /as.

nez

Proof of the Effros-Ruan conjecture:

Let 0 < A <1 and let (M, ¢) be the Powers factor of type 111, with
product state ¢, as before. Set

C(A) = \/()\1/2 +A12) /2.
Let u : A x B — C be a j.c.b. bilinear form on C*-algebras A, B.
Let f1,fo € S(A) and ¢1,¢92 € S(B) be states as in Proposition 6.
We will prove that for alla € A and b € B,
1 1 1 1
jufa,b)] < COllullier (filaa")ai(b®)} + fala’a)gaeb)})  (7)

that is, the Effros-Ruan conjecture holds with constant C'(A). Since
C(A) — 1 as A — 1, by a simple compactness argument it follows

that the conjecture also holds with constant 1.

To prove (7), let n € Z and choose ¢, € M as in Corollary 2. Then
P(cnen) = AT , Plency,) = A"
and <CnJCnJ§¢ , f¢>H¢ =1.
Then, foralla € Aand b € B,
u(a ® cn,b® JepJ) = ula,b)(endcn &y, §o)m, = ula,b).
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By Proposition 6, it follows that

u(a,b)> = [tla® cy,b® JeoJ)|?
s, | (filaa*)olencs) + fola*a)g(chen) -
(@ (BB)0len"cn) + g2 )dleucn’) |
[l | (A2 filaa’) + X2 o(a"a) )
(A0 (5) + X2 b)) |
= Julls,| filaa")gr (5°0) + fola"a)galbb) +
A" fi(aa")ga(B67) + A" folaa)gr ()|

Since A2 + \71/2 = 2C()\)?, we deduce by Lemma 7 that

A

u(@,b)? < ulZ, | fi(aa")gu(bb) + fola”a)gs(bb") +
20N fi(aa)2g, (D)2 folaa") 2 ga(b0")?

< C(N?ull? [ filaa*)2gi(b°0)2 + fg(a*a)%gg(bb*)ﬂ ;

wherein we have used the fact that C'(A\) > 1.

The inequality (7) follows now by taking square roots, and the proof is
complete.
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