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The Ornstein-Uhlenbeck semi-group on R™:

e N (f) (@) =cn [ fleTtr+ V1= e y)e”
Rn



1. Notation:

e G =exp( is a stratified group (of finite dimensional matrices)
e G =V1®..®Vj is a finite dimensional Lie algebra, [V;, V;] C Vit;

e (Z;);L, is a basis of G respecting the V;’s, so

N
g = exp (Z%‘Zj) < (21,..,2n)

j=1

o (G,dg) = (RY,dz) as measured spaces, dg left and right invariant

e / € (¢ defines a left invariant derivation:

Zf(g) =lim ¢~ (flgexptZ) - f(g))

t—0

e s >0, dilationon G : §;Z = A A V;, hence on G :

0s(exp(X +Y +.) = exp(sX + s°Y +..) = exp Z(s)



o 6:(f)(g) = fods(g) and 6s(f) = s, A a first order differential operator,
e.g. if G has two layers and g = exp(X +U), A= X +2U,X € V1,U € Va;
in general, if 6,9 = expZ(s),

A(f)(g):ib 1 f(ds9) [ Z_:

(4dZ(1))' (2 (1) (o)

o (X,)i=, a basis of the first layer V1, Vf = (X.f)i-1,
o [ =— Z X? the subLaplacian

=1

0,-1Lé; = t°L = [L, A] = 2L

e the heat semi-group e_%tL(f) = f*xp: and p = p1 (ptdg = probability)

fapaly) = /G F(v6eg pl9)dyg



2. The semi-group e *V' YV on Li(pdg), 1 < ¢ < 00
The sesquilinear form with domain H' (p) = {f, |V f| € L*(pdg)}

a(f, k) Z/G(Vf-ﬁ)pdngngifX—mpdg;
1=1

defines V*V, self-adjoint generator of a strongly continuous semi-group of
contractions eV ¥ on L?(pdyg).
Hence e *V" VY has the properties:

e it is measure preserving, i.e. fG e_tv*vfpdg = fG fodg.
e it is positivity preserving, hence Markovian,

e it extends as a strongly continuous semi-group of contractions on
L(pdg), 1 < q < oo.
Obviously

V*V:ZX;‘Xi:L—@ .
: p
1=1



Remark: Considering e **, H.Q. Li proved a Log-Sobolev inequality for
the measure pdg on the 3-dimensional Heisenberg group G = H;. This

implies in particular the Poincaré inequality

Hf—/H1 fpdg

Is it true for all stratified G?

2
< C/ IV f|° pdg.
L2(p) Hy



3. The semi-group e % on L4(pdg), 1 < q < oo

10 = [ 16 manla)ds
—  Seepoe 2 L) if et = cosh.

By a change of variables,

/ £ (Seon 678 09)p(7)p(9)dydg = / F (),
G2 G

i.e. T} is measure preserving. In other words, if v, g are independant
G'—valued random variables with law pdg, the r.v. dcos67vdsin0g has the
same law pdg.

Remark: Crepel and Raugi (’78) proved a central limit theorem for i.i.d
centered random variables with values in G and law p with order 2
moments.

The limit law has a density which is the kernel at time 1 of a diffusion

semi-group whose generator satisfies the same dilation relation as L.



Basic properties of (e ') = (T})
e it is a semi-group (change of variables), hence a Markovian semi-group of
contractions on LY(G,pdy), 1 < g < oo,

e it is strongly continuous if ¢ # oo,

o for f € L (pdvy), 1 < q < o0, : lim;_, o HTt(f) - Jo fpdgHLq(pdw =0
e the generator — N is

N(D() = L) + o lsmr £67) = (L + A)f (7).

In particular, since [, e "N (fpdg = | fpdg, one has

[ Ppdg =0.5 € S(©
G
where () = dimVy + 2dimVs + . ...

The last equation is precisely the PDE whose p is the unique solution with
integral 1 in L'(G).



Proposition 1 N s not symmetric, but
[ V51 pdg =Re (NJ.1) (= (N1.4) if  is real valued)
G
Proof:

(N=V'V)f=Af)+ > X;f= Y bi(9)Zf =B(f)

1<j<n 1<j<N

X

(Bf,h) = — /G F1ST by(Zh)w + Ry (bsp)ldg

1<j<N

| Bpdg =0 ¥ €S(G) = 3 Z(bw) =0 (Bf.W) = — (£, Bh

I<j<N



More properties:
Proposition 2 e V.t > 0, has the properties:
o It is Hilbert-Schmidt on L*(pdy) hence compact on L (pdy), 1 < q < oo.

e [ts non zero eigenvalues and corresponding etgenspaces are the same on
L?(pdvy) and L(pdy). Hence its spectrum is {0} Ue "N where o(N) is
the spectrum of N.

Proof: Computing the kernel of cos” 6, one must prove the convergence of

I(G)://GQpQ((S 1 2500897_1)p(7)dzd%

sin 6 sin 6 p(Z)

which comes from the gaussian estimates [C,SC,V]: for €,&’ > 0 there exist
constants C. and K./ such that

1

1 2
Coem 7m0 < plg) < Koe 77700 m

Remark: By similar estimates for Vp one gets: |V]TM € L(pdg), 1 < q < oo.
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Theorem 3 The spectrum o(N) on L%(pdg),1 < q < oo, satisfies
a) N Co(N)
b) N=o(N) if G is step 2, i.e. G =V, + Va.

Proof: a) How to get eigenvectors of cos” @ from eigenvectors of L

In the gaussian case, one considers ¢(z) = e*¢*. Here let ¢ € C*(G) be

an eigenvector of L and its signed dilation
Yo = PO00a, >0, o =poTO0d |, <0,
where 7 is the homomorphism of G such that 7(X;) = —X;. Then
Ly = Ap = Ly = o’ Apa

For
1(1—sin? L a2 cos?
COSN Q(f(a)) — 5005962(1 O)LQOQ — 5005062 A 9<Pa — f(a cos0)-

11



Hence, defining

dn
hn — o= o))
dan ’ 0 f( )
n d'rL
dC(i)zn | =0 f(a cos0) = cos" Oh, = da™ la=0 cos” Hf(a)
d’rL
— cos™N O la=0 fla) = cos™ Oh,,.

da™

These h,’s are polynomials with respect to the coordinates of g, hence
they lie in LY(pdg), 1 < q < oo.
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How to find eigenvectors of L in C°(G)?

Let II be a non trivial irreducible unitary representation of G on some
L?(R*, d¢), inducing a representation of G. Then

M(e™t) = e~ = T(p,) = /G 7 (9)pe(9)dg

is a semi-group of trace class operators since p, € S(G), and
II(p:)(F) € C*°(G) for F € L*(R*, d¢).

Then, if Fy is an eigenvector of II(L),
p(9) = (Il(g)Fo, F) € CT(G)
is an eigenvector of L since
L (T(g)) = H(g)II(L).
Moreover free vectors F in € L*(R*, d¢) give free vectors ¢ in € L*(G).

The technicalities in the above computation work for these eigenvectors.
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b) Do we get a total set of eigenvectors of cos™ 0 in L?(pdg)?
The eigenspaces of cos™ 6 in L?(pdg) are not pairwise orthogonal!

By Plancherel formula for G, a function ¢ € L*(G) is zero as soon as
I1(¢)) = 0 for all (equivalence classes of) representations supporting the

Plancherel measure. Denote this set by {/. These representations act on the
same L*(R", d¢). For II € U, let Br be a basis of eigenvectors of II(L) in

this space. Then it is easy to see that
F={o""" = (()Fu, Fy) | €U, Fu, Fy € B}
is total in L*(pdyg).

Let ‘Hi 0 be the set of eigenvectors h, obtained from ng”“"“/ e F. It is
enough to show that a function 1 orthogonal to Hy, , . is orthogonal to
gpn’“’“/. For a € R, let

u(a) :/ ez " (O Yppdg.
G

14



We have to show

1 / 7 d" ?
/ —— |a=0 65’3(905’“’“‘ Ypdg = ——u(0) = 0 Vn = u = 0.
Gq ax da™

This needs a holomorphic extension of u, hence a holomorphic extension of

the dilation: w — @ ** | with a control of @** in L2 (pdg).
Has gpn’“’“/ complex dilations in general?

When G is step 2, it is easy to see that
@H’“’“/ (g) = SQH’“”M, (€1, .., Tn,u1,..,u;) is real analytic on R""!, because
then it is also an eigenvector of the full Laplacian on G, which is an elliptic

operator with polynomial coefficients.

But we need more, because of technicalities.
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In the Heisenberg case, (n is even and the central layer has dimension
one), the set U only includes the Schrodinger representation Ilp, its

dilations Ilp 0 4, > 0, and a slight modification of these.

ITo(L) is the harmonic oscillator on R?2, so the eigenvectors P+ are

explicitly known.

There is an explicit formula for the Fourier transform of the heat kernel p

w.r. to the central variable, and this allows the computations.

In the general step 2 case, using a little more on the representations in

U (which remain “simple”), one can again compute the eigenvectors

ng’“’“/ € F, which are similar to those in the Heisenberg case.

One then uses the formula for p obtained by Cygan (’79).
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