Dilations on noncommutative L^p -spaces

Christian Le Merdy (Besançon, France)

Fields Institute, December 13th, 2007

Noncommutative L^p -spaces

• Let M be a semifinite von Neumann algebra equipped with a normal semifinite faithful trace τ . For any $1 \le p < \infty$, define

$$||x||_p = (\tau(|x|^p))^{\frac{1}{p}}$$

on a suitable w^* -dense subspace $\mathcal{S} \subset M$.

Then $\| \|_p$ is a norm on S and by definition

$$L^p(M) = \left(\mathcal{S}, \|\ \|_p\right)^-$$

is the resulting completion. This includes:

- \hookrightarrow Commutative L^p -spaces $L^p(\Omega,\mu)$, associated to $M=L^\infty(\Omega,\mu)$.
- \hookrightarrow Schatten spaces $S^p(H)$, associated to B(H).
- Noncommutative $L^p(M)$ also have a definition in the non semifinite case (Haagerup, 1979).

Dilations

• Let $T: L^p(M) \to L^p(M)$ be a power bounded operator:

$$\exists C \ge 1, \qquad ||T^n|| \le C, \quad n \ge 0.$$

Definition 1. We say that T admits a **loose dilation** if there exist another noncommutative L^p -space $L^p(M')$, two bounded operators

$$J: L^p(M) \to L^p(M')$$
 and $Q: L^p(M') \to L^p(M)$,

and an invertible operator $U:L^p(M')\to L^p(M')$ such that the set $\{U^n:n\in\mathbb{Z}\}$ is bounded (equivalently, U and U^{-1} are power bounded) and

$$\mathbf{T}^{\mathbf{n}} = \mathbf{Q}\mathbf{U}^{\mathbf{n}}\mathbf{J}, \qquad \mathbf{n} \geq \mathbf{0}.$$

$$L^{p}(M') \xrightarrow{U^{n}} L^{p}(M')$$

$$J \uparrow \qquad \qquad \downarrow Q$$

$$L^{p}(M) \xrightarrow{T^{n}} L^{p}(M)$$

Definition 2. Assume that $||T|| \leq 1$. We say that T admits a **tight dilation** if the above property holds with

$$||J|| \le 1$$
, $||Q|| \le 1$, U is an isometry.

4

• Let $(T_t)_{t\geq 0}$ be a bounded c_0 -semigroup (= strongly continuous semigroup on $L^p(M)$.

Definition 1'. We say that $(T_t)_{t\geq 0}$ admits a **loose dilation** if there is a space $L^p(M')$, two bounded operators

$$J \colon L^p(M) \to L^p(M')$$
 and $Q \colon L^p(M') \to L^p(M)$,

and a bounded c_0 -group $(U_t)_{t\in\mathbb{R}}$ on $L^p(M')$ such that

$$T_t = QU_tJ, \qquad t \geq 0.$$

Definition 2'. Assume that $||T_t|| \le 1$ for any $t \ge 0$. We say that T admits a **tight dilation** if the above property holds with

 $||J|| \le 1$, $||Q|| \le 1$, $(U_t)_t$ is an group of isometries.

Hilbert spaces

Observations.

T admits a tight dilation iff $||T|| \le 1$ (Nagy's Theorem).

T admits a loose dilation iff T is similar to a contraction.

 $(T_t)_{t\geq 0}$ admits a tight dilation iff $||T_t||\leq 1$ for any $t\geq 0$.

 $(T_t)_{t\geq 0}$ admits a loose dilation iff it is similar to a contraction semigroup.

Old results.

There exist power bounded operators without a loose dilation.

(Foguel, 1964)

There exist bounded c_0 -semigroups without a loose dilation.

(Packel, 1969)

Commutative L^p -spaces when 1 .

• For $T: L^p(\Omega) \to L^p(\Omega)$ we have a notion of (either tight or loose) **commutative dilation** when we have a dilation property as above

$$L^{p}(\Omega') \xrightarrow{U^{n}} L^{p}(\Omega')$$

$$\downarrow Q$$

$$L^{p}(\Omega) \xrightarrow{T^{n}} L^{p}(\Omega)$$

for some commutative $L^p(\Omega')$.

Akcoglu's Theorem (1977). Any positive contraction T on $L^p(\Omega)$ admits a commutative tight dilation.

Characterization (Peller, 1983). Let $T: L^p(\Omega) \to L^p(\Omega)$ be a contraction. Then T admits a commutative tight dilation iff there exists a positive contraction $S: L^p(\Omega) \to L^p(\Omega)$ such that

$$|T(x)| \le S(|x|), \qquad x \in L^p(\Omega).$$

Remark. There exist contractions $T: L^p(\Omega) \to L^p(\Omega)$ without a tight dilation.

Proposition (Junge-LeM). The above characterization remains true without the word *commutative*, that is, if $T: L^p(\Omega) \to L^p(\Omega)$ has a tight dilation through a possibly noncommutative L^p -space, then it also has a tight dilation through a commutative L^p -space.

• What about loose dilations?

Theorem. There exists power bounded operators on $L^p(\Omega)$ without a loose dilation.

(Analogue of Foguel's Theorem on L^p -spaces.)

Open question. Does any contraction $T: L^p(\Omega) \to L^p(\Omega)$ admit a loose dilation?

This is related to:

Matsaev Conjecture. Let $\sigma_p \colon \ell_{\mathbb{Z}}^p \to \ell_{\mathbb{Z}}^p$ be the shift operator and for any polynomial F, let $N_p(F) = \|\sigma_p\|$. Let $T \colon L^p(\Omega) \to L^p(\Omega)$ be a contraction. Is there a constant $C \geq 1$ such that

$$||F(T)|| \le CN_p(F)$$

for any polynomial F?

Same question with C = 1?

• What about c_0 -semigroups?

There is an analogue of Akcoglu's Theorem due to Fendler (1997).

The general picture is similar.

The (trivial) case p = 1

Universal construction. Let X be a Banach space.

Let $T: X \to X$ be a power bounded operator.

Let $J \colon X \to \ell^1_{\mathbb{Z}}(X)$ be defined by

$$J(x) = e_0 \otimes x = (\cdots 0, \cdots, 0, x, 0, \cdots, 0, \cdots)$$

and let $Q: \ell^1_{\mathbb{Z}}(X) \to X$ be defined by

$$Q[(a_n)_{n\in\mathbb{Z}}] = \sum_{n>0} T^n(a_n).$$

Then

$$||J|| = 1$$
 and $||Q|| \le \sup\{||T^n|| : n \ge 0\}.$

Let $U \colon \ell^1_{\mathbb{Z}}(X) \to \ell^1_{\mathbb{Z}}(X)$ be the shift operator. This is an invertible isometry and

$$T^n = QU^n J, \qquad n \ge 0.$$

Conclusion. Any power bounded operator (resp. any contraction) on a noncommutative L^1 -space admits a loose (resp. tight) dilation.

• A similar construction holds for c_0 -semigroups.

Noncommutative L^p -spaces when 1 .

Complete positivity. Let M be a von Neumann algebra and for any integer $n \geq 1$, identify

$$M_n \otimes L^p(M) \approx L^p((M_n(M)).$$

An operator $T: L^p(M) \to L^p(M)$ is called completely positive if for any $n \geq 1$,

$$I_{M_n} \otimes T : L^p((M_n(M)) \longrightarrow L^p((M_n(M)))$$
 is positive.

Theorem (Junge-LeM). There exists a completely positive contraction $T: S^p \to S^p$ without any tight dilation.

Dilations and rigid factorizations on noncommutative L^p -spaces, JFA 249 (2007), 220-252.

Factorizable operators. Let $\frac{1}{p} + \frac{1}{q} = 1$. We say that a contraction $T: L^p(M) \to L^p(M)$ is factorizable if there exist another von Neumann algebra M' and two linear isometries

$$T_1: L^p(M) \longrightarrow L^p(M')$$
 and $T_2: L^q(M) \longrightarrow L^q(M')$

such that $T = T_2^* \circ T_1$.

It is straightforward that

Tight dilation \implies factorizable,

and we show the existence of a contraction $T: S^p \to S^p$ which is completely positive but not factorizable.

The proof uses Yeadon's description of isometries (1981).

Semigroups. We also obtain that there exists a completely positive contraction c_0 -semigroup $(T_t)_{t\geq 1}$ without a tight dilation.

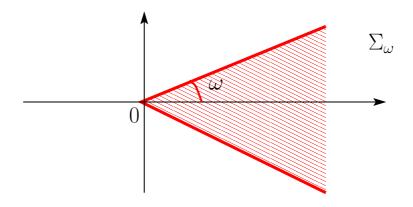
Characterization? At the moment, there is no intrinsic description of the contractions (resp. contraction c_0 -semigroups) on $L^p(M)$ which admit a tight dilation.

Loose dilations. As in the commutative case, we do not know whether any contraction $T: L^p(M) \to L^p(M)$ admits a loose dilation, or whether any contraction c_0 -semigroup on $L^p(M)$ admits a loose dilation.

H^{∞} functional calculus

Sectorial operators. For any $\omega \in (0, \pi)$, let

$$\Sigma_{\omega} = \{ z \in \mathbb{C}^* : |\operatorname{Arg}(z)| < \omega \}.$$



Let $A: D(A) \subset X \to X$ be a closed and densely defined operator. It is called sectorial of type ω if

$$\sigma(A) \subset \overline{\Sigma_{\omega}}$$

and for any $\theta > \omega$, there exists a constant $K_{\theta} > 0$ such that

$$||z(z-A)^{-1}|| \le K_{\theta}, \qquad z \notin \overline{\Sigma_{\theta}}.$$

Semigroups. If $(T_t)_{t\geq 0}$ is a bounded c_0 -semigroup on X, let -A be its infinitesimal generator $(T_t = e^{-tA})$. Then A is sectorial of type $\frac{\pi}{2}$.

Construction (McIntosh, 1986). Let $0 < \omega < \theta < \pi$. For any bounded analytic function $F: \Sigma_{\theta} \to \mathbb{C}$, set

$$||F||_{\infty,\theta} = \sup\{|F(z)| : z \in \Sigma_{\theta}\}.$$

Assume that

$$\int_{\Gamma} |F(z)| \left| \frac{dz}{z} \right| < \infty,$$

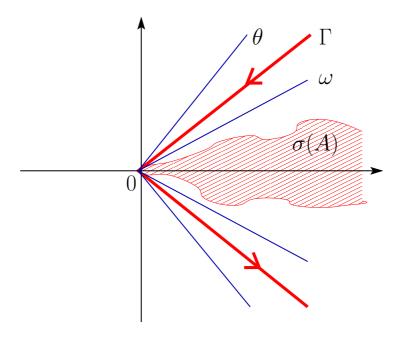
and define

$$F(A) = \frac{1}{2\pi i} \int_{\Gamma} F(z) (z - A)^{-1} dz$$

We say that A admits a bounded H^∞_θ -functional calculus if there is a constant $C \geq 1$ such that

$$||F(A)|| \le C||F||_{\infty,\theta}$$

for any such F.



Note. H^{∞} calculus studied in noncommutative L^p -spaces in [JLX] Junge-LeM-Xu, H^{∞} -functional calculus and square functions on non-commutative L^p -spaces, Astérisque 305 Soc. Math. France, 2006.

Proposition. Assume that a bounded semigroup $(T_t)_{t\geq 0}$ admits a loose dilation. Let -A be its generator. Then A has a bounded H_{θ}^{∞} -functional calculus for any $\theta > \frac{\pi}{2}$.

Proof. Assume a loose dilation

$$T_t = QU_tJ, \qquad t \ge 0,$$

for some bounded c_0 -group $(U_t)_t$ on some $L^p(M')$.

Let -B be the infinitesimal generator of $(U_t)_t$, so that $T_t = e^{-tA}$ and $U_t = e^{-tB}$. Then for any F as above,

$$F(A) = QF(B)J$$

$$||F(A)|| \le ||Q|| ||J|| ||F(B)||.$$

Hence it suffices that B has a bounded H_{θ}^{∞} -functional calculus for any $\theta > \frac{\pi}{2}$.

This is correct (Hieber-Prüss, 1998) by transference, which allows to change B into the derivation operator $\frac{d}{dt}$ on $L^p(\mathbb{R}; L^p(M'))$, and then by multiplier theorems on UMD spaces.

Open problem. Let $(T_t)_{t\geq 1}$ be a contraction semigroup on $L^p(M)$, with generator -A. Does A admit a bounded H_{θ}^{∞} functional calculus for some (for any) $\theta > \frac{\pi}{2}$?

This is already open in the commutative case.

In the noncommutative case, this question is already open for a completely positive contraction semigroup.

Analytic case

Let $T_t = e^{-tA}$ be a bounded c_0 -semigroup on X. This is a **bounded** analytic semigroup iff A is sectorial of type $\omega < \frac{\pi}{2}$.

For any $\theta_2 > \theta_1 > \omega$,

bounded $H_{\theta_1}^{\infty}$ – calculus \Longrightarrow bounded $H_{\theta_2}^{\infty}$ – calculus.

The converse is not true in general.

Theorem. Let $(T_t)_{t\geq 0}$ be a bounded analytic semigroup, with generator -A on some $L^p(M)$. If A has a bounded H^{∞}_{θ} -functional calculus for some $\theta < \frac{\pi}{2}$, then $(T_t)_{t\geq 0}$ admits a loose dilation.

Proof.

Follows Fröhlich-Weis (2006).

Uses square functions.

Sketch

In the commutative case. We consider $X = L^p(\Omega)$ and assume that A has a bounded H^{∞}_{θ} -functional calculus for some $\theta < \frac{\pi}{2}$. Then

$$||x||_p \approx \left\| \left(\int_0^\infty |A^{\frac{1}{2}} e^{-tA} x|^2 dt \right)^{\frac{1}{2}} \right\|_p, \quad x \in L^p(\Omega).$$

(Cowling, Doust, McIntosh, Yagi, 1996).

Let $Y = L^p(\Omega; L^2(\mathbb{R}))$ and let $U_t: Y \to Y$ be the translation by t in the second variable,

$$[U_t \varphi(\cdot)](s) = \varphi(t+s).$$

Then $(U_t)_{t\in\mathbb{R}}$ is an isometric c_0 -group.

Regard elements of Y as functions $\mathbb{R} \to L^p(\Omega)$ and let $J \colon X \to Y$ be defined by

$$[J(x)](s) = A^{\frac{1}{2}}e^{-sA}x, \quad \text{for } s > 0$$

and [J(x)](s) = 0 for s < 0. Then for any $t \ge 0$ and $x \in X$,

$$U_t J(x) = J(T_t(x))$$
 on \mathbb{R}_+ .

Thus if we let $P: Y \to Y$ be induced by the orthogonal projection $L^2(\mathbb{R}) \to L^2(\mathbb{R})$ onto $L^2(\mathbb{R}_+)$, we have

$$PU_tJ = JT_t, \qquad t \ge 0.$$

Then using an analogous square function estimate for A^* , one shows that there exists $P' \colon Y \to X$ such that $P'J = I_X$. Finally,

$$P'PU_tJ = T_t$$

for any $t \geq 0$.

Lastly, modify Y into an L^p -space to get the result.

In the noncommutative case. Use the noncommutative square functions from [JLX]. Suppose that $p \geq 2$, let $X = L^p(M)$ and assume that A has a bounded H^{∞}_{θ} -functional calculus for $\theta < \frac{\pi}{2}$. Then

$$||x||_{p} \approx \max \left\{ \left\| \left(\int_{0}^{\infty} |A^{\frac{1}{2}}e^{-tA}x|^{2} dt \right)^{\frac{1}{2}} \right\|_{p} \right.$$
$$\left\| \left(\int_{0}^{\infty} |(A^{\frac{1}{2}}e^{-tA}x)^{*}|^{2} dt \right)^{\frac{1}{2}} \right\|_{p} \right\}.$$

Etc...

R-sectoriality

R-boundedness. Let $\mathcal{F} \subset B(X)$ be a set of bounded operators on some Banach space X. We say that \mathcal{F} is R-bounded if there is a constant C > 0 such that

$$\left\| \sum_{k} \varepsilon_{k} T_{k}(x_{k}) \right\|_{\operatorname{Rad}(X)} \leq C \left\| \sum_{k} \varepsilon_{k} x_{k} \right\|_{\operatorname{Rad}(X)}$$

for any T_1, \ldots, T_n in \mathcal{F} and any x_1, \ldots, x_n in X.

Definitions. Let A be a sectorial operator of type ω on X. We say that A is R-sectorial of R-type ω if for any $\theta > \omega$, the set

$$\{z(z-A)^{-1}:z\notin\overline{\Sigma_{\theta}}\}$$

is R-bounded.

In this holds for some $\omega < \frac{\pi}{2}$ and if $T_t = e^{-tA}$, then we say that $(T_t)_{t\geq 0}$ is an R-bounded analytic semigroup.

Kalton-Weis, 2001. If A is R-sectorial of R-type ω and admits a bounded H_{θ}^{∞} -functional calculus for some $\theta > \omega$, then it admits a bounded H_{θ}^{∞} -functional calculus for any $\theta > \omega$.

Corollary. Let $(T_t)_{t\geq 0}$ be an R-bounded analytic semigroup, with generator -A on some $L^p(M)$, and let $\theta > \omega$ (the angle of R-type). Then A has a bounded H^{∞}_{θ} -functional calculus iff $(T_t)_{t\geq 0}$ admits a loose dilation.

Analogs in the discrete case. Work in progress.

Noncommutative diffusion semigroups

Definition. A (noncommutative) diffusion semigroup is a w^* continuous semigroup $(T_t)_{t\geq 0}$ on M such that

- $||T_t: L^p(M) \longrightarrow L^p(M)|| \le 1 \text{ for any } 1 \le p \le \infty \text{ and } t \ge 0.$
- $T_t: L^2(M) \longrightarrow L^2(M)$ is selfadjoint for any $t \ge 0$.

For any $1 , write <math>T_t = e^{-tA_p}$ on $L^p(M)$. Then A_p is sectorial of some type $\omega_p = \pi |\frac{1}{p} - \frac{1}{2}| < \frac{\pi}{2}$. (Stein's interpolation principle).

Corollary. Fix some $1 and let <math>\theta > \omega_p$. Then A_p has a bounded H_{θ}^{∞} -functional calculus iff $(T_t)_{t\geq 1}$ admits a loose dilation.

Nota Bene. In the *commutative* case, any $(T_t)_{t\geq 0}$ as above admits a tight dilation on L^p for any 1 .

Open problems. For noncommutative diffusion semigroups, do we have:

- A tight dilation?
- A loose dilation? A bounded H^{∞} -functional calculus?

Schur multipliers

Definition. We regard elements of $B(\ell^2)$ as infinite matrices. Let $A = (a_{ij})_{i,j\geq 1}$ a bounded family of complex numbers. The Schur multiplier associated to A is the mapping

$$[t_{ij}] \in B(\ell^2) \longmapsto [a_{ij}t_{ij}].$$

If it is bounded $B(\ell^2) \to B(\ell^2)$, then it is bounded $S^p \to S^p$ for any 1 .

Proposition. Let $(\alpha_k)_{k\geq 1}$ and $(\beta_k)_{k\geq 1}$ be two sequences of complex numbers. For any $t\geq 0$, the Schur multiplier T_t associated to

$$\left(e^{-t|\alpha_i-\beta_j|}\right)$$

is bounded on $B(\ell_2)$, and $(T_t)_{t\geq 0}$ is a diffusion semigroup on $B(\ell^2)$. Moreover for each $1 , the realization of <math>(T_t)_{t\geq 0}$ on S^p admits a tight dilation.

q-Ornstein-Uhlenbeck semigroups

q-Deformation von Neumann algebras.

(Bozejko-Speicher, Bozejko-Kümmerer-Speicher, 1991-97.)

Let H be a real Hilbert space and let \mathcal{H} be its complexification. For any $q \in [-1, 1]$, we consider

- $\mathcal{F}_q(\mathcal{H})$, the q-Fock space over \mathcal{H} ;
- $c(h): \mathcal{F}_q(\mathcal{H}) \to \mathcal{F}_q(\mathcal{H})$, the creation operator associated with $h \in H$;
- $\Gamma_q(H) \subset B(\mathcal{F}_q(\mathcal{H}))$, the von Neumann algebra of q-deformation generated by the q-Gaussians

$${c(h) + c(h)^* : h \in H}.$$

This von Neumann algebra has a natural trace,

$$\tau(x) = \langle x(\Omega), \Omega \rangle,$$

where $\Omega \in \mathcal{F}_q(\mathcal{H})$ is the vacuum vector.

$$---->$$
 Definition of $L^pig(\Gamma_q(H)ig)$.

Second quantization. For any contraction $a: H \to H$, we let

$$\Gamma_q(a) \colon \Gamma_q(H) \longrightarrow \Gamma_q(H)$$

be the second quantization of a, which is a normal unital completely positive map. One shows that for any $1 \le p < \infty$,

$$\|\Gamma_q(a)\colon L^p(\Gamma_q(H))\longrightarrow L^p(\Gamma_q(H))\|\leq 1.$$

Proposition 1. For any contraction a and for any $1 , <math>\Gamma_q(a) \colon L^p \to L^p$ has a tight dilation.

Proposition 2. Let $(a_t)_{t\geq 0}$ be a contraction c_0 -semigroup on H and let $T_t = \Gamma_q(a_t)$ for any $t \geq 0$.

- (i) Then $(T_t)_{t\geq 0}$ is a contraction c_0 -semigroup on $L^p(\Gamma_q(H))$ which admits a tight dilation (1 .
- (ii) If $a_t : H \to H$ is selfadjoint, then $(T_t)_{t \geq 0}$ is a diffusion semi-group on $\Gamma_q(H)$.

Example. Let $a_t = e^{-t}I_H$ for $t \geq 0$. The resulting semigroup $(T_t)_{t\geq 0}$ is the so-called q-Ornstein-Uhlenbeck semigroup.

Noncommutative Poisson semigroup

Description. Let $n \geq 1$ be an integer and let $G = \mathbb{F}_n$ be the free group with n generators c_1, \ldots, c_n . Let $\lambda \colon G \to B(\ell_G^2)$ be the left regular representation of G and let

$$VN(G) = \lambda(G)'' = \overline{\operatorname{Span}}^{w^*} \{ \lambda(g) : g \in G \}.$$

This von Neumann algebra has a natural trace,

$$\tau(x) = \langle x(\delta_e), \delta_e \rangle,$$

where $e \in G$ is the unit.

$$---->$$
 Definition of $L^p(VN(G))$.

Any $g \in G$ has a unique decomposition

$$g = c_{i_1}^{k_1} c_{i_2}^{k_2} \cdots c_{i_m}^{k_m}$$

with $m \ge 0$, $k_j \ne 0$ and $i_j \ne i_{j+1}$. Then

$$|g| = |k_1| + \dots + |k_m|$$

is the length of g.

For any $t \geq 0$, set

$$T_t(\lambda(g)) = e^{-t|g|}\lambda(g)$$

for any $g \in G$. Then T_t uniquely extends to a normal unital completely positive map $T_t \colon VN(G) \to VN(G)$ (Haagerup, 1979). It turns out that $(T_t)_{t \geq 0}$ is a diffusion semigroup on VN(G).

Proposition (Lust-Piquard). For each $1 , the realization of <math>(T_t)_{t\geq 0}$ on $L^p(VN(G))$ admits a tight dilation.

 \hookrightarrow This yields a simpler proof of the result that if $T_t = e^{-tA_p}$ on $L^p(VN(G))$, then

 A_p admits a bounded H^{∞} functional calculus.