Embedding of noncommutative L_p

Marius Junge

Joint work with J. Parcet

Embedding theory

Marius Junge

Motivation

inequalities

Pisier's exercise

New inequalities

Main results

Embedding of noncommutative L_p

Marius Junge

Joint work with J. Parcet

Fields Institute, December 2007

Embedding theory

Marius Junge

Motivation

veignted nequalities

Pisier's exercise

New inequalities

Main results

lacktriangle (Khintchine inequality) Let ε_k Bernoulli variables, then

$$\mathbb{E}\|\sum_{k}\varepsilon_{k}\alpha_{k}\|_{p}\sim_{c_{p}}\|(\alpha_{k})\|_{2}.$$

lacktriangle (Khintchine inequality) Let ε_k Bernoulli variables, then

$$\mathbb{E}\|\sum_{k}\varepsilon_{k}\alpha_{k}\|_{p}\sim_{c_{p}}\|(\alpha_{k})\|_{2}.$$

Here $a \sim_c b$ if $1/c \le a/b \le c$.

lacktriangle (Khintchine inequality) Let ε_k Bernoulli variables, then

$$\mathbb{E}\|\sum_{k}\varepsilon_{k}\alpha_{k}\|_{p}\sim_{c_{p}}\|(\alpha_{k})\|_{2}.$$

Here $a \sim_c b$ if $1/c \le a/b \le c$. Hence $\ell_2 \subset L_p$.

lacktriangle (Khintchine inequality) Let ε_k Bernoulli variables, then

$$\mathbb{E}\|\sum_{k}\varepsilon_{k}\alpha_{k}\|_{p}\sim_{c_{p}}\|(\alpha_{k})\|_{2}.$$

Here $a \sim_c b$ if $1/c \le a/b \le c$. Hence $\ell_2 \subset L_p$.

• $(q ext{-stable var.})$ $\mathbb{E}e^{it heta_q}=\exp(-c_q|t|^q).$

lacktriangle (Khintchine inequality) Let ε_k Bernoulli variables, then

$$\mathbb{E}\|\sum_{k}\varepsilon_{k}\alpha_{k}\|_{p}\sim_{c_{p}}\|(\alpha_{k})\|_{2}.$$

Here $a \sim_c b$ if $1/c \le a/b \le c$. Hence $\ell_2 \subset L_p$.

• (q-stable var.) $\mathbb{E} e^{it heta_q} = \exp(-c_q|t|^q)$. Then $\ell_q \subset L_p$

• (Khintchine inequality) Let ε_k Bernoulli variables, then

$$\mathbb{E}\|\sum_{k}\varepsilon_{k}\alpha_{k}\|_{p}\sim_{c_{p}}\|(\alpha_{k})\|_{2}.$$

Here $a \sim_c b$ if $1/c \le a/b \le c$. Hence $\ell_2 \subset L_p$.

lacklowright $(q ext{-stable var.})$ $\mathbb{E}e^{it heta_q}=\exp(-c_q|t|^q).$ Then $\ell_q\subset L_p$

$$(\mathbb{E}|\sum_{k} \alpha_k \theta_k|^p)^{1/p} = c\|(\alpha_k)\|_q \quad 0$$

 \bullet (Khintchine inequality) Let ε_k Bernoulli variables, then

$$\mathbb{E}\|\sum_{k}\varepsilon_{k}\alpha_{k}\|_{p}\sim_{c_{p}}\|(\alpha_{k})\|_{2}.$$

Here $a \sim_c b$ if $1/c \le a/b \le c$. Hence $\ell_2 \subset L_p$.

• (q-stable var.) $\mathbb{E} e^{it heta_q} = \exp(-c_q|t|^q)$. Then $\ell_q \subset L_p$

$$(\mathbb{E}|\sum_{k}\alpha_{k}\theta_{k}|^{p})^{1/p} = c\|(\alpha_{k})\|_{q} \quad 0$$

(Maurey-Pisier-Krivine) For every infinite dimensional Banach space there exist p_0 , q_0 such that ℓ_p^n is $(1+\varepsilon)$ -isomorphic to a subspace of X for all

$$p \in [p_0, 2] \cup \{q_0\}$$
.

(behind the scene)

(behind the scene)

 $lue{}$ Rosenthal inequality (\sim 72) for mean 0

(behind the scene)

ightharpoonup Rosenthal inequality (\sim 72) for mean 0

$$\|\sum_{i} f_{i}\|_{p} \sim (\sum_{i} \|f_{i}\|_{p}^{p})^{1/p} + (\sum_{i} \|f_{i}\|_{2}^{2})^{1/2} \quad p \geq 2$$

(behind the scene)

ightharpoons Rosenthal inequality (\sim 72) for mean 0

$$\|\sum_{i} f_{i}\|_{p} \sim (\sum_{i} \|f_{i}\|_{p}^{p})^{1/p} + (\sum_{i} \|f_{i}\|_{2}^{2})^{1/2} \quad p \geq 2$$

• Later: $p \le 2$

(behind the scene)

ightharpoons Rosenthal inequality (\sim 72) for mean 0

$$\|\sum_{i} f_{i}\|_{p} \sim (\sum_{i} \|f_{i}\|_{p}^{p})^{1/p} + (\sum_{i} \|f_{i}\|_{2}^{2})^{1/2} \quad p \geq 2$$

• Later: $p \le 2$

$$\|\sum_{i} f_{i}\|_{p} \sim \inf_{f_{i} = g_{i} + h_{i}} (\sum_{i} \|g_{i}\|_{p}^{p})^{1/p} + (\sum_{i} \|h_{i}\|_{2}^{2})^{1/2} \quad 1 \leq p \leq 2$$

(behind the scene)

ightharpoons Rosenthal inequality (\sim 72) for mean 0

$$\|\sum_{i} f_{i}\|_{p} \sim (\sum_{i} \|f_{i}\|_{p}^{p})^{1/p} + (\sum_{i} \|f_{i}\|_{2}^{2})^{1/2} \quad p \geq 2$$

• Later: $p \le 2$

$$\|\sum_{i} f_{i}\|_{p} \sim \inf_{f_{i} = g_{i} + h_{i}} (\sum_{i} \|g_{i}\|_{p}^{p})^{1/p} + (\sum_{i} \|h_{i}\|_{2}^{2})^{1/2} \quad 1 \leq p \leq 2$$

lacktriangle Corollary: $L_p(0,\infty)\cap L_2(0,\infty)\cong L_p([0,1])\ p\ \geq\ 2$,

(behind the scene)

ightharpoonup Rosenthal inequality (\sim 72) for mean 0

$$\|\sum_{i} f_{i}\|_{p} \sim (\sum_{i} \|f_{i}\|_{p}^{p})^{1/p} + (\sum_{i} \|f_{i}\|_{2}^{2})^{1/2} \quad p \geq 2$$

• Later: $p \le 2$

$$\|\sum_{i} f_{i}\|_{p} \sim \inf_{f_{i} = g_{i} + h_{i}} (\sum_{i} \|g_{i}\|_{p}^{p})^{1/p} + (\sum_{i} \|h_{i}\|_{2}^{2})^{1/2} \quad 1 \leq p \leq 2$$

◆ Corollary: $L_p(0,\infty) \cap L_2(0,\infty) \cong L_p([0,1]) \ p \ge 2$, $L_p(0,\infty) + L_2(0,\infty) \cong L_p([0,1]) \ p \ge 2$.

$$\|\sum_k x_k \otimes a_k\|_1 \sim \inf_{a_k = b_k + c_k} \|(\sum_k b_k b_k^*)^{1/2}\|_1 + \|(\sum_k c_k^* c_k)^{1/2}\|_1$$

holds for

$$\|\sum_k x_k \otimes a_k\|_1 \sim \inf_{a_k = b_k + c_k} \|(\sum_k b_k b_k^*)^{1/2}\|_1 + \|(\sum_k c_k^* c_k)^{1/2}\|_1$$

$$\|\sum_k x_k \otimes a_k\|_1 \sim \inf_{a_k = b_k + c_k} \|(\sum_k b_k b_k^*)^{1/2}\|_1 + \|(\sum_k c_k^* c_k)^{1/2}\|_1$$

&
$$x_k = \varepsilon_k$$
 or x_k independent gaussian ;

$$\|\sum_k x_k \otimes a_k\|_1 \sim \inf_{a_k = b_k + c_k} \|(\sum_k b_k b_k^*)^{1/2}\|_1 + \|(\sum_k c_k^* c_k)^{1/2}\|_1$$

&
$$x_k = \varepsilon_k$$
 or x_k independent gaussian;

$$\mathscr{Y} x_k = \lambda(g_k)$$
, g_k free generators;

$$\|\sum_k x_k \otimes a_k\|_1 \sim \inf_{a_k = b_k + c_k} \|(\sum_k b_k b_k^*)^{1/2}\|_1 + \|(\sum_k c_k^* c_k)^{1/2}\|_1$$

- & $x_k = \varepsilon_k$ or x_k independent gaussian;
- $\mathscr{Y} x_k = \lambda(g_k)$, g_k free generators;
- & $x_k = \lambda(g_i)$, g_i subsymmetric generators of discrete group;

$$\|\sum_k x_k \otimes a_k\|_1 \sim \inf_{a_k = b_k + c_k} \|(\sum_k b_k b_k^*)^{1/2}\|_1 + \|(\sum_k c_k^* c_k)^{1/2}\|_1$$

- & $x_k = \varepsilon_k$ or x_k independent gaussian;
- $\mathscr{Y} x_k = \lambda(g_k)$, g_k free generators;
- $\mathscr{Y}_k = \lambda(g_i)$, g_i subsymmetric generators of discrete group;
- $\& x_k = s_k, x_k = s_k + is_{-k}$ for semi-circular s_k .

If OH cb-embeds in $L_1(N)$, then

$$S_{4/3} = C \stackrel{\wedge}{\otimes} OH \subset L_1(B(\ell_2) \otimes N)$$

embeds in noncommutative L_1 .

If OH cb-embeds in $L_1(N)$, then

$$S_{4/3} = C \stackrel{\wedge}{\otimes} OH \subset L_1(B(\ell_2) \otimes N)$$

embeds in noncommutative L_1 .

Famous Banach space expert:

If OH cb-embeds in $L_1(N)$, then

$$S_{4/3} = C \stackrel{\wedge}{\otimes} OH \subset L_1(B(\ell_2) \otimes N)$$

embeds in noncommutative L_1 .

Famous Banach space expert: Maybe not.

If OH cb-embeds in $L_1(N)$, then

$$S_{4/3} = C \stackrel{\wedge}{\otimes} OH \subset L_1(B(\ell_2) \otimes N)$$

embeds in noncommutative L_1 .

Famous Banach space expert: Maybe not.

Warning:
$$S_{4/3}^c = C \stackrel{\wedge}{\otimes} OH$$
 is not the standard $S_{4/3}$,

If OH cb-embeds in $L_1(N)$, then

$$S_{4/3} = C \stackrel{\wedge}{\otimes} OH \subset L_1(B(\ell_2) \otimes N)$$

embeds in noncommutative L_1 .

Famous Banach space expert: Maybe not.

Warning:
$$S_{4/3}^c = C \stackrel{\wedge}{\otimes} OH$$
 is not the standard $S_{4/3}$, but

$$S_{4/3} = [S_{4/3}^c, S_{4/3}^r]_{\frac{1}{2}}$$
.

Voiculescu's and Shlyakhtenko's inequality

Embedding theory

Marius Junge

Motivation

Weighted inequalities

Pisier's exercis

New inequalities

Main results

Voiculescu's and Shlyakhtenko's inequality

1) (Rosenthal in L_{∞})

Embedding theory

Marius Junge

Motivation

Weighted inequalities

Pisier's exercise

lew inequalities

lain results

Voiculescu's and Shlyakhtenko's inequality

1) (Rosenthal in L_{∞}) Let $N = *_{i,B}A_i$ be the free product over B and $x_i \in A_i$ with $E_B(x_i) = 0$.

Embedding theory

Marius Junge

Motivation

Weighted inequalities

Pisier's exercise

New inequalities

lain results

1) (Posenthal in I_{-}) Let $N = x_{-} A$, be the free production

1) (Rosenthal in L_{∞}) Let $N = *_{i,B}A_{i}$ be the free product over B and $x_{i} \in A_{i}$ with $E_{B}(x_{i}) = 0$. Then

$$\|\sum_{i} x_{i}\| \sim \sup_{i} \|x_{i}\|_{\infty} + \|\sum_{i} E_{B}(x_{i}^{*}x_{i} + x_{i}x_{i}^{*})\|^{1/2}$$

Embedding theory

Marius Junge

Motivation

Weighted inequalities

Pisier's exercise

lew inequalities

lain results

1) (Rosenthal in L_{∞}) Let $N = *_{i,B}A_i$ be the free product over B and $x_i \in A_i$ with $E_B(x_i) = 0$. Then

 $\|\sum_{i} x_{i}\| \sim \sup_{i} \|x_{i}\|_{\infty} + \|\sum_{i} E_{B}(x_{i}^{*}x_{i} + x_{i}x_{i}^{*})\|^{1/2}$

2) Let $s_k = \lambda_k I_k + \mu_k I_{-k}^*$ generalized semicircular.

New inequalities

Main results

1) (Rosenthal in L_{∞}) Let $N = *_{i,B}A_i$ be the free product over B and $x_i \in A_i$ with $E_B(x_i) = 0$. Then

$$\|\sum_{i} x_{i}\| \sim \sup_{i} \|x_{i}\|_{\infty} + \|\sum_{i} E_{B}(x_{i}^{*}x_{i} + x_{i}x_{i}^{*})\|^{1/2}$$

2) Let $s_k = \lambda_k I_k + \mu_k I_{-k}^*$ generalized semicircular. Then

$$\|\sum_k a_k \otimes s_k\| \sim \|(\sum_k |\lambda_k|^2 a_k^* a_k)^{1/2}\| + \|(\sum_k \mu_k^2 a_k a_k^*)^{1/2}\|.$$

Pisier's exercise

lew inequalities

Main results

1) (Rosenthal in L_{∞}) Let $N = *_{i,B}A_i$ be the free product over B and $x_i \in A_i$ with $E_B(x_i) = 0$. Then

$$\|\sum_{i} x_{i}\| \sim \sup_{i} \|x_{i}\|_{\infty} + \|\sum_{i} E_{B}(x_{i}^{*}x_{i} + x_{i}x_{i}^{*})\|^{1/2}$$

2) Let $s_k = \lambda_k I_k + \mu_k I_{-k}^*$ generalized semicircular. Then

$$\|\sum_k a_k \otimes s_k\| \sim \|(\sum_k |\lambda_k|^2 a_k^* a_k)^{1/2}\| + \|(\sum_k \mu_k^2 a_k a_k^*)^{1/2}\|.$$

Moreover, the s_k are analytic vectors in a von Neumann algebra $N(\lambda, \mu)$ with faith normal state given by the vacuum vector

lew inequalities

Main results

1) (Rosenthal in L_{∞}) Let $N = *_{i,B}A_i$ be the free product over B and $x_i \in A_i$ with $E_B(x_i) = 0$. Then

$$\|\sum_{i} x_{i}\| \sim \sup_{i} \|x_{i}\|_{\infty} + \|\sum_{i} E_{B}(x_{i}^{*}x_{i} + x_{i}x_{i}^{*})\|^{1/2}$$

2) Let $s_k = \lambda_k I_k + \mu_k I_{-k}^*$ generalized semicircular. Then

$$\|\sum_k a_k \otimes s_k\| \sim \|(\sum_k |\lambda_k|^2 a_k^* a_k)^{1/2}\| + \|(\sum_k \mu_k^2 a_k a_k^*)^{1/2}\|.$$

Moreover, the s_k are analytic vectors in a von Neumann algebra $N(\lambda, \mu)$ with faith normal state given by the vacuum vector (modular group).

 Pisier and Shlyakhtenko used this to prove a Grothendiek inequality for operator spaces.

- Pisier and Shlyakhtenko used this to prove a Grothendiek inequality for operator spaces.
- ② The weighted space $C(\lambda) \cap R(\mu)$ defined by the span of the s_k 's is completely complemented in $N(\lambda, \mu)$ (

- Pisier and Shlyakhtenko used this to prove a Grothendiek inequality for operator spaces.
- ② The weighted space $C(\lambda) \cap R(\mu)$ defined by the span of the s_k 's is completely complemented in $N(\lambda, \mu)$ (Haagerup/Pisier's work).

- Pisier and Shlyakhtenko used this to prove a Grothendiek inequality for operator spaces.
- ② The weighted space $C(\lambda) \cap R(\mu)$ defined by the span of the s_k 's is completely complemented in $N(\lambda, \mu)$ (Haagerup/Pisier's work).
- **3** The dual space $R(\lambda) + C(\mu)$ is contained in the predual of a von Neumann algebra.

- Pisier and Shlyakhtenko used this to prove a Grothendiek inequality for operator spaces.
- ② The weighted space $C(\lambda) \cap R(\mu)$ defined by the span of the s_k 's is completely complemented in $N(\lambda, \mu)$ (Haagerup/Pisier's work).
- **3** The dual space $R(\lambda) + C(\mu)$ is contained in the predual of a von Neumann algebra.
- OH is cb-isomorphic to a subspace of a noncommutative L₁ space.

Pisier's exercise

Embedding theory

Marius Junge

Motivation

equalities

Pisier's exercise

New inequalities

Pisier's exercise

The operator space OH is defined by complex interpolation

$$OH = [R, C]_{\frac{1}{2}}.$$

Embedding theory

Marius Junge

Motivation

Veighted nequalities

Pisier's exercise

New inequalities

New inequalities

Aain results

The operator space *OH* is defined by complex interpolation

$$OH = [R,C]_{\frac{1}{2}}.$$

The complex interpolation functor can be realized as the subspace of constants in the quotient space

$$OH \subset L_2^c(i\mathbb{R},\ell_2) \oplus L_2^r(1+i\mathbb{R},\ell_2)/H_{1/2}^0$$

/lain results

The operator space *OH* is defined by complex interpolation

$$OH = [R,C]_{\frac{1}{2}}.$$

The complex interpolation functor can be realized as the subspace of constants in the quotient space

$$OH \subset L_2^c(i\mathbb{R},\ell_2) \oplus L_2^r(1+i\mathbb{R},\ell_2)/H_{1/2}^0$$

where $H_{1/2}^0$ is the space of analytic functions $f: \{0 \le Re(z) \le 1\} \to \ell_2$ with $f(\frac{1}{2}) = 0$.

Pisier's exercise

The operator space *OH* is defined by complex interpolation

$$OH = [R, C]_{\frac{1}{2}}.$$

The complex interpolation functor can be realized as the subspace of constants in the quotient space

$$OH \subset L_2^c(i\mathbb{R},\ell_2) \oplus L_2^r(1+i\mathbb{R},\ell_2)/H_{1/2}^0$$

where $H_{1/2}^0$ is the space of analytic functions $f: \{0 < Re(z) < 1\} \to \ell_2 \text{ with } f(\frac{1}{2}) = 0.$

Corollary (Junge 06) *OH* is a subspace of $R(\lambda) + C(\mu)$ for suitable λ and μ .

New inequalities

Aain results

The operator space OH is defined by complex interpolation

$$OH = [R, C]_{\frac{1}{2}}.$$

The complex interpolation functor can be realized as the subspace of constants in the quotient space

$$OH \subset L_2^c(i\mathbb{R},\ell_2) \oplus L_2^r(1+i\mathbb{R},\ell_2)/H_{1/2}^0$$

where $H^0_{1/2}$ is the space of analytic functions $f: \{0 \le Re(z) \le 1\} \to \ell_2$ with $f(\frac{1}{2}) = 0$.

Corollary (Junge 06) *OH* is a subspace of $R(\lambda) + C(\mu)$ for suitable λ and μ .

Xu's work made this very precise.

Let 1 . Then the operator space

$$S_p = C_p \otimes_h R_p$$

is completely isomorphic to tensor product of the space of constants in

Let 1 . Then the operator space

$$S_p = C_p \otimes_h R_p$$

is completely isomorphic to tensor product of the space of constants in

$$(L_2^c(i\mathbb{R},\ell_2)\oplus L_2^{oh}(1+i\mathbb{R},\ell_2)/H_\theta^0)\otimes_h(L_2^r(i\mathbb{R},\ell_2)\oplus L_2^{oh}(1+i\mathbb{R},\ell_2)/H_\theta^0)\;.$$

Let 1 . Then the operator space

$$S_p = C_p \otimes_h R_p$$

is completely isomorphic to tensor product of the space of constants in

$$(L_2^c(i\mathbb{R},\ell_2)\oplus L_2^{oh}(1+i\mathbb{R},\ell_2)/H_\theta^0)\otimes_h(L_2^r(i\mathbb{R},\ell_2)\oplus L_2^{oh}(1+i\mathbb{R},\ell_2)/H_\theta^0).$$

For general N we have $L_p(N) = [L_1, L_2]_{\theta}$ and L_p is cb-isomorphic to a subspace of

$$(L_{2}^{r}(N; L_{2}(i\mathbb{R})) \oplus L_{4}^{r}(N; L_{2}^{c}(1+i\mathbb{R}))/H_{\theta}^{0})$$

$$\otimes_{N,h} (L_{2}^{c}(N; L_{2}(i\mathbb{R}) \oplus L_{4}^{c}(N; L_{2}^{r}(1+i\mathbb{R}))/H_{\theta}^{0}).$$

Let 1 . Then the operator space

$$S_p = C_p \otimes_h R_p$$

is completely isomorphic to tensor product of the space of constants in

$$(L_2^c(i\mathbb{R},\ell_2)\oplus L_2^{oh}(1+i\mathbb{R},\ell_2)/H_\theta^0)\otimes_h(L_2^r(i\mathbb{R},\ell_2)\oplus L_2^{oh}(1+i\mathbb{R},\ell_2)/H_\theta^0).$$

For general N we have $L_p(N) = [L_1, L_2]_{\theta}$ and L_p is cb-isomorphic to a subspace of

$$(L_2^r(N;L_2(i\mathbb{R}))\oplus L_4^r(N;L_2^c(1+i\mathbb{R}))/H_\theta^0)$$

$$\otimes_{N,h} \left(L_2^c(N;L_2(i\mathbb{R})\oplus L_4^c(N;L_2^r(1+i\mathbb{R}))/H_\theta^0\right).$$

Here $L_4^c = [N, L_2^c]_{\frac{1}{a}}$ satisfies

$$C_m \otimes_h L_4^c \otimes_h C_m = L_4(M_m(N))S_4^m$$
.

1) L_p is completely isomorphic to a subspace of

1) L_p is completely isomorphic to a subspace of

$$L_1(N) + D^{1/4}L^c_{4/3}(N) + L^r_{4/3}(N)D^{1/4} + D^{1/4}L^{oh}_2(N)D^{1/4} \\$$

1) L_p is completely isomorphic to a subspace of

$$L_1(N) + D^{1/4}L^c_{4/3}(N) + L^r_{4/3}(N)D^{1/4} + D^{1/4}L^{oh}_2(N)D^{1/4}$$

Here D is the density of strictly semifinite weight (incorporating the unbounded operator from complex interpolation).

1) L_p is completely isomorphic to a subspace of

$$L_1(N) + D^{1/4}L_{4/3}^c(N) + L_{4/3}^r(N)D^{1/4} + D^{1/4}L_2^{oh}(N)D^{1/4}$$

Here D is the density of strictly semifinite weight (incorporating the unbounded operator from complex interpolation).

2) Let $E \in QS(R \oplus OH)$ (quotient of a subspace of) and $F \in QS(C \oplus OH)$.

1) L_p is completely isomorphic to a subspace of

$$L_1(N) + D^{1/4}L_{4/3}^c(N) + L_{4/3}^r(N)D^{1/4} + D^{1/4}L_2^{oh}(N)D^{1/4}$$

Here D is the density of strictly semifinite weight (incorporating the unbounded operator from complex interpolation).

2) Let $E \in QS(R \oplus OH)$ (quotient of a subspace of) and $F \in QS(C \oplus OH)$. Then

$$E \otimes_h F \subset L_1(N) + D^{1/4} L_{4/3}^c(N) + L_{4/3}^r(N) D^{1/4} + D^{1/4} L_2^{oh}(N) D^{1/4}$$

for some strictly weight.

New Voiculescu inequality

${\sf Embedding\ theory}$

Marius Junge

Motivation

equalities

Pisier's exercis

New inequalities

Pisier's exercise

New inequalities

Main results

Theorem Let $x_1, ..., x_n$ be mean 0 variables in $N = *_{i,B}A_i$. Then

$$\begin{split} &\| \sum_{i} x_{i} \otimes \bar{x}_{i} \|^{1/2} \sim \sup_{i} \|x_{i}\| \\ &+ \sup_{\|a\|_{L_{2}(B)} \leq 1, \|b\|_{L_{2}(B)} \leq 1} (\sum_{i=1}^{n} \|ax_{i}b\|_{2}^{2})^{1/2} \\ &+ \sup_{\|a\|_{L_{4}(B)} \leq 1} (\sum_{i=1}^{n} \|ax_{i}\|_{4}^{4})^{1/4} + \sup_{\|b\|_{L_{4}(B)} \leq 1} (\sum_{i=1}^{n} \|x_{i}b\|_{4}^{4})^{1/4} \end{split}$$

Theorem Let $x_1, ..., x_n$ be mean 0 variables in $N = *_{i,B}A_i$. Then

$$\begin{split} &\| \sum_{i} x_{i} \otimes \bar{x}_{i} \|^{1/2} \sim \sup_{i} \|x_{i}\| \\ &+ \sup_{\|a\|_{L_{2}(B)} \leq 1, \|b\|_{L_{2}(B)} \leq 1} (\sum_{i=1}^{n} \|ax_{i}b\|_{2}^{2})^{1/2} \\ &+ \sup_{\|a\|_{L_{4}(B)} \leq 1} (\sum_{i=1}^{n} \|ax_{i}\|_{4}^{4})^{1/4} + \sup_{\|b\|_{L_{4}(B)} \leq 1} (\sum_{i=1}^{n} \|x_{i}b\|_{4}^{4})^{1/4} \end{split}$$

Remark: The L_p version is harder.

Embedding theory

Marius Junge

Motivation

Veighted nequalities

Pisier's exercis

New inequalities

/lain results

Theorem (Pisier):

${\sf Embedding\ theory}$

Marius Junge

Motivation

/eighted lequalities

Pisier's exercise

New inequalities

Theorem (Pisier):

$$\| \sum_{i} x_{i} \otimes \bar{x}_{i} \| = \| \sum_{i} L_{x_{i}} R_{x_{i}}^{*} \|$$

$$= \sup_{\|a\|_{2} \leq 1} \| \sum_{i} x_{i} a x_{i}^{*} \|_{2}$$

Embedding theory

Marius Junge

Motivation

Veighted nequalities

Pisier's exercise

New inequalities

Theorem (Pisier):

$$\| \sum_{i} x_{i} \otimes \bar{x}_{i} \| = \| \sum_{i} L_{x_{i}} R_{x_{i}}^{*} \|$$

$$= \sup_{\|a\|_{2} \le 1} \| \sum_{i} x_{i} a x_{i}^{*} \|_{2}$$

Here a is an arbitrary positive element in $L_2(*_{i,B}A_i)$

Embedding theory

Marius Junge

Motivation

Veighted nequalities

Pisier's exercise

New inequalities

Theorem (Pisier):

$$\| \sum_{i} x_{i} \otimes \bar{x}_{i} \| = \| \sum_{i} L_{x_{i}} R_{x_{i}}^{*} \|$$

$$= \sup_{\|a\|_{2} \le 1} \| \sum_{i} x_{i} a x_{i}^{*} \|_{2}$$

Here a is an arbitrary positive element in $L_2(*_{i,B}A_i)$ too much!

Want: $a \in L_2(B)!$

Embedding theory

Marius Junge

Motivation

Veighted nequalities

Pisier's exercise

New inequalities

Pisier's exercise

New inequalities

Main results

Theorem (Pisier):

 $\| \sum_{i} x_{i} \otimes \bar{x}_{i} \| = \| \sum_{i} L_{x_{i}} R_{x_{i}}^{*} \|$ $= \sup_{\|a\|_{2} \le 1} \| \sum_{i} x_{i} a x_{i}^{*} \|_{2}$

Here a is an arbitrary positive element in $L_2(*_{i,B}A_i)$ too much!

Want: $a \in L_2(B)$!

Technique:

Theorem (Pisier):

$$\| \sum_{i} x_{i} \otimes \bar{x}_{i} \| = \| \sum_{i} L_{x_{i}} R_{x_{i}}^{*} \|$$

$$= \sup_{\|a\|_{2} \le 1} \| \sum_{i} x_{i} a x_{i}^{*} \|_{2}$$

Here a is an arbitrary positive element in $L_2(*_{i,B}A_i)$ too much!

Want: $a \in L_2(B)$!

Technique: Decompose a in elements which start with symbols in A_k , end with symbols in A_k , remainder terms.

Theorem (Pisier):

$$\| \sum_{i} x_{i} \otimes \bar{x}_{i} \| = \| \sum_{i} L_{x_{i}} R_{x_{i}}^{*} \|$$

$$= \sup_{\|a\|_{2} \le 1} \| \sum_{i} x_{i} a x_{i}^{*} \|_{2}$$

Here a is an arbitrary positive element in $L_2(*_{i,B}A_i)$ too much!

Want: $a \in L_2(B)!$

Technique: Decompose a in elements which start with symbols in A_k , end with symbols in A_k , remainder terms. Use freeness:

Pisier's exercise

New inequalities

Main results

Theorem (Pisier):

$$\| \sum_{i} x_{i} \otimes \bar{x}_{i} \| = \| \sum_{i} L_{x_{i}} R_{x_{i}}^{*} \|$$

$$= \sup_{\|a\|_{2} \le 1} \| \sum_{i} x_{i} a x_{i}^{*} \|_{2}$$

Here a is an arbitrary positive element in $L_2(*_{i,B}A_i)$ too much!

Want: $a \in L_2(B)$!

Technique: Decompose a in elements which start with symbols in A_k , end with symbols in A_k , remainder terms. Use freeness:input small-output free, input free -output small, input small-output small, input free-output free+error.

 ${\sf Embedding\ theory}$

Marius Junge

Motivation

equalities

Pisier's exercis

Vew inequalitie

Theorem

Embedding theory

Marius Junge

Motivation

Veighted nequalities

risier's exercise

Vew inequalitie

Theorem The space

$$D^{1/4} \textit{N} D^{1/4} \cap D^{1/4} \textit{L}_4^\textit{c} \cap D^{1/4} \textit{L}_4^\textit{r} \cap \textit{L}_2^\textit{oh}$$

is completely complemented in an ultra product of

$$L_{\infty}(OH)$$
.

Embedding theory

Marius Junge

Motivation

nequalities

Pisier's exercise

lew inequalities

Theorem The space

$$D^{1/4} N D^{1/4} \cap D^{1/4} L_4^c \cap D^{1/4} L_4^r \cap L_2^{oh}$$

is completely complemented in an ultra product of

$$L_{\infty}(OH)$$
.

Using $OH \subset L_1$ and duality we get:

Embedding theory

Marius Junge

Motivation

nequalities

Pisier's exercise

new inequalities

$$D^{1/4}ND^{1/4} \cap D^{1/4}L_4^c \cap D^{1/4}L_4^r \cap L_2^{oh}$$

is completely complemented in an ultra product of

$$L_{\infty}(OH)$$
.

Using $OH \subset L_1$ and duality we get:

Theorem a) $E \in QS(R \oplus OH)$, $F \in QS(C \oplus OH)$, then there is a cb-embedding

$$E \otimes_h F \subset L_1(N)$$
.

Embedding theory

Marius Junge

Motivation

nequalities

Pisier's exercise

lew inequalities

Theorem The space

$$D^{1/4}ND^{1/4} \cap D^{1/4}L_4^c \cap D^{1/4}L_4^r \cap L_2^{oh}$$

is completely complemented in an ultra product of

$$L_{\infty}(OH)$$
.

Using $OH \subset L_1$ and duality we get:

Theorem a) $E \in QS(R \oplus OH)$, $F \in QS(C \oplus OH)$, then there is a cb-embedding

$$E \otimes_h F \subset L_1(N)$$
.

b) Let $1 \le q \le p \le 2$ and N a von Neumann algebra. Then for some M

$$L_p(N) \subset_{cb} L_q(M)$$
.

Comments

Embedding theory

Marius Junge

Motivation

Veighted nequalities

Pisier's exercis

Vew inequalitie

Comments

Remark: (type *III* necessary) Pisier showed that *OH* does not embed in semifinite L_1 , neither does ℓ_p , 1 (recent).

Embedding theory

Marius Junge

Motivation

/Veighted nequalities

Pisier's exercise

ew inequalities

Remark: (type *III* necessary) Pisier showed that *OH* does not embed in semifinite L_1 , neither does ℓ_p , 1 (recent).

Remark: (transference) Free products can be avoided a posteriori:

Remark: (type *III* necessary) Pisier showed that *OH* does not embed in semifinite L_1 , neither does ℓ_p , 1 (recent).

Remark: (transference) Free products can be avoided a posteriori: Let x_i be subsymmetric independent copies of x over B with mean 0.

Remark: (type *III* necessary) Pisier showed that *OH* does not embed in semifinite L_1 , neither does ℓ_p , 1 (recent).

Remark: (transference) Free products can be avoided a posteriori: Let x_i be subsymmetric independent copies of x over B with mean 0. Then

$$\|\sum_{i=1}^n x_i\|_1 \sim \|\sum_{i=1}^n \pi_i^{free}(x_i)\|_1$$
.

Remark: (type *III* necessary) Pisier showed that *OH* does not embed in semifinite L_1 , neither does ℓ_p , 1 (recent).

Remark: (transference) Free products can be avoided a posteriori: Let x_i be subsymmetric independent copies of x over B with mean 0. Then

$$\|\sum_{i=1}^n x_i\|_1 \sim \|\sum_{i=1}^n \pi_i^{free}(x_i)\|_1$$
.

Voiculescu's inequality allows us to calculate the right hand side

Remark: (type *III* necessary) Pisier showed that *OH* does not embed in semifinite L_1 , neither does ℓ_p , 1 (recent).

Remark: (transference) Free products can be avoided a posteriori: Let x_i be subsymmetric independent copies of x over B with mean 0. Then

$$\|\sum_{i=1}^n x_i\|_1 \sim \|\sum_{i=1}^n \pi_i^{free}(x_i)\|_1$$
.

Voiculescu's inequality allows us to calculate the right hand side (misleading).

. . . .

Main results

Remark: (type *III* necessary) Pisier showed that *OH* does not embed in semifinite L_1 , neither does ℓ_p , 1 (recent).

Remark: (transference) Free products can be avoided a posteriori: Let x_i be subsymmetric independent copies of x over B with mean 0. Then

$$\|\sum_{i=1}^n x_i\|_1 \sim \|\sum_{i=1}^n \pi_i^{free}(x_i)\|_1$$
.

Voiculescu's inequality allows us to calculate the right hand side (misleading). The embedding results can be reduced to norm estimates for independent copies

Remark: (type *III* necessary) Pisier showed that *OH* does not embed in semifinite L_1 , neither does ℓ_p , 1 (recent).

Remark: (transference) Free products can be avoided a posteriori: Let x_i be subsymmetric independent copies of x over B with mean 0. Then

$$\|\sum_{i=1}^n x_i\|_1 \sim \|\sum_{i=1}^n \pi_i^{free}(x_i)\|_1$$
.

Voiculescu's inequality allows us to calculate the right hand side (misleading). The embedding results can be reduced to norm estimates for independent copies (extra work).

Remark: (type *III* necessary) Pisier showed that *OH* does not embed in semifinite L_1 , neither does ℓ_p , 1 (recent).

Remark: (transference) Free products can be avoided a posteriori: Let x_i be subsymmetric independent copies of x over B with mean 0. Then

$$\|\sum_{i=1}^n x_i\|_1 \sim \|\sum_{i=1}^n \pi_i^{free}(x_i)\|_1$$
.

Voiculescu's inequality allows us to calculate the right hand side (misleading). The embedding results can be reduced to norm estimates for independent copies (extra work).

Comments II

Remark: Transference also allows to obtain weighted Khintchine inequalities for classical quasi free states

Embedding theory

Marius Junge

Motivation

nequalities

Pisier's exercise

New inequalities

Comments II

Remark: Transference also allows to obtain weighted Khintchine inequalities for classical quasi free states

$$\begin{split} \| \sum_{k} a_{k} \otimes D^{1/2} v_{k} D^{1/2} \|_{1} &\sim \inf_{a_{k} = b_{k} + c_{k}} \\ \| (\sum_{k} \mu_{k} b_{k} b_{k}^{*})^{1/2} \|_{1} &+ \| (\sum_{k} (1 - \mu_{k}) c_{k}^{*} c_{k})^{1/2} \|_{1} \end{split}$$

Embedding theory

Marius Junge

Motivation

inequalities

ibidi b exercibe

iew inequaliti

. . .

Main results

Remark: Transference also allows to obtain weighted Khintchine inequalities for classical quasi free states

$$\begin{split} \| \sum_{k} a_{k} \otimes D^{1/2} v_{k} D^{1/2} \|_{1} &\sim \inf_{a_{k} = b_{k} + c_{k}} \\ \| (\sum_{k} \mu_{k} b_{k} b_{k}^{*})^{1/2} \|_{1} &+ \| (\sum_{k} (1 - \mu_{k}) c_{k}^{*} c_{k})^{1/2} \|_{1} \end{split}$$

where $\varphi(x) = tr(Dx)$ is the density of a quasi free state associated with μ , ν_k the generators of the CAR.

Remark: Transference also allows to obtain weighted Khintchine inequalities for classical quasi free states

$$\begin{split} \| \sum_{k} a_{k} \otimes D^{1/2} v_{k} D^{1/2} \|_{1} &\sim \inf_{a_{k} = b_{k} + c_{k}} \\ \| (\sum_{k} \mu_{k} b_{k} b_{k}^{*})^{1/2} \|_{1} &+ \| (\sum_{k} (1 - \mu_{k}) c_{k}^{*} c_{k})^{1/2} \|_{1} \end{split}$$

where $\varphi(x) = tr(Dx)$ is the density of a quasi free state associated with μ , ν_k the generators of the CAR. Haagerup and Musat recently gave a more elementary proof.

Comments III

Embedding theory

Marius Junge

Motivation

Veighted nequalities

Pisier's exercis

Vew inequalitie

Comments III

For the proof that ℓ_p can not embed into $L_1(N)$, N semifinite, we show that

Embedding theory

Marius Junge

Motivation

vveignted inequalities

vew inequalitie

Comments III

For the proof that ℓ_p can not embed into $L_1(N)$, N semifinite, we show that

$$\ell_{p} \subset_{cb} L_{1}(N) \Rightarrow L_{p}([0,1]) \subset L_{1}(\tilde{N})$$

Embedding theory

Marius Junge

Motivation

nequalities

i isici s exercise

New inequalities

For the proof that ℓ_p can not embed into $L_1(N)$, N semifinite, we show that

$$\ell_p \subset_{cb} L_1(N) \Rightarrow L_p([0,1]) \subset L_1(\tilde{N})$$

such that N semifinite implies \tilde{N} semifinite using

Theorem (NC Rosenthal) $X \subset L_1(N)$ reflexive, then there exists p > 1, a state with density d, and $u : X \to L_p$ such that

$$x = d^{1-1/p}u(x) + u(x)d^{1-1/p}$$
.

For the proof that ℓ_p can not embed into $L_1(N)$, N semifinite, we show that

$$\ell_{p} \subset_{cb} L_{1}(N) \Rightarrow L_{p}([0,1]) \subset L_{1}(\tilde{N})$$

such that N semifinite implies \tilde{N} semifinite using

Theorem (NC Rosenthal) $X \subset L_1(N)$ reflexive, then there exists p > 1, a state with density d, and $u : X \to L_p$ such that

$$x = d^{1-1/p}u(x) + u(x)d^{1-1/p}$$
.

However, (Pisier/Xu) $C_p + R_p \subset L_p([0,1])$ cannot embed in $L_1(N)$, N semifinite.

For the proof that ℓ_p can not embed into $L_1(N)$, Nsemifinite, we show that

$$\ell_p \subset_{cb} L_1(N) \Rightarrow L_p([0,1]) \subset L_1(\tilde{N})$$

such that N semifinite implies \tilde{N} semifinite using

Theorem (NC Rosenthal) $X \subset L_1(N)$ reflexive, then there exists p > 1, a state with density d, and $u: X \to L_p$ such that

$$x = d^{1-1/p}u(x) + u(x)d^{1-1/p}$$
.

However, (Pisier/Xu) $C_p + R_p \subset L_p([0,1])$ cannot embed in $L_1(N)$, N semifinite.

Thanks for coming and listening

For the proof that ℓ_p can not embed into $L_1(N)$, Nsemifinite, we show that

$$\ell_p \subset_{cb} L_1(N) \Rightarrow L_p([0,1]) \subset L_1(\tilde{N})$$

such that N semifinite implies \tilde{N} semifinite using

Theorem (NC Rosenthal) $X \subset L_1(N)$ reflexive, then there exists p > 1, a state with density d, and $u: X \to L_p$ such that

$$x = d^{1-1/p}u(x) + u(x)d^{1-1/p}$$
.

However, (Pisier/Xu) $C_p + R_p \subset L_p([0,1])$ cannot embed in $L_1(N)$, N semifinite.

Thanks for coming and listening