Embedding of noncommutative L_{p}

Marius Junge

Joint work with J. Parcet

Embedding of noncommutative L_{p}

Marius Junge

Joint work with J. Parcet

Fields Institute, December 2007

Commutative theory

Commutative theory

- (Khintchine inequality) Let ε_{k} Bernoulli variables, then

$$
\mathbb{E}\left\|\sum_{k} \varepsilon_{k} \alpha_{k}\right\|_{p} \sim_{c_{p}}\left\|\left(\alpha_{k}\right)\right\|_{2} .
$$

Commutative theory

- (Khintchine inequality) Let ε_{k} Bernoulli variables, then

$$
\mathbb{E}\left\|\sum_{k} \varepsilon_{k} \alpha_{k}\right\|_{p} \sim_{c_{p}}\left\|\left(\alpha_{k}\right)\right\|_{2} .
$$

Here $a \sim_{c} b$ if $1 / c \leq a / b \leq c$.

Commutative theory

- (Khintchine inequality) Let ε_{k} Bernoulli variables, then

$$
\mathbb{E}\left\|\sum_{k} \varepsilon_{k} \alpha_{k}\right\|_{p} \sim_{c_{p}}\left\|\left(\alpha_{k}\right)\right\|_{2} .
$$

Here $a \sim_{c} b$ if $1 / c \leq a / b \leq c$. Hence $\ell_{2} \subset L_{p}$.

Commutative theory

- (Khintchine inequality) Let ε_{k} Bernoulli variables, then

$$
\mathbb{E}\left\|\sum_{k} \varepsilon_{k} \alpha_{k}\right\|_{p} \sim_{c_{p}}\left\|\left(\alpha_{k}\right)\right\|_{2} .
$$

Here $a \sim_{c} b$ if $1 / c \leq a / b \leq c$. Hence $\ell_{2} \subset L_{p}$.

- (q-stable var.) $\mathbb{E} e^{i t \theta_{q}}=\exp \left(-c_{q}|t|^{q}\right)$.

Commutative theory

- (Khintchine inequality) Let ε_{k} Bernoulli variables, then

$$
\mathbb{E}\left\|\sum_{k} \varepsilon_{k} \alpha_{k}\right\|_{p} \sim_{c_{p}}\left\|\left(\alpha_{k}\right)\right\|_{2} .
$$

Here $a \sim_{c} b$ if $1 / c \leq a / b \leq c$. Hence $\ell_{2} \subset L_{p}$.

- (q-stable var.) $\mathbb{E} e^{i t \theta_{q}}=\exp \left(-c_{q}|t|^{q}\right)$. Then $\ell_{q} \subset L_{p}$

Commutative theory

- (Khintchine inequality) Let ε_{k} Bernoulli variables, then

$$
\mathbb{E}\left\|\sum_{k} \varepsilon_{k} \alpha_{k}\right\|_{p} \sim_{c_{p}}\left\|\left(\alpha_{k}\right)\right\|_{2} .
$$

Here $a \sim_{c} b$ if $1 / c \leq a / b \leq c$. Hence $\ell_{2} \subset L_{p}$.

- (q-stable var.) $\mathbb{E} e^{i t \theta_{q}}=\exp \left(-c_{q}|t|^{q}\right)$. Then $\ell_{q} \subset L_{p}$

$$
\left(\mathbb{E}\left|\sum_{k} \alpha_{k} \theta_{k}\right|^{p}\right)^{1 / p}=c\left\|\left(\alpha_{k}\right)\right\|_{q} \quad 0<p<q
$$

Commutative theory

- (Khintchine inequality) Let ε_{k} Bernoulli variables, then

$$
\mathbb{E}\left\|\sum_{k} \varepsilon_{k} \alpha_{k}\right\|_{p} \sim_{c_{p}}\left\|\left(\alpha_{k}\right)\right\|_{2} .
$$

Here $a \sim_{c} b$ if $1 / c \leq a / b \leq c$. Hence $\ell_{2} \subset L_{p}$.

- (q-stable var.) $\mathbb{E} e^{i t \theta_{q}}=\exp \left(-c_{q}|t|^{q}\right)$. Then $\ell_{q} \subset L_{p}$

$$
\left(\mathbb{E}\left|\sum_{k} \alpha_{k} \theta_{k}\right|^{p}\right)^{1 / p}=c\left\|\left(\alpha_{k}\right)\right\|_{q} \quad 0<p<q
$$

- (Maurey-Pisier-Krivine)

For every infinite dimensional Banach space there exist p_{0}, q_{0} such that ℓ_{p}^{n} is $(1+\varepsilon)$-isomorphic to a subspace of X for all

$$
p \in\left[p_{0}, 2\right] \cup\left\{q_{0}\right\} .
$$

Independent variables

Independent variables

(behind the scene)

Independent variables

(behind the scene)

- Rosenthal inequality (~ 72) for mean 0

Independent variables

(behind the scene)

- Rosenthal inequality (~ 72) for mean 0

$$
\left\|\sum_{i} f_{i}\right\|_{p} \sim\left(\sum_{i}\left\|f_{i}\right\|_{p}^{p}\right)^{1 / p}+\left(\sum_{i}\left\|f_{i}\right\|_{2}^{2}\right)^{1 / 2} \quad p \geq 2
$$

Independent variables

(behind the scene)

- Rosenthal inequality (~ 72) for mean 0

$$
\left\|\sum_{i} f_{i}\right\|_{p} \sim\left(\sum_{i}\left\|f_{i}\right\|_{p}^{p}\right)^{1 / p}+\left(\sum_{i}\left\|f_{i}\right\|_{2}^{2}\right)^{1 / 2} \quad p \geq 2
$$

- Later: $p \leq 2$

Independent variables

(behind the scene)

- Rosenthal inequality (~ 72) for mean 0

$$
\left\|\sum_{i} f_{i}\right\|_{p} \sim\left(\sum_{i}\left\|f_{i}\right\|_{p}^{p}\right)^{1 / p}+\left(\sum_{i}\left\|f_{i}\right\|_{2}^{2}\right)^{1 / 2} \quad p \geq 2
$$

- Later: $p \leq 2$

$$
\left\|\sum_{i} f_{i}\right\|_{p} \sim \inf _{f_{i}=g_{i}+h_{i}}\left(\sum_{i}\left\|g_{i}\right\|_{p}^{p}\right)^{1 / p}+\left(\sum_{i}\left\|h_{i}\right\|_{2}^{2}\right)^{1 / 2} \quad 1 \leq p \leq 2
$$

Independent variables

(behind the scene)

- Rosenthal inequality (~ 72) for mean 0

$$
\left\|\sum_{i} f_{i}\right\|_{p} \sim\left(\sum_{i}\left\|f_{i}\right\|_{p}^{p}\right)^{1 / p}+\left(\sum_{i}\left\|f_{i}\right\|_{2}^{2}\right)^{1 / 2} \quad p \geq 2
$$

- Later: $p \leq 2$

$$
\left\|\sum_{i} f_{i}\right\|_{p} \sim \inf _{f_{i}=g_{i}+h_{i}}\left(\sum_{i}\left\|g_{i}\right\|_{p}^{p}\right)^{1 / p}+\left(\sum_{i}\left\|h_{i}\right\|_{2}^{2}\right)^{1 / 2} \quad 1 \leq p \leq 2
$$

- Corollary: $L_{p}(0, \infty) \cap L_{2}(0, \infty) \cong L_{p}([0,1]) p \geq 2$,

Independent variables

(behind the scene)

- Rosenthal inequality (~ 72) for mean 0

$$
\left\|\sum_{i} f_{i}\right\|_{p} \sim\left(\sum_{i}\left\|f_{i}\right\|_{p}^{p}\right)^{1 / p}+\left(\sum_{i}\left\|f_{i}\right\|_{2}^{2}\right)^{1 / 2} \quad p \geq 2
$$

- Later: $p \leq 2$

$$
\left\|\sum_{i} f_{i}\right\|_{p} \sim \inf _{f_{i}=g_{i}+h_{i}}\left(\sum_{i}\left\|g_{i}\right\|_{p}^{p}\right)^{1 / p}+\left(\sum_{i}\left\|h_{i}\right\|_{2}^{2}\right)^{1 / 2} \quad 1 \leq p \leq 2
$$

- Corollary: $L_{p}(0, \infty) \cap L_{2}(0, \infty) \cong L_{p}([0,1]) p \geq 2$,

$$
L_{p}(0, \infty)+L_{2}(0, \infty) \cong L_{p}([0,1]) p \geq 2
$$

Operator-valued examples

Operator-valued examples

$\left\|\sum_{k} x_{k} \otimes a_{k}\right\|_{1} \sim \inf _{a_{k}=b_{k}+c_{k}}\left\|\left(\sum_{k} b_{k} b_{k}^{*}\right)^{1 / 2}\right\|_{1}+\left\|\left(\sum_{k} c_{k}^{*} c_{k}\right)^{1 / 2}\right\|_{1}$
holds for

Operator-valued examples

$\left\|\sum_{k} x_{k} \otimes a_{k}\right\|_{1} \sim \inf _{a_{k}=b_{k}+c_{k}}\left\|\left(\sum_{k} b_{k} b_{k}^{*}\right)^{1 / 2}\right\|_{1}+\left\|\left(\sum_{k} c_{k}^{*} c_{k}\right)^{1 / 2}\right\|_{1}$ holds for (due to Pisier, Pisier-Lust Picard)

Operator-valued examples

$\left\|\sum_{k} x_{k} \otimes a_{k}\right\|_{1} \sim \inf _{a_{k}=b_{k}+c_{k}}\left\|\left(\sum_{k} b_{k} b_{k}^{*}\right)^{1 / 2}\right\|_{1}+\left\|\left(\sum_{k} c_{k}^{*} c_{k}\right)^{1 / 2}\right\|_{1}$
holds for (due to Pisier, Pisier-Lust Picard)
B $x_{k}=\varepsilon_{k}$ or x_{k} independent gaussian ;

Operator-valued examples

$\left\|\sum_{k} x_{k} \otimes a_{k}\right\|_{1} \sim \inf _{a_{k}=b_{k}+c_{k}}\left\|\left(\sum_{k} b_{k} b_{k}^{*}\right)^{1 / 2}\right\|_{1}+\left\|\left(\sum_{k} c_{k}^{*} c_{k}\right)^{1 / 2}\right\|_{1}$
holds for (due to Pisier, Pisier-Lust Picard)
B $x_{k}=\varepsilon_{k}$ or x_{k} independent gaussian ;

* $x_{k}=\lambda\left(g_{k}\right), g_{k}$ free generators;

Operator－valued examples

$\left\|\sum_{k} x_{k} \otimes a_{k}\right\|_{1} \sim \inf _{a_{k}=b_{k}+c_{k}}\left\|\left(\sum_{k} b_{k} b_{k}^{*}\right)^{1 / 2}\right\|_{1}+\left\|\left(\sum_{k} c_{k}^{*} c_{k}\right)^{1 / 2}\right\|_{1}$
holds for（due to Pisier，Pisier－Lust Picard）
B $x_{k}=\varepsilon_{k}$ or x_{k} independent gaussian ；
$\circledast x_{k}=\lambda\left(g_{k}\right), g_{k}$ free generators；
※ $x_{k}=\lambda\left(g_{i}\right), g_{i}$ subsymmetric generators of discrete group；

Operator-valued examples

$\left\|\sum_{k} x_{k} \otimes a_{k}\right\|_{1} \sim \inf _{a_{k}=b_{k}+c_{k}}\left\|\left(\sum_{k} b_{k} b_{k}^{*}\right)^{1 / 2}\right\|_{1}+\left\|\left(\sum_{k} c_{k}^{*} c_{k}\right)^{1 / 2}\right\|_{1}$
holds for (due to Pisier, Pisier-Lust Picard)
B $x_{k}=\varepsilon_{k}$ or x_{k} independent gaussian ;
© $x_{k}=\lambda\left(g_{k}\right), g_{k}$ free generators;
※ $x_{k}=\lambda\left(g_{i}\right), g_{i}$ subsymmetric generators of discrete group;
※ $x_{k}=s_{k}, x_{k}=s_{k}+i s_{-k}$ for semi-circular s_{k}.

Starting point $\sim 98 / 99$

Starting point $\sim 98 / 99$

If OH cb-embeds in $L_{1}(N)$, then

$$
S_{4 / 3}=C \hat{\otimes} O H \subset L_{1}\left(B\left(\ell_{2}\right) \otimes N\right)
$$

embeds in noncommutative L_{1}.

Starting point $\sim 98 / 99$

If OH cb-embeds in $L_{1}(N)$, then

$$
S_{4 / 3}=C \hat{\otimes} O H \subset L_{1}\left(B\left(\ell_{2}\right) \otimes N\right)
$$

embeds in noncommutative L_{1}.

Famous Banach space expert:

Starting point $\sim 98 / 99$

If OH cb-embeds in $L_{1}(N)$, then

$$
S_{4 / 3}=C \hat{\otimes} O H \subset L_{1}\left(B\left(\ell_{2}\right) \otimes N\right)
$$

embeds in noncommutative L_{1}.

Famous Banach space expert: Maybe not.

Starting point $\sim 98 / 99$

If OH cb-embeds in $L_{1}(N)$, then

$$
S_{4 / 3}=C \hat{\otimes} O H \subset L_{1}\left(B\left(\ell_{2}\right) \otimes N\right)
$$

embeds in noncommutative L_{1}.

Famous Banach space expert: Maybe not.
Warning: $S_{4 / 3}^{c}=C \stackrel{\wedge}{\otimes} O H$ is not the standard $S_{4 / 3}$,

Starting point $\sim 98 / 99$

If OH cb－embeds in $L_{1}(N)$ ，then

$$
S_{4 / 3}=C \hat{\otimes} O H \subset L_{1}\left(B\left(\ell_{2}\right) \otimes N\right)
$$

embeds in noncommutative L_{1} ．

Famous Banach space expert：Maybe not．
Warning：$S_{4 / 3}^{c}=C \hat{\otimes} O H$ is not the standard $S_{4 / 3}$ ，but

$$
S_{4 / 3}=\left[S_{4 / 3}^{c}, S_{4 / 3}^{r}\right]_{\frac{1}{2}} .
$$

Voiculescu's and Shlyakhtenko's inequality

Motivation

Weighted inequalities

Voiculescu's and Shlyakhtenko's inequality

1) (Rosenthal in L_{∞})

Motivation

Weighted inequalities

Voiculescu's and Shlyakhtenko's inequality

1) (Rosenthal in L_{∞}) Let $N=*_{i, B} A_{i}$ be the free product over B and $x_{i} \in A_{i}$ with $E_{B}\left(x_{i}\right)=0$.

Voiculescu's and Shlyakhtenko's inequality

Marius Junge

1) (Rosenthal in L_{∞}) Let $N=*_{i, B} A_{i}$ be the free product over B and $x_{i} \in A_{i}$ with $E_{B}\left(x_{i}\right)=0$. Then

$$
\left\|\sum_{i} x_{i}\right\| \sim \sup _{i}\left\|x_{i}\right\|_{\infty}+\left\|\sum_{i} E_{B}\left(x_{i}^{*} x_{i}+x_{i} x_{i}^{*}\right)\right\|^{1 / 2}
$$

Voiculescu's and Shlyakhtenko's inequality

1) (Rosenthal in L_{∞}) Let $N=*_{i, B} A_{i}$ be the free product over B and $x_{i} \in A_{i}$ with $E_{B}\left(x_{i}\right)=0$. Then

$$
\left\|\sum_{i} x_{i}\right\| \sim \sup _{i}\left\|x_{i}\right\|_{\infty}+\left\|\sum_{i} E_{B}\left(x_{i}^{*} x_{i}+x_{i} x_{i}^{*}\right)\right\|^{1 / 2}
$$

2) Let $s_{k}=\lambda_{k} I_{k}+\mu_{k} l_{-k}^{*}$ generalized semicircular.

Voiculescu's and Shlyakhtenko's inequality

1) (Rosenthal in L_{∞}) Let $N=*_{i, B} A_{i}$ be the free product over B and $x_{i} \in A_{i}$ with $E_{B}\left(x_{i}\right)=0$. Then

$$
\left\|\sum_{i} x_{i}\right\| \sim \sup _{i}\left\|x_{i}\right\|_{\infty}+\left\|\sum_{i} E_{B}\left(x_{i}^{*} x_{i}+x_{i} x_{i}^{*}\right)\right\|^{1 / 2}
$$

2) Let $s_{k}=\lambda_{k} I_{k}+\mu_{k} I_{-k}^{*}$ generalized semicircular. Then

$$
\left\|\sum_{k} a_{k} \otimes s_{k}\right\| \sim\left\|\left(\sum_{k}\left|\lambda_{k}\right|^{2} a_{k}^{*} a_{k}\right)^{1 / 2}\right\|+\left\|\left(\sum_{k} \mu_{k}^{2} a_{k} a_{k}^{*}\right)^{1 / 2}\right\| .
$$

Voiculescu's and Shlyakhtenko's inequality

1) (Rosenthal in L_{∞}) Let $N=*_{i, B} A_{i}$ be the free product over B and $x_{i} \in A_{i}$ with $E_{B}\left(x_{i}\right)=0$. Then

$$
\left\|\sum_{i} x_{i}\right\| \sim \sup _{i}\left\|x_{i}\right\|_{\infty}+\left\|\sum_{i} E_{B}\left(x_{i}^{*} x_{i}+x_{i} x_{i}^{*}\right)\right\|^{1 / 2}
$$

2) Let $s_{k}=\lambda_{k} I_{k}+\mu_{k} l_{-k}^{*}$ generalized semicircular. Then

$$
\left\|\sum_{k} a_{k} \otimes s_{k}\right\| \sim\left\|\left(\sum_{k}\left|\lambda_{k}\right|^{2} a_{k}^{*} a_{k}\right)^{1 / 2}\right\|+\left\|\left(\sum_{k} \mu_{k}^{2} a_{k} a_{k}^{*}\right)^{1 / 2}\right\| .
$$

Moreover, the s_{k} are analytic vectors in a von Neumann algebra $N(\lambda, \mu)$ with faith normal state given by the vacuum vector

Voiculescu's and Shlyakhtenko's inequality

1) (Rosenthal in L_{∞}) Let $N=*_{i, B} A_{i}$ be the free product over B and $x_{i} \in A_{i}$ with $E_{B}\left(x_{i}\right)=0$. Then

$$
\left\|\sum_{i} x_{i}\right\| \sim \sup _{i}\left\|x_{i}\right\|_{\infty}+\left\|\sum_{i} E_{B}\left(x_{i}^{*} x_{i}+x_{i} x_{i}^{*}\right)\right\|^{1 / 2}
$$

2) Let $s_{k}=\lambda_{k} I_{k}+\mu_{k} l_{-k}^{*}$ generalized semicircular. Then

$$
\left\|\sum_{k} a_{k} \otimes s_{k}\right\| \sim\left\|\left(\sum_{k}\left|\lambda_{k}\right|^{2} a_{k}^{*} a_{k}\right)^{1 / 2}\right\|+\left\|\left(\sum_{k} \mu_{k}^{2} a_{k} a_{k}^{*}\right)^{1 / 2}\right\| .
$$

Moreover, the s_{k} are analytic vectors in a von Neumann algebra $N(\lambda, \mu)$ with faith normal state given by the vacuum vector (modular group).
"Applications"

"Applications"

(1) Pisier and Shlyakhtenko used this to prove a Grothendiek inequality for operator spaces.

"Applications"

(1) Pisier and Shlyakhtenko used this to prove a

Grothendiek inequality for operator spaces.
(2) The weighted space $C(\lambda) \cap R(\mu)$ defined by the span of the s_{k} 's is completely complemented in $N(\lambda, \mu)$ (

＂Applications＂

（1）Pisier and Shlyakhtenko used this to prove a
Grothendiek inequality for operator spaces．
（2）The weighted space $C(\lambda) \cap R(\mu)$ defined by the span of the s_{k}＇s is completely complemented in $N(\lambda, \mu)$
（Haagerup／Pisier＇s work）．

＂Applications＂

（1）Pisier and Shlyakhtenko used this to prove a
Grothendiek inequality for operator spaces．
（2）The weighted space $C(\lambda) \cap R(\mu)$ defined by the span of the s_{k}＇s is completely complemented in $N(\lambda, \mu)$
（Haagerup／Pisier＇s work）．
（3）The dual space $R(\lambda)+C(\mu)$ is contained in the predual of a von Neumann algebra．

"Applications"

(1) Pisier and Shlyakhtenko used this to prove a

Grothendiek inequality for operator spaces.
(2) The weighted space $C(\lambda) \cap R(\mu)$ defined by the span of the s_{k} 's is completely complemented in $N(\lambda, \mu)$
(Haagerup/Pisier's work).
(3) The dual space $R(\lambda)+C(\mu)$ is contained in the predual of a von Neumann algebra.
(c) OH is cb-isomorphic to a subspace of a noncommutative L_{1} space.

Pisier's exercise

Embedding theory

Marius Junge

Motivation

Weighted
inequalities

Pisier's exercise

New inequalities

Main results

Pisier's exercise

The operator space $O H$ is defined by complex interpolation

$$
O H=[R, C]_{\frac{1}{2}}
$$

Marius Junge

Weighted

Pisier's exercise
New inequalities
Main results

Pisier's exercise

The operator space $O H$ is defined by complex interpolation

$$
O H=[R, C]_{\frac{1}{2}}
$$

The complex interpolation functor can be realized as the subspace of constants in the quotient space

$$
O H \subset L_{2}^{c}\left(i \mathbb{R}, \ell_{2}\right) \oplus L_{2}^{r}\left(1+i \mathbb{R}, \ell_{2}\right) / H_{1 / 2}^{0}
$$

Pisier's exercise

The operator space $O H$ is defined by complex interpolation

$$
O H=[R, C]_{\frac{1}{2}}
$$

The complex interpolation functor can be realized as the subspace of constants in the quotient space

$$
O H \subset L_{2}^{c}\left(i \mathbb{R}, \ell_{2}\right) \oplus L_{2}^{r}\left(1+i \mathbb{R}, \ell_{2}\right) / H_{1 / 2}^{0}
$$

where $H_{1 / 2}^{0}$ is the space of analytic functions $f:\{0 \leq \operatorname{Re}(z) \leq 1\} \rightarrow \ell_{2}$ with $f\left(\frac{1}{2}\right)=0$.

Pisier's exercise

The operator space OH is defined by complex interpolation

$$
O H=[R, C]_{\frac{1}{2}}
$$

The complex interpolation functor can be realized as the subspace of constants in the quotient space

$$
O H \subset L_{2}^{c}\left(i \mathbb{R}, \ell_{2}\right) \oplus L_{2}^{r}\left(1+i \mathbb{R}, \ell_{2}\right) / H_{1 / 2}^{0}
$$

where $H_{1 / 2}^{0}$ is the space of analytic functions $f:\{0 \leq \operatorname{Re}(z) \leq 1\} \rightarrow \ell_{2}$ with $f\left(\frac{1}{2}\right)=0$.

Corollary (Junge 06) OH is a subspace of $R(\lambda)+C(\mu)$ for suitable λ and μ.

Pisier's exercise

The operator space OH is defined by complex interpolation

$$
O H=[R, C]_{\frac{1}{2}}
$$

The complex interpolation functor can be realized as the subspace of constants in the quotient space

$$
O H \subset L_{2}^{c}\left(i \mathbb{R}, \ell_{2}\right) \oplus L_{2}^{r}\left(1+i \mathbb{R}, \ell_{2}\right) / H_{1 / 2}^{0}
$$

where $H_{1 / 2}^{0}$ is the space of analytic functions $f:\{0 \leq \operatorname{Re}(z) \leq 1\} \rightarrow \ell_{2}$ with $f\left(\frac{1}{2}\right)=0$.

Corollary (Junge 06) OH is a subspace of $R(\lambda)+C(\mu)$ for suitable λ and μ.

Xu's work made this very precise.

Pisier's Exercise \otimes Pisier's Exercise (technical)

Pisier＇s Exercise \otimes Pisier＇s Exercise（technical）

Let $1<p<2$ ．Then the operator space

$$
S_{p}=C_{p} \otimes_{h} R_{p}
$$

is completely isomorphic to tensor product of the space of constants in

Pisier's Exercise \otimes Pisier's Exercise (technical)

Let $1<p<2$. Then the operator space

$$
S_{p}=C_{p} \otimes_{h} R_{p}
$$

is completely isomorphic to tensor product of the space of constants in
$\left(L_{2}^{c}\left(i \mathbb{R}, \ell_{2}\right) \oplus L_{2}^{o h}\left(1+i \mathbb{R}, \ell_{2}\right) / H_{\theta}^{0}\right) \otimes_{h}\left(L_{2}^{r}\left(i \mathbb{R}, \ell_{2}\right) \oplus L_{2}^{o h}\left(1+i \mathbb{R}, \ell_{2}\right) / H_{\theta}^{0}\right)$.

Pisier's Exercise \otimes Pisier's Exercise (technical)

Let $1<p<2$. Then the operator space

$$
S_{p}=C_{p} \otimes_{h} R_{p}
$$

is completely isomorphic to tensor product of the space of constants in
$\left(L_{2}^{c}\left(i \mathbb{R}, \ell_{2}\right) \oplus L_{2}^{o h}\left(1+i \mathbb{R}, \ell_{2}\right) / H_{\theta}^{0}\right) \otimes_{h}\left(L_{2}^{r}\left(i \mathbb{R}, \ell_{2}\right) \oplus L_{2}^{o h}\left(1+i \mathbb{R}, \ell_{2}\right) / H_{\theta}^{0}\right)$.
For general N we have $L_{p}(N)=\left[L_{1}, L_{2}\right]_{\theta}$ and L_{p} is cb-isomorphic to a subspace of

$$
\begin{aligned}
& \left(L_{2}^{r}\left(N ; L_{2}(i \mathbb{R})\right) \oplus L_{4}^{r}\left(N ; L_{2}^{c}(1+i \mathbb{R})\right) / H_{\theta}^{0}\right) \\
& \otimes_{N, h}\left(L_{2}^{c}\left(N ; L_{2}(i \mathbb{R}) \oplus L_{4}^{c}\left(N ; L_{2}^{r}(1+i \mathbb{R})\right) / H_{\theta}^{0}\right)\right.
\end{aligned}
$$

Pisier's Exercise \otimes Pisier's Exercise (technical)

Let $1<p<2$. Then the operator space

$$
S_{p}=C_{p} \otimes_{h} R_{p}
$$

is completely isomorphic to tensor product of the space of constants in
$\left(L_{2}^{c}\left(i \mathbb{R}, \ell_{2}\right) \oplus L_{2}^{o h}\left(1+i \mathbb{R}, \ell_{2}\right) / H_{\theta}^{0}\right) \otimes_{h}\left(L_{2}^{r}\left(i \mathbb{R}, \ell_{2}\right) \oplus L_{2}^{o h}\left(1+i \mathbb{R}, \ell_{2}\right) / H_{\theta}^{0}\right)$.
For general N we have $L_{p}(N)=\left[L_{1}, L_{2}\right]_{\theta}$ and L_{p} is cb-isomorphic to a subspace of

$$
\begin{aligned}
& \left(L_{2}^{r}\left(N ; L_{2}(i \mathbb{R})\right) \oplus L_{4}^{r}\left(N ; L_{2}^{c}(1+i \mathbb{R})\right) / H_{\theta}^{0}\right) \\
& \otimes_{N, h}\left(L_{2}^{c}\left(N ; L_{2}(i \mathbb{R}) \oplus L_{4}^{c}\left(N ; L_{2}^{r}(1+i \mathbb{R})\right) / H_{\theta}^{0}\right)\right.
\end{aligned}
$$

Here $L_{4}^{c}=\left[N, L_{2}^{c}\right]_{\frac{1}{2}}$ satisfies

$$
C_{m} \otimes_{h} L_{4}^{c} \otimes_{h} C_{m}=L_{4}\left(M_{m}(N)\right) S_{4}^{m} .
$$

Application of the tensor product formula

Application of the tensor product formula

1) L_{p} is completely isomorphic to a subspace of

Application of the tensor product formula

1) L_{p} is completely isomorphic to a subspace of

$$
L_{1}(N)+D^{1 / 4} L_{4 / 3}^{c}(N)+L_{4 / 3}^{r}(N) D^{1 / 4}+D^{1 / 4} L_{2}^{o h}(N) D^{1 / 4}
$$

Application of the tensor product formula

1) L_{p} is completely isomorphic to a subspace of

$$
L_{1}(N)+D^{1 / 4} L_{4 / 3}^{c}(N)+L_{4 / 3}^{r}(N) D^{1 / 4}+D^{1 / 4} L_{2}^{o h}(N) D^{1 / 4}
$$

Here D is the density of strictly semifinite weight (incorporating the unbounded operator from complex interpolation).

Application of the tensor product formula

1) L_{p} is completely isomorphic to a subspace of

$$
L_{1}(N)+D^{1 / 4} L_{4 / 3}^{c}(N)+L_{4 / 3}^{r}(N) D^{1 / 4}+D^{1 / 4} L_{2}^{o h}(N) D^{1 / 4}
$$

Here D is the density of strictly semifinite weight (incorporating the unbounded operator from complex interpolation).
2) Let $E \in Q S(R \oplus O H)$ (quotient of a subspace of) and $F \in Q S(C \oplus O H)$.

Application of the tensor product formula

1) L_{p} is completely isomorphic to a subspace of

$$
L_{1}(N)+D^{1 / 4} L_{4 / 3}^{c}(N)+L_{4 / 3}^{r}(N) D^{1 / 4}+D^{1 / 4} L_{2}^{o h}(N) D^{1 / 4}
$$

Here D is the density of strictly semifinite weight (incorporating the unbounded operator from complex interpolation).
2) Let $E \in Q S(R \oplus O H)$ (quotient of a subspace of) and $F \in Q S(C \oplus O H)$. Then
$E \otimes_{h} F \subset L_{1}(N)+D^{1 / 4} L_{4 / 3}^{c}(N)+L_{4 / 3}^{r}(N) D^{1 / 4}+D^{1 / 4} L_{2}^{o h}(N) D^{1 / 4}$
for some strictly weight.

New Voiculescu inequality

Embedding theory

Marius Junge

Motivation

Weighted
inequalities

Pisier's exercise

New inequalities

Main results

New Voiculescu inequality

Theorem Let x_{1}, \ldots, x_{n} be mean 0 variables in $N=*_{i, B} A_{i}$. Then

$$
\begin{aligned}
& \left\|\sum_{i} x_{i} \otimes \bar{x}_{i}\right\|^{1 / 2} \sim \sup _{i}\left\|x_{i}\right\| \\
& +\sup _{\|a\|_{L_{2}(B)} \leq 1,\|b\|_{L_{2}(B) \leq 1}}\left(\sum_{i=1}^{n}\left\|a x_{i} b\right\|_{2}^{2}\right)^{1 / 2} \\
& +\sup _{\|a\|_{L_{4}(B) \leq 1}}\left(\sum_{i=1}^{n}\left\|a x_{i}\right\|_{4}^{4}\right)^{1 / 4}+\sup _{\|b\|_{L_{4}(B) \leq 1}}\left(\sum_{i=1}^{n}\left\|x_{i} b\right\|_{4}^{4}\right)^{1 / 4}
\end{aligned}
$$

New Voiculescu inequality

Theorem Let x_{1}, \ldots, x_{n} be mean 0 variables in $N=*_{i, B} A_{i}$. Then

$$
\begin{aligned}
& \left\|\sum_{i} x_{i} \otimes \bar{x}_{i}\right\|^{1 / 2} \sim \sup _{i}\left\|x_{i}\right\| \\
& +\sup _{\|a\|_{L_{2}(B)} \leq 1,\|b\|_{L_{2}(B)} \leq 1}\left(\sum_{i=1}^{n}\left\|a x_{i} b\right\|_{2}^{2}\right)^{1 / 2} \\
& +\sup _{\|a\|_{L_{4}(B)} \leq 1}\left(\sum_{i=1}^{n}\left\|a x_{i}\right\|_{4}^{4}\right)^{1 / 4}+\sup _{\|b\|_{L_{4}(B)} \leq 1}\left(\sum_{i=1}^{n}\left\|x_{i} b\right\|_{4}^{4}\right)^{1 / 4}
\end{aligned}
$$

Remark: The L_{p} version is harder.

Sketch of proof

Embedding theory

Marius Junge

Motivation

Weighted
inequalities

Pisier's exercise

New inequalities

Sketch of proof

Embedding theory

Marius Junge
Theorem (Pisier):

Sketch of proof

Embedding theory

Marius Junge
Theorem (Pisier):

$$
\begin{aligned}
\left\|\sum_{i} x_{i} \otimes \bar{x}_{i}\right\| & =\left\|\sum_{i} L_{x_{i}} R_{x_{i}}^{*}\right\| \\
& =\sup _{\|a\|_{2} \leq 1}\left\|\sum_{i} x_{i} a x_{i}^{*}\right\|_{2}
\end{aligned}
$$

Weighted
 inequalities
 Pisier's exercise

New inequalities

Main results

Sketch of proof

Marius Junge
Theorem (Pisier):

$$
\begin{aligned}
\left\|\sum_{i} x_{i} \otimes \bar{x}_{i}\right\| & =\left\|\sum_{i} L_{x_{i}} R_{x_{i}}^{*}\right\| \\
& =\sup _{\|a\|_{2} \leq 1}\left\|\sum_{i} x_{i} a x_{i}^{*}\right\|_{2}
\end{aligned}
$$

Here a is an arbitrary positive element in $L_{2}\left(*_{i, B} A_{i}\right)$

Sketch of proof

Theorem (Pisier):

$$
\begin{aligned}
\left\|\sum_{i} x_{i} \otimes \bar{x}_{i}\right\| & =\left\|\sum_{i} L_{x_{i}} R_{x_{i}}^{*}\right\| \\
& =\sup _{\|a\|_{2} \leq 1}\left\|\sum_{i} x_{i} a x_{i}^{*}\right\|_{2}
\end{aligned}
$$

Here a is an arbitrary positive element in $L_{2}\left(*_{i, B} A_{i}\right)$ too much!

Want: $a \in L_{2}(B)$!

Sketch of proof

Theorem (Pisier):

$$
\begin{aligned}
\left\|\sum_{i} x_{i} \otimes \bar{x}_{i}\right\| & =\left\|\sum_{i} L_{x_{i}} R_{x_{i}}^{*}\right\| \\
& =\sup _{\|a\|_{2} \leq 1}\left\|\sum_{i} x_{i} a x_{i}^{*}\right\|_{2}
\end{aligned}
$$

Here a is an arbitrary positive element in $L_{2}\left(*_{i, B} A_{i}\right)$ too much!

Want: $a \in L_{2}(B)$!
Technique:

Sketch of proof

Theorem (Pisier):

$$
\begin{aligned}
\left\|\sum_{i} x_{i} \otimes \bar{x}_{i}\right\| & =\left\|\sum_{i} L_{x_{i}} R_{x_{i}}^{*}\right\| \\
& =\sup _{\|a\|_{2} \leq 1}\left\|\sum_{i} x_{i} a x_{i}^{*}\right\|_{2}
\end{aligned}
$$

Here a is an arbitrary positive element in $L_{2}\left(*_{i, B} A_{i}\right)$ too much!

Want: $a \in L_{2}(B)$!
Technique: Decompose a in elements which start with symbols in A_{k}, end with symbols in A_{k}, remainder terms.

Sketch of proof

Theorem (Pisier):

$$
\begin{aligned}
\left\|\sum_{i} x_{i} \otimes \bar{x}_{i}\right\| & =\left\|\sum_{i} L_{x_{i}} R_{x_{i}}^{*}\right\| \\
& =\sup _{\|a\|_{2} \leq 1}\left\|\sum_{i} x_{i} a x_{i}^{*}\right\|_{2}
\end{aligned}
$$

Here a is an arbitrary positive element in $L_{2}\left(*_{i, B} A_{i}\right)$ too much!

Want: $a \in L_{2}(B)$!
Technique: Decompose a in elements which start with symbols in A_{k}, end with symbols in A_{k}, remainder terms. Use freeness:

Sketch of proof

Theorem (Pisier):

$$
\begin{aligned}
\left\|\sum_{i} x_{i} \otimes \bar{x}_{i}\right\| & =\left\|\sum_{i} L_{x_{i}} R_{x_{i}}^{*}\right\| \\
& =\sup _{\|a\|_{2} \leq 1}\left\|\sum_{i} x_{i} a x_{i}^{*}\right\|_{2}
\end{aligned}
$$

Here a is an arbitrary positive element in $L_{2}\left(*_{i, B} A_{i}\right)$ too much!

Want: $a \in L_{2}(B)$!
Technique: Decompose a in elements which start with symbols in A_{k}, end with symbols in A_{k}, remainder terms. Use freeness:input small-output free, input free -output small, input small-output small, input free-output free+ error.

Combining four terms

Embedding theory

Marius Junge

Motivation

Weighted
inequalities

Pisier's exercise

New inequalities

Main results

Combining four terms

Embedding theory

Marius Junge

Theorem

Weighted
inequalities

Pisier's exercise

New inequalities

Main results

Combining four terms

Theorem The space

$$
D^{1 / 4} N D^{1 / 4} \cap D^{1 / 4} L_{4}^{c} \cap D^{1 / 4} L_{4}^{r} \cap L_{2}^{o h}
$$

is completely complemented in an ultra product of

$$
L_{\infty}(O H) .
$$

Marius Junge

Combining four terms

Theorem The space

$$
D^{1 / 4} N D^{1 / 4} \cap D^{1 / 4} L_{4}^{c} \cap D^{1 / 4} L_{4}^{r} \cap L_{2}^{o h}
$$

is completely complemented in an ultra product of
Marius Junge

$$
L_{\infty}(O H) .
$$

Using $O H \subset L_{1}$ and duality we get:

Combining four terms

Theorem The space

$$
D^{1 / 4} N D^{1 / 4} \cap D^{1 / 4} L_{4}^{c} \cap D^{1 / 4} L_{4}^{r} \cap L_{2}^{o h}
$$

is completely complemented in an ultra product of

$$
L_{\infty}(O H) .
$$

Using $O H \subset L_{1}$ and duality we get:

Theorem a) $E \in Q S(R \oplus O H), F \in Q S(C \oplus O H)$, then there is a cb-embedding

$$
E \otimes_{h} F \subset L_{1}(N) .
$$

Combining four terms

Theorem The space

$$
D^{1 / 4} N D^{1 / 4} \cap D^{1 / 4} L_{4}^{c} \cap D^{1 / 4} L_{4}^{r} \cap L_{2}^{o h}
$$

is completely complemented in an ultra product of

$$
L_{\infty}(O H) .
$$

Using $O H \subset L_{1}$ and duality we get:

Theorem a) $E \in Q S(R \oplus O H), F \in Q S(C \oplus O H)$, then there is a cb-embedding

$$
E \otimes_{h} F \subset L_{1}(N)
$$

b) Let $1 \leq q \leq p \leq 2$ and N a von Neumann algebra. Then for some M

$$
L_{p}(N) \subset_{c b} L_{q}(M)
$$

Comments

Embedding theory

Marius Junge

Motivation

Weighted
inequalities

Pisier's exercise

New inequalities

Main results

Comments

Remark: (type III necessary) Pisier showed that OH does not embed in semifinite L_{1}, neither does $\ell_{p}, 1<p \leq 2$ (recent).

Motivation

Weighted inequalities

Pisier's exercise

Comments

Remark: (type III necessary) Pisier showed that OH does not embed in semifinite L_{1}, neither does $\ell_{p}, 1<p \leq 2$ (recent).
Remark: (transference) Free products can be avoided a posteriori:

Comments

Remark: (type III necessary) Pisier showed that OH does not embed in semifinite L_{1}, neither does $\ell_{p}, 1<p \leq 2$ (recent).
Remark: (transference) Free products can be avoided a posteriori: Let x_{i} be subsymmetric independent copies of x over B with mean 0 .

Comments

Remark: (type III necessary) Pisier showed that OH does not embed in semifinite L_{1}, neither does $\ell_{p}, 1<p \leq 2$ (recent).
Remark: (transference) Free products can be avoided a posteriori: Let x_{i} be subsymmetric independent copies of x over B with mean 0 . Then

$$
\left\|\sum_{i=1}^{n} x_{i}\right\|_{1} \sim\left\|\sum_{i=1}^{n} \pi_{i}^{\text {free }}\left(x_{i}\right)\right\|_{1}
$$

Comments

Remark: (type III necessary) Pisier showed that OH does not embed in semifinite L_{1}, neither does $\ell_{p}, 1<p \leq 2$ (recent).
Remark: (transference) Free products can be avoided a posteriori: Let x_{i} be subsymmetric independent copies of x over B with mean 0 . Then

$$
\left\|\sum_{i=1}^{n} x_{i}\right\|_{1} \sim\left\|\sum_{i=1}^{n} \pi_{i}^{\text {free }}\left(x_{i}\right)\right\|_{1}
$$

Voiculescu's inequality allows us to calculate the right hand side

Comments

Remark: (type III necessary) Pisier showed that OH does not embed in semifinite L_{1}, neither does $\ell_{p}, 1<p \leq 2$ (recent).
Remark: (transference) Free products can be avoided a posteriori: Let x_{i} be subsymmetric independent copies of x over B with mean 0 . Then

$$
\left\|\sum_{i=1}^{n} x_{i}\right\|_{1} \sim\left\|\sum_{i=1}^{n} \pi_{i}^{\text {free }}\left(x_{i}\right)\right\|_{1}
$$

Voiculescu's inequality allows us to calculate the right hand side (misleading).

Comments

Remark: (type III necessary) Pisier showed that OH does not embed in semifinite L_{1}, neither does $\ell_{p}, 1<p \leq 2$ (recent).
Remark: (transference) Free products can be avoided a posteriori: Let x_{i} be subsymmetric independent copies of x over B with mean 0 . Then

$$
\left\|\sum_{i=1}^{n} x_{i}\right\|_{1} \sim\left\|\sum_{i=1}^{n} \pi_{i}^{\text {free }}\left(x_{i}\right)\right\|_{1}
$$

Voiculescu's inequality allows us to calculate the right hand side (misleading). The embedding results can be reduced to norm estimates for independent copies

Comments

Remark: (type III necessary) Pisier showed that OH does not embed in semifinite L_{1}, neither does $\ell_{p}, 1<p \leq 2$ (recent).
Remark: (transference) Free products can be avoided a posteriori: Let x_{i} be subsymmetric independent copies of x over B with mean 0 . Then

$$
\left\|\sum_{i=1}^{n} x_{i}\right\|_{1} \sim\left\|\sum_{i=1}^{n} \pi_{i}^{f r e e}\left(x_{i}\right)\right\|_{1}
$$

Voiculescu's inequality allows us to calculate the right hand side (misleading). The embedding results can be reduced to norm estimates for independent copies (extra work).

Comments

Remark: (type III necessary) Pisier showed that OH does not embed in semifinite L_{1}, neither does $\ell_{p}, 1<p \leq 2$ (recent).
Remark: (transference) Free products can be avoided a posteriori: Let x_{i} be subsymmetric independent copies of x over B with mean 0 . Then

$$
\left\|\sum_{i=1}^{n} x_{i}\right\|_{1} \sim\left\|\sum_{i=1}^{n} \pi_{i}^{f r e e}\left(x_{i}\right)\right\|_{1}
$$

Voiculescu's inequality allows us to calculate the right hand side (misleading). The embedding results can be reduced to norm estimates for independent copies (extra work).

Comments II

Remark: Transference also allows to obtain weighted Khintchine inequalities for classical quasi free states

Comments II

Remark: Transference also allows to obtain weighted Khintchine inequalities for classical quasi free states

$$
\begin{aligned}
& \left\|\sum_{k} a_{k} \otimes D^{1 / 2} v_{k} D^{1 / 2}\right\|_{1} \sim \inf _{a_{k}=b_{k}+c_{k}} \\
& \quad\left\|\left(\sum_{k} \mu_{k} b_{k} b_{k}^{*}\right)^{1 / 2}\right\|_{1}+\left\|\left(\sum_{k}\left(1-\mu_{k}\right) c_{k}^{*} c_{k}\right)^{1 / 2}\right\|_{1}
\end{aligned}
$$

Comments II

Remark: Transference also allows to obtain weighted Khintchine inequalities for classical quasi free states

$$
\begin{aligned}
& \left\|\sum_{k} a_{k} \otimes D^{1 / 2} v_{k} D^{1 / 2}\right\|_{1} \sim \inf _{a_{k}=b_{k}+c_{k}} \\
& \quad\left\|\left(\sum_{k} \mu_{k} b_{k} b_{k}^{*}\right)^{1 / 2}\right\|_{1}+\left\|\left(\sum_{k}\left(1-\mu_{k}\right) c_{k}^{*} c_{k}\right)^{1 / 2}\right\|_{1}
\end{aligned}
$$

where $\varphi(x)=\operatorname{tr}(D x)$ is the density of a quasi free state associated with μ, v_{k} the generators of the CAR.

Comments II

Remark: Transference also allows to obtain weighted Khintchine inequalities for classical quasi free states

$$
\begin{aligned}
& \left\|\sum_{k} a_{k} \otimes D^{1 / 2} v_{k} D^{1 / 2}\right\|_{1} \sim \inf _{a_{k}=b_{k}+c_{k}} \\
& \quad\left\|\left(\sum_{k} \mu_{k} b_{k} b_{k}^{*}\right)^{1 / 2}\right\|_{1}+\left\|\left(\sum_{k}\left(1-\mu_{k}\right) c_{k}^{*} c_{k}\right)^{1 / 2}\right\|_{1}
\end{aligned}
$$

where $\varphi(x)=\operatorname{tr}(D x)$ is the density of a quasi free state associated with μ, v_{k} the generators of the CAR. Haagerup and Musat recently gave a more elementary proof.

Comments III

Embedding theory

Marius Junge

Motivation

Weighted
inequalities

Pisier's exercise

New inequalities

Main results

Comments III

Marius Junge
For the proof that ℓ_{p} can not embed into $L_{1}(N), N$ semifinite, we show that

Comments III

For the proof that ℓ_{p} can not embed into $L_{1}(N), N$ semifinite, we show that

$$
\ell_{p} \subset_{c b} L_{1}(N) \Rightarrow L_{p}([0,1]) \subset L_{1}(\tilde{N})
$$

Comments III

For the proof that ℓ_{p} can not embed into $L_{1}(N), N$ semifinite, we show that

$$
\ell_{p} \subset_{c b} L_{1}(N) \Rightarrow L_{p}([0,1]) \subset L_{1}(\tilde{N})
$$

such that N semifinite implies \tilde{N} semifinite using
Theorem (NC Rosenthal) $X \subset L_{1}(N)$ reflexive, then there exists $p>1$, a state with density d, and $u: X \rightarrow L_{p}$ such that

$$
x=d^{1-1 / p} u(x)+u(x) d^{1-1 / p}
$$

Comments III

For the proof that ℓ_{p} can not embed into $L_{1}(N), N$ semifinite, we show that

$$
\ell_{p} \subset_{c b} L_{1}(N) \Rightarrow L_{p}([0,1]) \subset L_{1}(\tilde{N})
$$

such that N semifinite implies \tilde{N} semifinite using
Theorem (NC Rosenthal) $X \subset L_{1}(N)$ reflexive, then there exists $p>1$, a state with density d, and $u: X \rightarrow L_{p}$ such that

$$
x=d^{1-1 / p} u(x)+u(x) d^{1-1 / p}
$$

However, $($ Pisier $/ \mathrm{Xu}) C_{p}+R_{p} \subset L_{p}([0,1])$ cannot embed in $L_{1}(N), N$ semifinite.

Comments III

For the proof that ℓ_{p} can not embed into $L_{1}(N), N$ semifinite, we show that

$$
\ell_{p} \subset_{c b} L_{1}(N) \Rightarrow L_{p}([0,1]) \subset L_{1}(\tilde{N})
$$

such that N semifinite implies \tilde{N} semifinite using
Theorem (NC Rosenthal) $X \subset L_{1}(N)$ reflexive, then there exists $p>1$, a state with density d, and $u: X \rightarrow L_{p}$ such that

$$
x=d^{1-1 / p} u(x)+u(x) d^{1-1 / p}
$$

However, $($ Pisier $/ \mathrm{Xu}) C_{p}+R_{p} \subset L_{p}([0,1])$ cannot embed in $L_{1}(N), N$ semifinite.

Thanks for coming and listening

Comments III

For the proof that ℓ_{p} can not embed into $L_{1}(N), N$ semifinite, we show that

$$
\ell_{p} \subset_{c b} L_{1}(N) \Rightarrow L_{p}([0,1]) \subset L_{1}(\tilde{N})
$$

such that N semifinite implies \tilde{N} semifinite using
Theorem (NC Rosenthal) $X \subset L_{1}(N)$ reflexive, then there exists $p>1$, a state with density d, and $u: X \rightarrow L_{p}$ such that

$$
x=d^{1-1 / p} u(x)+u(x) d^{1-1 / p}
$$

However, $($ Pisier $/ \mathrm{Xu}) C_{p}+R_{p} \subset L_{p}([0,1])$ cannot embed in $L_{1}(N), N$ semifinite.

Thanks for coming and listening

