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Commutative theory

* (Khintchine inequality) Let εk Bernoulli variables, then

E‖
∑
k

εkαk‖p ∼cp ‖(αk)‖2 .

Here a ∼c b if 1/c ≤ a/b ≤ c . Hence `2 ⊂ Lp.

* (q-stable var.) Ee itθq = exp(−cq|t|q). Then `q ⊂ Lp

(E|
∑
k

αkθk |p)1/p = c‖(αk)‖q 0 < p < q

* (Maurey-Pisier-Krivine)

For every infinite dimensional Banach space there exist

p0, q0 such that `n
p is (1 + ε)–isomorphic to a subspace

of X for all

p ∈ [p0, 2] ∪ {q0} .
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Independent variables

(behind the scene)

* Rosenthal inequality (∼72) for mean 0

‖
∑

i

fi‖p ∼ (
∑

i

‖fi‖p
p)

1/p + (
∑

i

‖fi‖2
2)

1/2 p ≥ 2

* Later: p ≤ 2

‖
∑

i

fi‖p ∼ inf
fi=gi+hi

(
∑

i

‖gi‖pp)1/p+(
∑

i

‖hi‖2
2)

1/2 1 ≤ p ≤ 2

* Corollary: Lp(0,∞) ∩ L2(0,∞) ∼= Lp([0, 1]) p ≥ 2,

Lp(0,∞) + L2(0,∞) ∼= Lp([0, 1]) p ≥ 2.
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Operator-valued examples

‖
∑
k

xk⊗ak‖1 ∼ inf
ak=bk+ck

‖(
∑
k

bkb∗k)1/2‖1+‖(
∑
k

c∗k ck)1/2‖1

holds for (due to Pisier, Pisier-Lust Picard)

, xk = εk or xk independent gaussian ;

, xk = λ(gk), gk free generators;

, xk = λ(gi ), gi subsymmetric generators of discrete

group;

, xk = sk , xk = sk + is−k for semi-circular sk .
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Starting point ∼ 98/99

If OH cb-embeds in L1(N), then

S4/3 = C
∧
⊗ OH ⊂ L1(B(`2)⊗ N)

embeds in noncommutative L1.

Famous Banach space expert: Maybe not.

Warning: Sc
4/3 = C

∧
⊗ OH is not the standard S4/3, but

S4/3 = [Sc
4/3,S

r
4/3] 1

2
.
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Main results

Voiculescu’s and Shlyakhtenko’s inequality

1) (Rosenthal in L∞) Let N = ∗i ,BAi be the free product

over B and xi ∈ Ai with EB(xi ) = 0. Then

‖
∑

i

xi‖ ∼ sup
i
‖xi‖∞ + ‖

∑
i

EB(x∗i xi + xix
∗
i )‖1/2

2) Let sk = λk lk + µk l∗−k generalized semicircular.Then

‖
∑
k

ak ⊗ sk‖ ∼ ‖(
∑
k

|λk |2a∗kak)1/2‖+ ‖(
∑
k

µ2
kaka∗k)1/2‖ .

Moreover, the sk are analytic vectors in a von Neumann

algebra N(λ, µ) with faith normal state given by the vacuum

vector (modular group).
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‖
∑

i

xi‖ ∼ sup
i
‖xi‖∞ + ‖

∑
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∗
i )‖1/2
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‖
∑
k
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∑
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∑
k

µ2
kaka∗k)1/2‖ .
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“Applications”

1 Pisier and Shlyakhtenko used this to prove a

Grothendiek inequality for operator spaces.

2 The weighted space C (λ) ∩ R(µ) defined by the span of

the sk ’s is completely complemented in N(λ, µ)

(Haagerup/Pisier’s work).

3 The dual space R(λ) + C (µ) is contained in the predual

of a von Neumann algebra.

4 OH is cb-isomorphic to a subspace of a

noncommutative L1 space.
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Pisier’s exercise

The operator space OH is defined by complex interpolation

OH = [R,C ] 1
2

.

The complex interpolation functor can be realized as the

subspace of constants in the quotient space

OH ⊂ Lc
2(iR, `2)⊕ Lr

2(1 + iR, `2)/H0
1/2

where H0
1/2 is the space of analytic functions

f : {0 ≤ Re(z) ≤ 1} → `2 with f (1
2) = 0.

Corollary (Junge 06) OH is a subspace of R(λ) + C (µ) for

suitable λ and µ.

Xu’s work made this very precise.
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Pisier’s Exercise ⊗ Pisier’s Exercise (technical)

Let 1 < p < 2. Then the operator space

Sp = Cp ⊗h Rp

is completely isomorphic to tensor product of the space of

constants in

(Lc
2(iR, `2)⊕Loh

2 (1+iR, `2)/H0
θ )⊗h(L

r
2(iR, `2)⊕Loh

2 (1+iR, `2)/H0
θ ) .

For general N we have Lp(N) = [L1, L2]θ and Lp is

cb-isomorphic to a subspace of

(Lr
2(N; L2(iR))⊕ Lr

4(N; Lc
2(1 + iR))/H0

θ )

⊗N,h (Lc
2(N; L2(iR)⊕ Lc

4(N; Lr
2(1 + iR))/H0

θ ) .

Here Lc
4 = [N, Lc

2] 1
2

satisfies

Cm ⊗h Lc
4 ⊗h Cm = L4(Mm(N))Sm

4 .
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Application of the tensor product formula

1) Lp is completely isomorphic to a subspace of

L1(N) + D1/4Lc
4/3(N) + Lr

4/3(N)D1/4 + D1/4Loh
2 (N)D1/4

Here D is the density of strictly semifinite weight

(incorporating the unbounded operator from complex

interpolation).

2) Let E ∈ QS(R ⊕ OH) (quotient of a subspace of) and

F ∈ QS(C ⊕ OH). Then

E⊗hF ⊂ L1(N)+D1/4Lc
4/3(N)+Lr

4/3(N)D1/4+D1/4Loh
2 (N)D1/4

for some strictly weight.
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New Voiculescu inequality

Theorem Let x1, ..., xn be mean 0 variables in N = ∗i ,BAi .

Then

‖
∑

i

xi ⊗ x̄i‖1/2 ∼ sup
i
‖xi‖

+ sup
‖a‖L2(B)≤1,‖b‖L2(B)≤1

(
n∑

i=1

‖axib‖22)1/2

+ sup
‖a‖L4(B)≤1

(
n∑

i=1

‖axi‖44)1/4 + sup
‖b‖L4(B)≤1

(
n∑

i=1

‖xib‖4
4)

1/4

Remark: The Lp version is harder.
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Sketch of proof

Theorem (Pisier):

‖
∑

i

xi ⊗ x̄i‖ = ‖
∑

i

Lxi R
∗
xi
‖

= sup
‖a‖2≤1

‖
∑

i

xiax
∗
i ‖2

Here a is an arbitrary positive element in L2(∗i ,BAi ) too

much!

Want: a ∈ L2(B)!

Technique: Decompose a in elements which start with

symbols in Ak , end with symbols in Ak , remainder terms.

Use freeness:input small-output free, input free -output

small, input small-output small, input free-output free+

error.
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Theorem (Pisier):

‖
∑

i

xi ⊗ x̄i‖ = ‖
∑

i

Lxi R
∗
xi
‖

= sup
‖a‖2≤1

‖
∑

i

xiax
∗
i ‖2

Here a is an arbitrary positive element in L2(∗i ,BAi ) too

much!

Want: a ∈ L2(B)!

Technique: Decompose a in elements which start with

symbols in Ak , end with symbols in Ak , remainder terms.

Use freeness:input small-output free, input free -output

small, input small-output small, input free-output free+

error.
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Combining four terms

Theorem The space

D1/4ND1/4 ∩ D1/4Lc
4 ∩ D1/4Lr

4 ∩ Loh
2

is completely complemented in an ultra product of

L∞(OH) .

Using OH ⊂ L1 and duality we get:

Theorem a) E ∈ QS(R ⊕ OH), F ∈ QS(C ⊕ OH), then

there is a cb-embedding

E ⊗h F ⊂ L1(N) .

b) Let 1 ≤ q ≤ p ≤ 2 and N a von Neumann algebra. Then

for some M

Lp(N) ⊂cb Lq(M) .
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Comments

Remark: (type III necessary) Pisier showed that OH does

not embed in semifinite L1, neither does `p, 1 < p ≤ 2

(recent).

Remark: (transference) Free products can be avoided a

posteriori: Let xi be subsymmetric independent copies of x

over B with mean 0. Then

‖
n∑

i=1

xi‖1 ∼ ‖
n∑

i=1

πfree
i (xi )‖1 .

Voiculescu’s inequality allows us to calculate the right hand

side (misleading). The embedding results can be reduced to

norm estimates for independent copies (extra work).
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Comments II

Remark: Transference also allows to obtain weighted

Khintchine inequalities for classical quasi free states

‖
∑
k

ak ⊗ D1/2vkD1/2‖1 ∼ inf
ak=bk+ck

‖(
∑
k

µkbkb∗k)1/2‖1 + ‖(
∑
k

(1− µk)c∗k ck)1/2‖1

where ϕ(x) = tr(Dx) is the density of a quasi free state

associated with µ, vk the generators of the CAR. Haagerup

and Musat recently gave a more elementary proof.
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Comments III

For the proof that `p can not embed into L1(N), N

semifinite, we show that

`p ⊂cb L1(N) ⇒ Lp([0, 1]) ⊂ L1(Ñ)

such that N semifinite implies Ñ semifinite using

Theorem (NC Rosenthal) X ⊂ L1(N) reflexive, then there

exists p > 1, a state with density d , and u : X → Lp such

that

x = d1−1/pu(x) + u(x)d1−1/p .

However, (Pisier/Xu) Cp + Rp ⊂ Lp([0, 1]) cannot embed in

L1(N), N semifinite.

Thanks for coming and listening
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