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CIEM-CONICET

Workshop on Operator Spaces and Quantum Groups

December 11-15, 2007. Fields Institute, Toronto.
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I. Introduction Quantum groups

I. Introduction

• Drinfeld (’86) and (independently) Jimbo:

Uq(g)  one-parameter deformations of U(g), g semisimple Lie algebra.

• De Concini & Lyubashenko (’94):

Oq(G )  one-parameter deformations of O(G ), G connected, simply
connected, complex simple algebraic group.

They are dual objects in some sense: Oq(G )◦ ⊆ Uq(g) and
Uq(g)◦ ⊆ Oq(G ) with g = Lie(G ).

Known example (Kassel, Jantzen, et. al.): Oq(SL2) algebra generated by
a, b, c and d satisfying:

ab = qba ac = qca bc = cb

bd = qdb cd = qdc ad − da = (q − q−1)bc

detq = ad − qbc = 1.
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Gastón A. Garćıa (UNC) Quantum subgroups 4 / 24



I. Introduction Quantum groups

I. Introduction

• Drinfeld (’86) and (independently) Jimbo:

Uq(g)  one-parameter deformations of U(g), g semisimple Lie algebra.

• De Concini & Lyubashenko (’94):

Oq(G )  one-parameter deformations of O(G ), G connected, simply
connected, complex simple algebraic group.

They are dual objects in some sense: Oq(G )◦ ⊆ Uq(g) and
Uq(g)◦ ⊆ Oq(G ) with g = Lie(G ).

Known example (Kassel, Jantzen, et. al.): Oq(SL2) algebra generated by
a, b, c and d satisfying:

ab = qba ac = qca bc = cb

bd = qdb cd = qdc ad − da = (q − q−1)bc

detq = ad − qbc = 1.
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I. Introduction Quantum groups

• Lusztig: if q is a primitive `-th root of 1

uq(g)  Frobenius-Lusztig kernel or small quantum group. It is
finite-dimensional with dim uq(g) = `dim g.

• Multiparameter deformations of both.

Quantum group: “deformation of an associative algebra associated to an
algebraic group”
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I. Introduction Quantum subgroups

G ///o/o/o/o/o/o/o O(G ) comm. Hopf alg.
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Γ ↪→ G oo ///o/o/o/o/o/o/o O(G )� O(Γ)

Gq oo ///o/o/o/o/o/o/o Oq(G ) non-comm. Hopf alg.

Γq ↪→ Gq oo ///o/o/o/o/o/o/o Oq(G )� A
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I. Introduction Quantum subgroups

Category of quantum groups : = Hopf op

Quantum subgroups of Gq  Hopf algebra quotients of Oq(G )

Problem

Determine all quantum subgroups of Oq(G ), q a root of 1.

First considered by Podlés for Oq(SU(2)) and Oq(SO(3)).

E. Müller solved it for SLn in the finite-dimensional case.

Strategy:

(1) Give a general construction of the quotients.

(2) Show that any quotient can be constructed in such a way.
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Gastón A. Garćıa (UNC) Quantum subgroups 8 / 24



I. Introduction Quantum subgroups

Category of quantum groups : = Hopf op

Quantum subgroups of Gq  Hopf algebra quotients of Oq(G )

Problem

Determine all quantum subgroups of Oq(G ), q a root of 1.

First considered by Podlés for Oq(SU(2)) and Oq(SO(3)).

E. Müller solved it for SLn in the finite-dimensional case.

Strategy:

(1) Give a general construction of the quotients.

(2) Show that any quotient can be constructed in such a way.
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I. Introduction Hopf algebras

Main problem

Classify all (finite-dimensional) Hopf algebras.

Obstruction: lack of enough examples.

Idea: Construct them using the known methods like twisting,
crossed-products, bosonizations, liftings and extensions.

Warning:

These processes may not produce really new examples.

It is very difficult (if not impossible) to write them explicitly (extensions,
twistings, crossed-products).
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Gastón A. Garćıa (UNC) Quantum subgroups 9 / 24



I. Introduction Notation & known facts

Notation & known facts

• h ⊆ g = Lie(G ) fixed Cartan subalgebra, Π = {α1, . . . , αn} a basis of
the root system Φ = Φ(g, h) and n = rk g.

• ε a primitive `-th root of 1, ` odd and 3 - ` if G is of type G2.

• uε(g) = Frobenius-Lusztig kernel; generated by {Kαi ,Ei ,Fi : 1 ≤ i ≤ n}.
Denote T := 〈Kα1 , . . . ,Kαn〉 = G (uε(g)) and for S ⊆ Π, let TS :=
〈Kαi : αi ∈ S〉.

Theorem (

De Concini & Lyubashenko

,

K. A. Brown & Goodearl

,

AG

)

(a) Oε(G ) contains a central Hopf subalgebra isomorphic to O(G ).

(b) Oε(G ) is a free O(G )-module of rank `dim G .

(c) C→ O(G )
ι−→ Oε(G )

π−→ uε(g)∗ → C.

(d) π admits a coalgebra section ϕ.
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Gastón A. Garćıa (UNC) Quantum subgroups 10 / 24



I. Introduction Notation & known facts

Notation & known facts

• h ⊆ g = Lie(G ) fixed Cartan subalgebra, Π = {α1, . . . , αn} a basis of
the root system Φ = Φ(g, h) and n = rk g.

• ε a primitive `-th root of 1, ` odd and 3 - ` if G is of type G2.

• uε(g) = Frobenius-Lusztig kernel; generated by {Kαi ,Ei ,Fi : 1 ≤ i ≤ n}.

Denote T := 〈Kα1 , . . . ,Kαn〉 = G (uε(g)) and for S ⊆ Π, let TS :=
〈Kαi : αi ∈ S〉.

Theorem (

De Concini & Lyubashenko

,

K. A. Brown & Goodearl

,

AG

)

(a) Oε(G ) contains a central Hopf subalgebra isomorphic to O(G ).

(b) Oε(G ) is a free O(G )-module of rank `dim G .

(c) C→ O(G )
ι−→ Oε(G )

π−→ uε(g)∗ → C.

(d) π admits a coalgebra section ϕ.
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Gastón A. Garćıa (UNC) Quantum subgroups 10 / 24



I. Introduction Notation & known facts

Notation & known facts

• h ⊆ g = Lie(G ) fixed Cartan subalgebra, Π = {α1, . . . , αn} a basis of
the root system Φ = Φ(g, h) and n = rk g.

• ε a primitive `-th root of 1, ` odd and 3 - ` if G is of type G2.

• uε(g) = Frobenius-Lusztig kernel; generated by {Kαi ,Ei ,Fi : 1 ≤ i ≤ n}.
Denote T := 〈Kα1 , . . . ,Kαn〉 = G (uε(g)) and for S ⊆ Π, let TS :=
〈Kαi : αi ∈ S〉.

Theorem (De Concini & Lyubashenko, K. A. Brown & Goodearl,

AG

)

(a) Oε(G ) contains a central Hopf subalgebra isomorphic to O(G ).

(b) Oε(G ) is a free O(G )-module of rank `dim G .

(c) C→ O(G )
ι−→ Oε(G )

π−→ uε(g)∗ → C.

(d) π admits a coalgebra section ϕ.
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Gastón A. Garćıa (UNC) Quantum subgroups 10 / 24



II. Construction

II. Construction

Let q : Oε(G )� A be a Hopf algebra epimorphism.

Then the following diagram of exact sequences is commutative

1 // O(G )
ι //

����

Oε(G )
π //

q
����

uε(g)∗ //

����

1

1 // B
ι̂ // A

π̂ // H // 1,

where B = q(O(G )) = O(Γ) for some algebraic subgroup Γ of G and
H = A/AB+ is the Hopf quotient given by B ↪→ A.

Lemma (Müller)

H∗ is parameterized by (I+, I−,Σ), where I+ ⊆ Π, I− ⊆ −Π and Σ ⊆ T
such that Kαi ∈ Σ if αi ∈ I = I+ ∪ I−.

Idea: Make the construction using extensions.
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II. Construction First Step

First step

Let uε(l) ⊆ uε(g) be the Hopf subalgebra determined by the triple
(I+, I−,T).

• Using this triple, one defines Hopf algebras O(L), Oε(L), Uε(l), where

• l = l+ ⊕ h⊕ l− is an algebraic Lie subalgebra of g,

• l± =
∑

α∈Ψ±
gα, with Ψ± = {α ∈ Φ : Supα ⊆ I±}.
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II. Construction First Step

Theorem

(a) O(L) is central in Oε(L), L ⊆ G is connected and Lie(L) = l.

(b) The following diagram of exact sequences commutates

1 // O(G )
ι //

����

Oε(G )
π //

����

uε(g)∗

����

// 1

1 // O(L)
ιL // Oε(L)

πL // uε(l)∗ // 1.

(c) πL admits a coalgebra section ψ.
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II. Construction Second Step

Second Step: The Pushout construction

Let B, A, be Hopf algebras, B central in A and A right or left faithfully
flat over B. Let p : B → K a surjective Hopf algebra map and
H = A/AB+. Denote J = Ker p, (J ) = AJ .

1 // B
ι //

p
����

A
π // H // 1

K
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1 // K // A/(J ) // H // 1

Moreover, A/(J ) ' A⊗B K , the base extension through p.
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II. Construction Second Step

Let σ : Γ→ G such that σ(Γ) ⊆ L.

1 // O(G )
ι //

����

Oε(G )
π //

����

uε(g)∗ //

����

1

1 // O(L)

tσ
����

ιL // Oε(L)
πL // uε(l)∗ // 1

O(Γ)
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II. Construction Second Step

Let σ : Γ→ G such that σ(Γ) ⊆ L.

1 // O(G )
ι //

����

Oε(G )
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����

1

1 // O(L)

tσ
����

ιL // Oε(L)
πL //

����

uε(l)∗ // 1

1 // O(Γ)
ῑ // Aε,σ,l

π̄ // uε(l)∗ // 1,

where Aε,σ,l := Oε(L)/(J ), J = Ker tσ.
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II. Construction Third Step

Third Step

Let H∗ ⊆ uε(g) be determined by (I+, I−,Σ). Since uε(l) is determined by
the triple (I+, I−,T) with Σ ⊆ T, we have that

H∗ ⊆ uε(l) ⊆ uε(g).

Lemma

H ' uε(l)∗/(Dz − 1| z ∈ N) where N ⊆ T̂I c is determined uniquely by Σ
(and conversely).
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II. Construction Third Step

Let δ : N → Γ̂ be a group map. Using the coalgebra section ψ of πL, we
divide out by ideals generated by central elements related to Σ and we
obtain

1 // O(G )
ι //

����

Oε(G )
π //

����

uε(g)∗ //

����

1

1 // O(L)

tσ
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1 // O(Γ)
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π̄ // uε(l)∗ //

����

1

H
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II. Construction Third Step

Using the coalgebra section ψ of πL, we divide out by ideals generated by
central elements related to Σ: for z ∈ N, ψ(Dz) ∈ Z(Aε,σ,l) and if

δ : N → Γ̂ ia a group map we have

1 // O(G )
ι //

����

Oε(G )
π //

����

uε(g)∗ //

����

1

1 // O(L)

tσ
����

ιL // Oε(L)
πL //

����

uε(l)∗ // 1

1 // O(Γ)
ῑ // Aε,σ,l

π̄ //

����

uε(l)∗ //

����

1

1 // O(Γ)
ι̃ // AD

π̃ // H // 1,

where AD = Aε,σ,l/(ψ(Dz)− δ(z)| z ∈ N).
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II. Construction Characterization

Characterization

Definition

A subgroup datum is a collection D = (I+, I−,N, Γ, σ, δ)

• I+ ⊆ Π, I− ⊆ −Π.

• N finite abelian subgroup of T̂I c .

• Γ algebraic group.

• σ : Γ→ L injective morphism of algebraic groups.

• δ : N → Γ̂ group homomorphism.

Theorem

There is a bijection between

(a) Hopf algebra quotients q : Oε(G )� A.

(b) Subgroup data (up to equivalence).
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III. Consequences - Applications

Properties

The inclusion O(G ) ⊆ Oε(G ) determines a maximal torus T of G .

Proposition

(a) If AD is pointed, then I+ ∩ −I− = ∅ and Γ is a subgroup of the group
of upper triangular matrices of some size. In particular, if Γ is finite,
then it is abelian.

(b) AD is semisimple if and only if I+ ∪ −I− = ∅ and Γ is finite.

(c) If dim AD <∞ and A∗D is pointed, then σ(Γ) ⊆ T.

(d) If AD is co-Frobenius then Γ is reductive.

Corollary

Let D = (I+, I−,N, Γ, σ, δ) be a finite subgroup datum such that
I+ ∩ −I− 6= ∅ and σ(Γ) * T. Then AD is non-semisimple, non-pointed and
its dual is also non-pointed.
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of upper triangular matrices of some size. In particular, if Γ is finite,
then it is abelian.

(b) AD is semisimple if and only if I+ ∪ −I− = ∅ and Γ is finite.

(c) If dim AD <∞ and A∗D is pointed, then σ(Γ) ⊆ T.

(d) If AD is co-Frobenius then Γ is reductive.

Corollary

Let D = (I+, I−,N, Γ, σ, δ) be a finite subgroup datum such that
I+ ∩ −I− 6= ∅ and σ(Γ) * T. Then AD is non-semisimple, non-pointed and
its dual is also non-pointed.
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III. Consequences - Applications

Invariants

Let Γ̃ = Γ× N⊥ and uε(l0) be the Hopf subalgebra of uε(g) determined by
the triple (I+, I−,TI ).

Lemma

AD fits into the central exact sequence

1→ O(Γ̃)→ AD → uε(l0)∗ → 1.

and it is given by a pushout.

Theorem

Let D and D′ be subgroup data. If the Hopf algebras AD and AD′ are
isomorphic then Γ̃ ' Γ̃′ and l0 ' l′0.
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III. Consequences - Applications

Examples: Infinite families of Hopf algebras

Consider the subgroup datum D = (Π,−Π, 1, Γ, σ, ε), where Γ is finite and
ε : 1→ Γ̂ is the trivial group map.

Its Hopf algebra AD is given by a pushout construction

1 // O(G )
ι //

tσ
����

Oε(G )
π //

����

uε(g)∗ // 1

1 // CΓ // AD // uε(g)∗ // 1

Theorem

If σ(Γ) is not central in G , then there exists an infinite family
{σj}j∈J ⊂ Emb(Γ,G ) such that the Hopf algebras {Aσj}j∈J of dimension

|Γ|`dim g are pairwise non-isomorphic, non-semisimple, non-pointed and
their duals are also non-pointed.
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Gastón A. Garćıa (UNC) Quantum subgroups 24 / 24



III. Consequences - Applications

Examples: Infinite families of Hopf algebras

Consider the subgroup datum D = (Π,−Π, 1, Γ, σ, ε), where Γ is finite and
ε : 1→ Γ̂ is the trivial group map.

Its Hopf algebra AD is given by a pushout construction

1 // O(G )
ι //

tσ
����

Oε(G )
π //

����

uε(g)∗ // 1

1 // CΓ // AD // uε(g)∗ // 1

Theorem

If σ(Γ) is not central in G , then there exists an infinite family
{σj}j∈J ⊂ Emb(Γ,G ) such that the Hopf algebras {Aσj}j∈J of dimension

|Γ|`dim g are pairwise non-isomorphic, non-semisimple, non-pointed and
their duals are also non-pointed.
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