Quantum subgroups of a simple quantum group at roots of 1

Gastón Andrés García

Universidad Nacional de Córdoba, Argentina CIEM-CONICET

Workshop on Operator Spaces and Quantum Groups December 11-15, 2007. Fields Institute, Toronto. Joint work with N. Andruskiewitsch.

Quantum subgroups of a simple quantum group at roots of 1 Preprint: arXiv:0707.0070v1.

Extensions of finite quantum groups by finite groups

Preprint: arXiv:math/0608647v6.

I Introduction on Quantum Groups

I Introduction on Quantum Groups

II Construction and characterization of the quantum subgroups of a simple quantum group

I Introduction on Quantum Groups

II Construction and characterization of the quantum subgroups of a simple quantum group

III Consequences - Applications

• Drinfeld ('86) and (independently) Jimbo:

 $U_q(\mathfrak{g}) \leadsto$ one-parameter deformations of $U(\mathfrak{g})$, \mathfrak{g} semisimple Lie algebra.

- Drinfeld ('86) and (independently) Jimbo:
- $U_q(\mathfrak{g}) \leadsto$ one-parameter deformations of $U(\mathfrak{g})$, \mathfrak{g} semisimple Lie algebra.
- De Concini & Lyubashenko ('94):

 $\mathcal{O}_q(G) \leadsto$ one-parameter deformations of $\mathcal{O}(G)$, G connected, simply connected, complex simple algebraic group.

- Drinfeld ('86) and (independently) Jimbo:
- $U_q(\mathfrak{g}) \leadsto$ one-parameter deformations of $U(\mathfrak{g})$, \mathfrak{g} semisimple Lie algebra.
- De Concini & Lyubashenko ('94):
- $\mathcal{O}_q(G) \leadsto$ one-parameter deformations of $\mathcal{O}(G)$, G connected, simply connected, complex simple algebraic group.

They are dual objects in some sense: $\mathcal{O}_q(G)^\circ \subseteq U_q(\mathfrak{g})$ and $U_q(\mathfrak{g})^\circ \subseteq \mathcal{O}_q(G)$ with $\mathfrak{g} = \mathrm{Lie}(G)$.

- Drinfeld ('86) and (independently) Jimbo:
- $U_q(\mathfrak{g}) \leadsto$ one-parameter deformations of $U(\mathfrak{g})$, \mathfrak{g} semisimple Lie algebra.
- De Concini & Lyubashenko ('94):
- $\mathcal{O}_q(G) \leadsto$ one-parameter deformations of $\mathcal{O}(G)$, G connected, simply connected, complex simple algebraic group.

They are dual objects in some sense: $\mathcal{O}_q(G)^\circ \subseteq U_q(\mathfrak{g})$ and $U_q(\mathfrak{g})^\circ \subseteq \mathcal{O}_q(G)$ with $\mathfrak{g} = \mathrm{Lie}(G)$.

Known example (Kassel, Jantzen, et. al.): $\mathcal{O}_q(SL_2)$ algebra generated by a, b, c and d satisfying:

$$ab=qba$$
 $ac=qca$ $bc=cb$ $bd=qdb$ $cd=qdc$ $ad-da=(q-q^{-1})bc$ $\det_q=ad-qbc=1.$

• Lusztig: if q is a primitive ℓ -th root of 1 $\mathbf{u}_q(\mathfrak{g}) \leadsto$ Frobenius-Lusztig kernel or small quantum group. It is finite-dimensional with $\dim \mathbf{u}_q(\mathfrak{g}) = \ell^{\dim \mathfrak{g}}$.

• Lusztig: if q is a primitive ℓ -th root of 1 $\mathbf{u}_q(\mathfrak{g}) \leadsto$ Frobenius-Lusztig kernel or small quantum group. It is finite-dimensional with $\dim \mathbf{u}_q(\mathfrak{g}) = \ell^{\dim \mathfrak{g}}$.

Multiparameter deformations of both.

• Lusztig: if q is a primitive ℓ -th root of 1

 $\mathbf{u}_q(\mathfrak{g}) \leadsto$ Frobenius-Lusztig kernel or small quantum group. It is finite-dimensional with $\dim \mathbf{u}_q(\mathfrak{g}) = \ell^{\dim \mathfrak{g}}$.

Multiparameter deformations of both.

Quantum group: "deformation of an associative algebra associated to an algebraic group"

 $G \sim \mathcal{O}(G)$ comm. Hopf alg.

$$\mathsf{Alg}(\mathcal{O}(G),\mathbb{C}) = G \Leftrightarrow \mathcal{O}(G) \text{ comm. Hopf alg.}$$

$$\mathsf{Alg}(\mathcal{O}(G),\mathbb{C}) = G \Leftrightarrow \mathcal{O}(G) \text{ comm. Hopf alg.}$$

$$G_q$$
 \Leftrightarrow $\mathcal{O}_q(G)$ non-comm. Hopf alg.

$$\mathsf{Alg}(\mathcal{O}(G),\mathbb{C}) = G \Leftrightarrow \mathcal{O}(G) \text{ comm. Hopf alg.}$$

$$\Gamma \hookrightarrow G \Leftrightarrow \mathcal{O}(G) \twoheadrightarrow \mathcal{O}(\Gamma)$$

$$G_q$$
 \iff $\mathcal{O}_q(G)$ non-comm. Hopf alg.

$$\mathsf{Alg}(\mathcal{O}(G),\mathbb{C}) = G \Leftrightarrow \mathcal{O}(G) \text{ comm. Hopf alg.}$$

$$\Gamma \hookrightarrow G \Leftrightarrow \mathcal{O}(G) \twoheadrightarrow \mathcal{O}(\Gamma)$$

$$G_q$$
 \iff $\mathcal{O}_q(G)$ non-comm. Hopf alg.

$$\Gamma_q \hookrightarrow G_q \qquad \Longleftrightarrow \qquad \mathcal{O}_q(G) \twoheadrightarrow A$$

Quantum subgroups of $G_q \rightsquigarrow \text{Hopf algebra quotients of } \mathcal{O}_q(G)$

Quantum subgroups of $G_q \rightsquigarrow \mathsf{Hopf}$ algebra quotients of $\mathcal{O}_q(G)$

Problem

Quantum subgroups of $G_q \rightsquigarrow \text{Hopf algebra quotients of } \mathcal{O}_q(G)$

Problem

Determine all quantum subgroups of $\mathcal{O}_q(G)$, q a root of 1.

Quantum subgroups of $G_q \rightsquigarrow \text{Hopf}$ algebra quotients of $\mathcal{O}_q(G)$

Problem

Determine all quantum subgroups of $\mathcal{O}_q(G)$, q a root of 1.

First considered by Podlés for $\mathcal{O}_q(SU(2))$ and $\mathcal{O}_q(SO(3))$.

Quantum subgroups of $G_q \rightsquigarrow \text{Hopf}$ algebra quotients of $\mathcal{O}_q(G)$

Problem

Determine all quantum subgroups of $\mathcal{O}_q(G)$, q a root of 1.

First considered by Podlés for $\mathcal{O}_q(SU(2))$ and $\mathcal{O}_q(SO(3))$.

E. Müller solved it for SL_n in the finite-dimensional case.

Quantum subgroups of $G_q \rightsquigarrow \text{Hopf}$ algebra quotients of $\mathcal{O}_q(G)$

Problem

Determine all quantum subgroups of $\mathcal{O}_q(G)$, q a root of 1.

First considered by Podlés for $\mathcal{O}_q(SU(2))$ and $\mathcal{O}_q(SO(3))$.

E. Müller solved it for SL_n in the finite-dimensional case.

Strategy:

Quantum subgroups of $G_q \rightsquigarrow \text{Hopf}$ algebra quotients of $\mathcal{O}_q(G)$

Problem

Determine all quantum subgroups of $\mathcal{O}_q(G)$, q a root of 1.

First considered by Podlés for $\mathcal{O}_q(SU(2))$ and $\mathcal{O}_q(SO(3))$.

E. Müller solved it for SL_n in the finite-dimensional case.

Strategy:

(1) Give a general construction of the quotients.

Quantum subgroups of $G_q \rightsquigarrow \text{Hopf}$ algebra quotients of $\mathcal{O}_q(G)$

Problem

Determine all quantum subgroups of $\mathcal{O}_q(G)$, q a root of 1.

First considered by Podlés for $\mathcal{O}_q(SU(2))$ and $\mathcal{O}_q(SO(3))$.

E. Müller solved it for SL_n in the finite-dimensional case.

Strategy:

- (1) Give a general construction of the quotients.
- (2) Show that any quotient can be constructed in such a way.

Classify all (finite-dimensional) Hopf algebras.

Classify all (finite-dimensional) Hopf algebras.

Obstruction: lack of enough examples.

Classify all (finite-dimensional) Hopf algebras.

Obstruction: lack of enough examples.

Idea: Construct them using the known methods like twisting, crossed-products, bosonizations, liftings and extensions.

Classify all (finite-dimensional) Hopf algebras.

Obstruction: lack of enough examples.

Idea: Construct them using the known methods like twisting, crossed-products, bosonizations, liftings and extensions.

Warning:

These processes may not produce *really* new examples.

Classify all (finite-dimensional) Hopf algebras.

Obstruction: lack of enough examples.

Idea: Construct them using the known methods like twisting, crossed-products, bosonizations, liftings and extensions.

Warning:

These processes may not produce really new examples.

It is very difficult (if not impossible) to write them explicitly (extensions, twistings, crossed-products).

• $\mathfrak{h} \subseteq \mathfrak{g} = Lie(G)$ fixed Cartan subalgebra, $\Pi = \{\alpha_1, \dots, \alpha_n\}$ a basis of the root system $\Phi = \Phi(\mathfrak{g}, \mathfrak{h})$ and $n = \operatorname{rk} \mathfrak{g}$.

- $\mathfrak{h} \subseteq \mathfrak{g} = Lie(G)$ fixed Cartan subalgebra, $\Pi = \{\alpha_1, \dots, \alpha_n\}$ a basis of the root system $\Phi = \Phi(\mathfrak{g}, \mathfrak{h})$ and $n = \operatorname{rk} \mathfrak{g}$.
- ϵ a primitive ℓ -th root of 1, ℓ odd and $3 \nmid \ell$ if G is of type G_2 .

- $\mathfrak{h} \subseteq \mathfrak{g} = Lie(G)$ fixed Cartan subalgebra, $\Pi = \{\alpha_1, \dots, \alpha_n\}$ a basis of the root system $\Phi = \Phi(\mathfrak{g}, \mathfrak{h})$ and $n = \operatorname{rk} \mathfrak{g}$.
- ϵ a primitive ℓ -th root of 1, ℓ odd and $3 \nmid \ell$ if G is of type G_2 .
- $\mathbf{u}_{\epsilon}(\mathfrak{g}) = \text{Frobenius-Lusztig kernel}$; generated by $\{K_{\alpha_i}, E_i, F_i : 1 \leq i \leq n\}$.

- $\mathfrak{h} \subseteq \mathfrak{g} = Lie(G)$ fixed Cartan subalgebra, $\Pi = \{\alpha_1, \dots, \alpha_n\}$ a basis of the root system $\Phi = \Phi(\mathfrak{g}, \mathfrak{h})$ and $n = \operatorname{rk} \mathfrak{g}$.
- ϵ a primitive ℓ -th root of 1, ℓ odd and $3 \nmid \ell$ if G is of type G_2 .
- $\mathbf{u}_{\epsilon}(\mathfrak{g}) =$ Frobenius-Lusztig kernel; generated by $\{K_{\alpha_i}, E_i, F_i : 1 \leq i \leq n\}$. Denote $\mathbb{T} := \langle K_{\alpha_1}, \dots, K_{\alpha_n} \rangle = G(\mathbf{u}_{\epsilon}(\mathfrak{g}))$ and for $S \subseteq \Pi$, let $\mathbb{T}_S := \langle K_{\alpha_i} : \alpha_i \in S \rangle$.

- $\mathfrak{h} \subseteq \mathfrak{g} = Lie(G)$ fixed Cartan subalgebra, $\Pi = \{\alpha_1, \dots, \alpha_n\}$ a basis of the root system $\Phi = \Phi(\mathfrak{g}, \mathfrak{h})$ and $n = \operatorname{rk} \mathfrak{g}$.
- ϵ a primitive ℓ -th root of 1, ℓ odd and $3 \nmid \ell$ if G is of type G_2 .
- $\mathbf{u}_{\epsilon}(\mathfrak{g}) =$ Frobenius-Lusztig kernel; generated by $\{K_{\alpha_i}, E_i, F_i : 1 \leq i \leq n\}$. Denote $\mathbb{T} := \langle K_{\alpha_1}, \dots, K_{\alpha_n} \rangle = G(\mathbf{u}_{\epsilon}(\mathfrak{g}))$ and for $S \subseteq \Pi$, let $\mathbb{T}_S := \langle K_{\alpha_i} : \alpha_i \in S \rangle$.

```
Theorem ( , , )
```


- $\mathfrak{h} \subseteq \mathfrak{g} = Lie(G)$ fixed Cartan subalgebra, $\Pi = \{\alpha_1, \dots, \alpha_n\}$ a basis of the root system $\Phi = \Phi(\mathfrak{g}, \mathfrak{h})$ and $n = \operatorname{rk} \mathfrak{g}$.
- ϵ a primitive ℓ -th root of 1, ℓ odd and $3 \nmid \ell$ if G is of type G_2 .
- $\mathbf{u}_{\epsilon}(\mathfrak{g}) =$ Frobenius-Lusztig kernel; generated by $\{K_{\alpha_i}, E_i, F_i : 1 \leq i \leq n\}$. Denote $\mathbb{T} := \langle K_{\alpha_1}, \dots, K_{\alpha_n} \rangle = G(\mathbf{u}_{\epsilon}(\mathfrak{g}))$ and for $S \subseteq \Pi$, let $\mathbb{T}_S := \langle K_{\alpha_i} : \alpha_i \in S \rangle$.

Theorem (De Concini & Lyubashenko,

(a) $\mathcal{O}_{\epsilon}(G)$ contains a central Hopf subalgebra isomorphic to $\mathcal{O}(G)$.

- $\mathfrak{h} \subseteq \mathfrak{g} = Lie(G)$ fixed Cartan subalgebra, $\Pi = \{\alpha_1, \dots, \alpha_n\}$ a basis of the root system $\Phi = \Phi(\mathfrak{g}, \mathfrak{h})$ and $n = \operatorname{rk} \mathfrak{g}$.
- ϵ a primitive ℓ -th root of 1, ℓ odd and $3 \nmid \ell$ if G is of type G_2 .
- $\mathbf{u}_{\epsilon}(\mathfrak{g}) = \text{Frobenius-Lusztig kernel}$; generated by $\{K_{\alpha_i}, E_i, F_i : 1 \leq i \leq n\}$. Denote $\mathbb{T} := \langle K_{\alpha_1}, \dots, K_{\alpha_n} \rangle = G(\mathbf{u}_{\epsilon}(\mathfrak{g}))$ and for $S \subseteq \Pi$, let $\mathbb{T}_S := \langle K_{\alpha_i} : \alpha_i \in S \rangle$.

Theorem (De Concini & Lyubashenko, K. A. Brown & Goodearl,

- (a) $\mathcal{O}_{\epsilon}(G)$ contains a central Hopf subalgebra isomorphic to $\mathcal{O}(G)$.
- (b) $\mathcal{O}_{\epsilon}(G)$ is a free $\mathcal{O}(G)$ -module of rank $\ell^{\dim G}$.

- $\mathfrak{h} \subseteq \mathfrak{g} = Lie(G)$ fixed Cartan subalgebra, $\Pi = \{\alpha_1, \dots, \alpha_n\}$ a basis of the root system $\Phi = \Phi(\mathfrak{g}, \mathfrak{h})$ and $n = \operatorname{rk} \mathfrak{g}$.
- ϵ a primitive ℓ -th root of 1, ℓ odd and $3 \nmid \ell$ if G is of type G_2 .
- $\mathbf{u}_{\epsilon}(\mathfrak{g}) =$ Frobenius-Lusztig kernel; generated by $\{K_{\alpha_i}, E_i, F_i : 1 \leq i \leq n\}$. Denote $\mathbb{T} := \langle K_{\alpha_1}, \dots, K_{\alpha_n} \rangle = G(\mathbf{u}_{\epsilon}(\mathfrak{g}))$ and for $S \subseteq \Pi$, let $\mathbb{T}_S := \langle K_{\alpha_i} : \alpha_i \in S \rangle$.

Theorem (De Concini & Lyubashenko, K. A. Brown & Goodearl,

- (a) $\mathcal{O}_{\epsilon}(G)$ contains a central Hopf subalgebra isomorphic to $\mathcal{O}(G)$.
- (b) $\mathcal{O}_{\epsilon}(G)$ is a free $\mathcal{O}(G)$ -module of rank $\ell^{\dim G}$.
- (c) $\mathbb{C} \to \mathcal{O}(G) \xrightarrow{\iota} \mathcal{O}_{\epsilon}(G) \xrightarrow{\pi} \mathbf{u}_{\epsilon}(\mathfrak{g})^* \to \mathbb{C}$.

- $\mathfrak{h} \subseteq \mathfrak{g} = Lie(G)$ fixed Cartan subalgebra, $\Pi = \{\alpha_1, \dots, \alpha_n\}$ a basis of the root system $\Phi = \Phi(\mathfrak{g}, \mathfrak{h})$ and $n = \operatorname{rk} \mathfrak{g}$.
- ϵ a primitive ℓ -th root of 1, ℓ odd and $3 \nmid \ell$ if G is of type G_2 .
- $\mathbf{u}_{\epsilon}(\mathfrak{g}) = \text{Frobenius-Lusztig kernel}$; generated by $\{K_{\alpha_i}, E_i, F_i : 1 \leq i \leq n\}$. Denote $\mathbb{T} := \langle K_{\alpha_1}, \dots, K_{\alpha_n} \rangle = G(\mathbf{u}_{\epsilon}(\mathfrak{g}))$ and for $S \subseteq \Pi$, let $\mathbb{T}_S := \langle K_{\alpha_i} : \alpha_i \in S \rangle$.

Theorem (De Concini & Lyubashenko, K. A. Brown & Goodearl, AG)

- (a) $\mathcal{O}_{\epsilon}(G)$ contains a central Hopf subalgebra isomorphic to $\mathcal{O}(G)$.
- (b) $\mathcal{O}_{\epsilon}(G)$ is a free $\mathcal{O}(G)$ -module of rank $\ell^{\dim G}$.
- $(c) \ \mathbb{C} \to \mathcal{O}(G) \xrightarrow{\iota} \mathcal{O}_{\epsilon}(G) \xrightarrow{\pi} \mathbf{u}_{\epsilon}(\mathfrak{g})^* \to \mathbb{C}.$
- (d) π admits a coalgebra section φ .

4日 > 4回 > 4 直 > 4 直 > 直 9 9 ○

Let $q: \mathcal{O}_{\epsilon}(G) \twoheadrightarrow A$ be a Hopf algebra epimorphism.

Let $q: \mathcal{O}_{\epsilon}(G) \twoheadrightarrow A$ be a Hopf algebra epimorphism.

Then the following diagram of exact sequences is commutative

Let $q: \mathcal{O}_{\epsilon}(G) \twoheadrightarrow A$ be a Hopf algebra epimorphism.

Then the following diagram of exact sequences is commutative

$$1 \longrightarrow \mathcal{O}(G) \xrightarrow{\iota} \mathcal{O}_{\epsilon}(G) \xrightarrow{\pi} \mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow q \qquad \qquad \downarrow \qquad \qquad \downarrow q$$

$$1 \longrightarrow B \xrightarrow{\hat{\iota}} A \xrightarrow{\hat{\pi}} H \longrightarrow 1,$$

where $B = q(\mathcal{O}(G)) = \mathcal{O}(\Gamma)$ for some algebraic subgroup Γ of G

Let $q: \mathcal{O}_{\epsilon}(G) \twoheadrightarrow A$ be a Hopf algebra epimorphism.

Then the following diagram of exact sequences is commutative

where $B = q(\mathcal{O}(G)) = \mathcal{O}(\Gamma)$ for some algebraic subgroup Γ of G and $H = A/AB^+$ is the Hopf quotient given by $B \hookrightarrow A$.

Let $q: \mathcal{O}_{\epsilon}(G) \twoheadrightarrow A$ be a Hopf algebra epimorphism.

Then the following diagram of exact sequences is commutative

$$1 \longrightarrow \mathcal{O}(G) \xrightarrow{\iota} \mathcal{O}_{\epsilon}(G) \xrightarrow{\pi} \mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow q \qquad \qquad \downarrow \qquad \qquad \downarrow q$$

$$1 \longrightarrow B \xrightarrow{\hat{\iota}} A \xrightarrow{\hat{\pi}} H \longrightarrow 1,$$

where $B = q(\mathcal{O}(G)) = \mathcal{O}(\Gamma)$ for some algebraic subgroup Γ of G and $H = A/AB^+$ is the Hopf quotient given by $B \hookrightarrow A$.

Lemma (Müller)

 H^* is parameterized by (I_+, I_-, Σ) , where $I_+ \subseteq \Pi$, $I_- \subseteq -\Pi$ and $\Sigma \subseteq \mathbb{T}$ such that $K_{\alpha_i} \in \Sigma$ if $\alpha_i \in I = I_+ \cup I_-$.

Let $q: \mathcal{O}_{\epsilon}(G) \twoheadrightarrow A$ be a Hopf algebra epimorphism.

Then the following diagram of exact sequences is commutative

$$1 \longrightarrow \mathcal{O}(G) \xrightarrow{\iota} \mathcal{O}_{\epsilon}(G) \xrightarrow{\pi} \mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow q \qquad \qquad \downarrow \downarrow \qquad \qquad \downarrow q$$

$$1 \longrightarrow B \xrightarrow{\hat{\iota}} A \xrightarrow{\hat{\pi}} H \longrightarrow 1,$$

where $B = q(\mathcal{O}(G)) = \mathcal{O}(\Gamma)$ for some algebraic subgroup Γ of G and $H = A/AB^+$ is the Hopf quotient given by $B \hookrightarrow A$.

Lemma (Müller)

 H^* is parameterized by (I_+, I_-, Σ) , where $I_+ \subseteq \Pi$, $I_- \subseteq -\Pi$ and $\Sigma \subseteq \mathbb{T}$ such that $K_{\alpha_i} \in \Sigma$ if $\alpha_i \in I = I_+ \cup I_-$.

Idea: Make the construction using extensions.

Let $\mathbf{u}_{\epsilon}(\mathfrak{l}) \subseteq \mathbf{u}_{\epsilon}(\mathfrak{g})$ be the Hopf subalgebra determined by the triple (I_+, I_-, \mathbb{T}) .

• Using this triple, one defines Hopf algebras $\mathcal{O}(L)$, $\mathcal{O}_{\epsilon}(L)$, $\mathcal{U}_{\epsilon}(\mathfrak{l})$, where

- Using this triple, one defines Hopf algebras $\mathcal{O}(L)$, $\mathcal{O}_{\epsilon}(L)$, $U_{\varepsilon}(\mathfrak{l})$, where
- $\mathfrak{l} = \mathfrak{l}_+ \oplus \mathfrak{h} \oplus \mathfrak{l}_-$ is an algebraic Lie subalgebra of \mathfrak{g} ,

- Using this triple, one defines Hopf algebras $\mathcal{O}(L)$, $\mathcal{O}_{\epsilon}(L)$, $U_{\varepsilon}(\mathfrak{l})$, where
- ullet $\mathfrak{l}=\mathfrak{l}_+\oplus\mathfrak{h}\oplus\mathfrak{l}_-$ is an algebraic Lie subalgebra of $\mathfrak{g},$
- $\mathfrak{l}_{\pm} = \sum_{\alpha \in \Psi_{\pm}} \mathfrak{g}_{\alpha}$,

- Using this triple, one defines Hopf algebras $\mathcal{O}(L)$, $\mathcal{O}_{\epsilon}(L)$, $U_{\varepsilon}(\mathfrak{l})$, where
- ullet $\mathfrak{l}=\mathfrak{l}_+\oplus\mathfrak{h}\oplus\mathfrak{l}_-$ is an algebraic Lie subalgebra of $\mathfrak{g},$
- $\mathfrak{l}_{\pm} = \sum_{\alpha \in \Psi_{\pm}} \mathfrak{g}_{\alpha}$, with $\Psi_{\pm} = \{ \alpha \in \Phi : \operatorname{\mathsf{Sup}} \alpha \subseteq I_{\pm} \}.$

(a) $\mathcal{O}(L)$ is central in $\mathcal{O}_{\epsilon}(L)$, $L \subseteq G$ is connected and $\text{Lie}(L) = \mathfrak{l}$.

- (a) $\mathcal{O}(L)$ is central in $\mathcal{O}_{\epsilon}(L)$, $L \subseteq G$ is connected and $\text{Lie}(L) = \mathfrak{l}$.
- (b) The following diagram of exact sequences commutates

$$1 \longrightarrow \mathcal{O}(G) \xrightarrow{\iota} \mathcal{O}_{\epsilon}(G) \xrightarrow{\pi} \mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow \mathcal{O}(L) \xrightarrow{\iota_{L}} \mathcal{O}_{\epsilon}(L) \xrightarrow{\pi_{L}} \mathbf{u}_{\epsilon}(\mathfrak{l})^{*} \longrightarrow 1.$$

- (a) $\mathcal{O}(L)$ is central in $\mathcal{O}_{\epsilon}(L)$, $L \subseteq G$ is connected and $\text{Lie}(L) = \mathfrak{l}$.
- (b) The following diagram of exact sequences commutates

$$1 \longrightarrow \mathcal{O}(G) \xrightarrow{\iota} \mathcal{O}_{\epsilon}(G) \xrightarrow{\pi} \mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow \mathcal{O}(L) \xrightarrow{\iota_{L}} \mathcal{O}_{\epsilon}(L) \xrightarrow{\pi_{L}} \mathbf{u}_{\epsilon}(\mathfrak{l})^{*} \longrightarrow 1.$$

(c) π_L admits a coalgebra section ψ .

Let B, A, be Hopf algebras, B central in A and A right or left faithfully flat over B.

Let B, A, be Hopf algebras, B central in A and A right or left faithfully flat over B. Let $p: B \to K$ a surjective Hopf algebra map and $H = A/AB^+$.

Let B, A, be Hopf algebras, B central in A and A right or left faithfully flat over B. Let $p:B\to K$ a surjective Hopf algebra map and $H=A/AB^+$.

$$1 \longrightarrow B \xrightarrow{\iota} A \xrightarrow{\pi} H \longrightarrow 1$$

$$\downarrow \rho \downarrow \qquad \qquad K$$

Let B, A, be Hopf algebras, B central in A and A right or left faithfully flat over B. Let $p: B \to K$ a surjective Hopf algebra map and $H = A/AB^+$. Denote $\mathcal{J} = \text{Ker } p$, $(\mathcal{J}) = A\mathcal{J}$.

$$1 \longrightarrow B \xrightarrow{\iota} A \xrightarrow{\pi} H \longrightarrow 1$$

$$\downarrow p \downarrow \qquad \qquad K$$

Let B, A, be Hopf algebras, B central in A and A right or left faithfully flat over B. Let $p: B \to K$ a surjective Hopf algebra map and $H = A/AB^+$. Denote $\mathcal{J} = \text{Ker } p$, $(\mathcal{J}) = A\mathcal{J}$.

Let B, A, be Hopf algebras, B central in A and A right or left faithfully flat over B. Let $p: B \to K$ a surjective Hopf algebra map and $H = A/AB^+$. Denote $\mathcal{J} = \text{Ker } p$, $(\mathcal{J}) = A\mathcal{J}$.

$$1 \longrightarrow B \xrightarrow{\iota} A \xrightarrow{\pi} H \longrightarrow 1$$

$$\downarrow \qquad \qquad \parallel \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$1 \longrightarrow K \longrightarrow A/(\mathcal{J}) \longrightarrow H \longrightarrow 1$$

Moreover, $A/(\mathcal{J}) \simeq A \otimes_B K$, the base extension through p.

Let $\sigma: \Gamma \to G$ such that $\sigma(\Gamma) \subseteq L$.

Let $\sigma: \Gamma \to G$ such that $\sigma(\Gamma) \subseteq L$.

Let $\sigma : \Gamma \to G$ such that $\sigma(\Gamma) \subseteq L$.

$$1 \longrightarrow \mathcal{O}(G) \xrightarrow{\iota} \mathcal{O}_{\epsilon}(G) \xrightarrow{\pi} \mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow \mathcal{O}(L) \xrightarrow{\iota_{L}} \mathcal{O}_{\epsilon}(L) \xrightarrow{\pi_{L}} \mathbf{u}_{\epsilon}(\mathfrak{l})^{*} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$1 \longrightarrow \mathcal{O}(\Gamma) \xrightarrow{\bar{\iota}} A_{\epsilon,\sigma,\mathfrak{l}} \xrightarrow{\bar{\pi}} \mathbf{u}_{\epsilon}(\mathfrak{l})^{*} \longrightarrow 1,$$

where $A_{\epsilon,\sigma,\mathfrak{l}}:=\mathcal{O}_{\epsilon}(L)/(\mathcal{J})$, $\mathcal{J}=\mathsf{Ker}^{-t}\sigma$.

Let $H^* \subseteq \mathbf{u}_{\epsilon}(\mathfrak{g})$ be determined by (I_+, I_-, Σ) .

Let $H^* \subseteq \mathbf{u}_{\epsilon}(\mathfrak{g})$ be determined by (I_+, I_-, Σ) . Since $\mathbf{u}_{\epsilon}(\mathfrak{l})$ is determined by the triple (I_+, I_-, \mathbb{T}) with $\Sigma \subseteq \mathbb{T}$, we have that

$$H^* \subseteq \mathbf{u}_{\epsilon}(\mathfrak{l}) \subseteq \mathbf{u}_{\epsilon}(\mathfrak{g}).$$

Let $H^* \subseteq \mathbf{u}_{\epsilon}(\mathfrak{g})$ be determined by (I_+, I_-, Σ) . Since $\mathbf{u}_{\epsilon}(\mathfrak{l})$ is determined by the triple (I_+, I_-, \mathbb{T}) with $\Sigma \subseteq \mathbb{T}$, we have that

$$H^* \subseteq \mathbf{u}_{\epsilon}(\mathfrak{l}) \subseteq \mathbf{u}_{\epsilon}(\mathfrak{g}).$$

Lemma

 $H \simeq \mathbf{u}_{\epsilon}(\mathfrak{l})^*/(D^z-1|\ z\in N)$ where $N\subseteq\widehat{\mathbb{T}_{I^c}}$ is determined uniquely by Σ (and conversely).

Let $\delta: N \to \widehat{\Gamma}$ be a group map. Using the coalgebra section ψ of π_L , we divide out by ideals generated by central elements related to Σ and we obtain

Let $\delta: N \to \widehat{\Gamma}$ be a group map. Using the coalgebra section ψ of π_L , we divide out by ideals generated by central elements related to Σ and we obtain

Using the coalgebra section ψ of π_L , we divide out by ideals generated by central elements related to Σ : for $z \in N$, $\psi(D^z) \in \mathcal{Z}(A_{\epsilon,\sigma,\mathfrak{l}})$ and if $\delta: N \to \widehat{\Gamma}$ ia a group map we have

where $A_{\mathcal{D}} = A_{\epsilon,\sigma,\mathfrak{l}}/(\psi(D^z) - \delta(z)|z \in N)$.

4 D > 4 A > 4 B > 4 B > B = 990

Definition

Definition

A subgroup datum is a collection $\mathcal{D} = (I_+, I_-, N, \Gamma, \sigma, \delta)$

• $I_+ \subseteq \Pi$, $I_- \subseteq -\Pi$.

Definition

- $I_+ \subseteq \Pi$, $I_- \subseteq -\Pi$.
- N finite abelian subgroup of $\widehat{\mathbb{T}_{I^c}}$.

Definition

- $I_+ \subseteq \Pi$, $I_- \subseteq -\Pi$.
- N finite abelian subgroup of $\widehat{\mathbb{T}_{I^c}}$.
- Γ algebraic group.

Definition

- $I_+ \subseteq \Pi$, $I_- \subseteq -\Pi$.
- N finite abelian subgroup of $\widehat{\mathbb{T}_{I^c}}$.
- Γ algebraic group.
- $\sigma : \Gamma \to L$ injective morphism of algebraic groups.

Definition

- $I_+ \subseteq \Pi$, $I_- \subseteq -\Pi$.
- N finite abelian subgroup of $\widehat{\mathbb{T}_{I^c}}$.
- Γ algebraic group.
- $\sigma : \Gamma \to L$ injective morphism of algebraic groups.
- $\delta: N \to \widehat{\Gamma}$ group homomorphism.

Definition

A subgroup datum is a collection $\mathcal{D} = (I_+, I_-, N, \Gamma, \sigma, \delta)$

- $I_+ \subseteq \Pi$, $I_- \subseteq -\Pi$.
- N finite abelian subgroup of $\widehat{\mathbb{T}_{I^c}}$.
- Γ algebraic group.
- $\sigma : \Gamma \to L$ injective morphism of algebraic groups.
- $\delta: N \to \widehat{\Gamma}$ group homomorphism.

Theorem

There is a bijection between

- (a) Hopf algebra quotients $q: \mathcal{O}_{\epsilon}(G) \rightarrow A$.
- (b) Subgroup data (up to equivalence).

The inclusion $\mathcal{O}(G) \subseteq \mathcal{O}_{\epsilon}(G)$ determines a maximal torus **T** of G.

The inclusion $\mathcal{O}(G) \subseteq \mathcal{O}_{\epsilon}(G)$ determines a maximal torus **T** of G.

Proposition

(a) If $A_{\mathcal{D}}$ is pointed, then $I_+ \cap -I_- = \emptyset$ and Γ is a subgroup of the group of upper triangular matrices of some size. In particular, if Γ is finite, then it is abelian.

The inclusion $\mathcal{O}(G) \subseteq \mathcal{O}_{\epsilon}(G)$ determines a maximal torus **T** of G.

Proposition

- (a) If $A_{\mathcal{D}}$ is pointed, then $I_+ \cap -I_- = \emptyset$ and Γ is a subgroup of the group of upper triangular matrices of some size. In particular, if Γ is finite, then it is abelian.
- (b) A_D is semisimple if and only if $I_+ \cup -I_- = \emptyset$ and Γ is finite.

The inclusion $\mathcal{O}(G) \subseteq \mathcal{O}_{\epsilon}(G)$ determines a maximal torus **T** of G.

Proposition

- (a) If A_D is pointed, then $I_+ \cap -I_- = \emptyset$ and Γ is a subgroup of the group of upper triangular matrices of some size. In particular, if Γ is finite, then it is abelian.
- (b) $A_{\mathcal{D}}$ is semisimple if and only if $I_+ \cup -I_- = \emptyset$ and Γ is finite.
- (c) If dim $A_{\mathcal{D}} < \infty$ and $A_{\mathcal{D}}^*$ is pointed, then $\sigma(\Gamma) \subseteq \mathbf{T}$.

The inclusion $\mathcal{O}(G) \subseteq \mathcal{O}_{\epsilon}(G)$ determines a maximal torus **T** of *G*.

Proposition

- (a) If A_D is pointed, then $I_+ \cap -I_- = \emptyset$ and Γ is a subgroup of the group of upper triangular matrices of some size. In particular, if Γ is finite, then it is abelian.
- (b) $A_{\mathcal{D}}$ is semisimple if and only if $I_+ \cup -I_- = \emptyset$ and Γ is finite.
- (c) If dim $A_{\mathcal{D}} < \infty$ and $A_{\mathcal{D}}^*$ is pointed, then $\sigma(\Gamma) \subseteq \mathbf{T}$.
- (d) If A_D is co-Frobenius then Γ is reductive.

The inclusion $\mathcal{O}(G) \subseteq \mathcal{O}_{\epsilon}(G)$ determines a maximal torus **T** of G.

Proposition

- (a) If $A_{\mathcal{D}}$ is pointed, then $I_+ \cap -I_- = \emptyset$ and Γ is a subgroup of the group of upper triangular matrices of some size. In particular, if Γ is finite, then it is abelian.
- (b) $A_{\mathcal{D}}$ is semisimple if and only if $I_+ \cup -I_- = \emptyset$ and Γ is finite.
- (c) If dim $A_{\mathcal{D}} < \infty$ and $A_{\mathcal{D}}^*$ is pointed, then $\sigma(\Gamma) \subseteq \mathbf{T}$.
- (d) If A_D is co-Frobenius then Γ is reductive.

Corollary

Let $\mathcal{D}=(I_+,I_-,N,\Gamma,\sigma,\delta)$ be a finite subgroup datum such that $I_+\cap -I_-\neq\emptyset$ and $\sigma(\Gamma)\nsubseteq \mathbf{T}$. Then $A_{\mathcal{D}}$ is non-semisimple, non-pointed and its dual is also non-pointed.

Invariants

Let $\widetilde{\Gamma} = \Gamma \times N^{\perp}$ and $\mathbf{u}_{\epsilon}(\mathfrak{l}_0)$ be the Hopf subalgebra of $\mathbf{u}_{\epsilon}(\mathfrak{g})$ determined by the triple (I_+, I_-, \mathbb{T}_I) .

Invariants

Let $\widetilde{\Gamma} = \Gamma \times N^{\perp}$ and $\mathbf{u}_{\epsilon}(\mathfrak{l}_0)$ be the Hopf subalgebra of $\mathbf{u}_{\epsilon}(\mathfrak{g})$ determined by the triple (I_+, I_-, \mathbb{T}_I) .

Lemma

 $A_{\mathcal{D}}$ fits into the central exact sequence

$$1 o \mathcal{O}(\widetilde{\Gamma}) o \mathcal{A}_{\mathcal{D}} o \mathbf{u}_{\epsilon}(\mathfrak{l}_0)^* o 1.$$

and it is given by a pushout.

Invariants

Let $\widetilde{\Gamma} = \Gamma \times N^{\perp}$ and $\mathbf{u}_{\epsilon}(\mathfrak{l}_0)$ be the Hopf subalgebra of $\mathbf{u}_{\epsilon}(\mathfrak{g})$ determined by the triple (I_+, I_-, \mathbb{T}_I) .

Lemma

 $A_{\mathcal{D}}$ fits into the central exact sequence

$$1 o \mathcal{O}(\widetilde{\mathsf{\Gamma}}) o \mathcal{A}_{\mathcal{D}} o \mathbf{u}_{\epsilon}(\mathfrak{l}_0)^* o 1.$$

and it is given by a pushout.

Theorem

Let \mathcal{D} and \mathcal{D}' be subgroup data. If the Hopf algebras $A_{\mathcal{D}}$ and $A_{\mathcal{D}'}$ are isomorphic then $\widetilde{\Gamma} \simeq \widetilde{\Gamma}'$ and $\mathfrak{l}_0 \simeq \mathfrak{l}_0'$.

Consider the subgroup datum $\mathcal{D}=(\Pi,-\Pi,1,\Gamma,\sigma,\varepsilon)$, where Γ is finite and $\varepsilon:1\to\widehat{\Gamma}$ is the trivial group map.

Consider the subgroup datum $\mathcal{D}=(\Pi,-\Pi,1,\Gamma,\sigma,\varepsilon)$, where Γ is finite and $\varepsilon:1\to\widehat{\Gamma}$ is the trivial group map.

Its Hopf algebra $A_{\mathcal{D}}$ is given by a pushout construction

$$1 \longrightarrow \mathcal{O}(G) \xrightarrow{\iota} \mathcal{O}_{\epsilon}(G) \xrightarrow{\pi} \mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$1 \longrightarrow \mathbb{C}^{\Gamma} \longrightarrow A_{\mathcal{D}} \longrightarrow \mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \longrightarrow 1$$

Consider the subgroup datum $\mathcal{D}=(\Pi,-\Pi,1,\Gamma,\sigma,\varepsilon)$, where Γ is finite and $\varepsilon:1\to\widehat{\Gamma}$ is the trivial group map.

Its Hopf algebra $A_{\mathcal{D}}$ is given by a pushout construction

$$1 \longrightarrow \mathcal{O}(G) \xrightarrow{\iota} \mathcal{O}_{\epsilon}(G) \xrightarrow{\pi} \mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$1 \longrightarrow \mathbb{C}^{\Gamma} \longrightarrow A_{\mathcal{D}} \longrightarrow \mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \longrightarrow 1$$

Theorem

If $\sigma(\Gamma)$ is not central in G, then there exists an infinite family $\{\sigma_j\}_{j\in J}\subset \operatorname{Emb}(\Gamma,G)$ such that the Hopf algebras $\{A_{\sigma_j}\}_{j\in J}$ of dimension $|\Gamma|\ell^{\dim\mathfrak{g}}$ are pairwise non-isomorphic, non-semisimple, non-pointed and their duals are also non-pointed.