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I. Introduction.

One of the most natural places of application of operator
space methods: operator algebras

Indeed, operator algebras are exactly the operator spaces
with a product making M,(A) a Banach algebra

Originally: a much more ambitious survey of brand new
examples of operator space methods for operator algebras

Instead I will focus on one part of the survey: 2 recent
papers with Upasana Kashyap (September, December 07)

T he latter particularly has some nice examples of how op-
erator space methods can be crucial in an operator algebra
investigation



Revisit something I missed ten years ago
e Some definitions:

Dual operator algebra: o-weakly (= weak*) closed subal-
gebra of B(H)

Theorem (Le Merdy/B/B-Magajna) Dual operator al-
gebras are exactly the operator algebras with an operator
space predual

e I will assume (for convenience) all dual operator algebras
have an identity of norm 1



Normal representation: completely contractive unital weak*
continuous w: M — B(H)

Makes H a dual operator M-module

Dual operator M-module: weak* closed X C B(K, H) with
w(M)X C X, m as above

or = Dual operator space and M-module such that module
action is separately weak* continuous

(Studied first by Effros-Ruan in the W*-algebra case)



II: A generalization of W*-modules (December 07)

Recall...strong Morita equivalence/C*-modules for C*-algebras
are not appropriate for W*-algebras. Need a W *-algebra/weak*
topology variant originally due to Paschke:

A W*-module is a Hilbert C*-module Y over a von Neu-
mann algebra M which is selfdual, i.e. every T' € B(Y, M)
IS just ‘taking the inner product with a fixed element’

Or equivalently which has a predual (Zettl, Effros-Ozawa-
Ruan)



Thus we have a separately weak* continuous M-valued

inner product on Y, satisfying obvious analogues of the
Hilbert space inner product, e.g.

(yly) = 0

(ylza) = (ylz)a , a e M
They behave just like Hilbert spaces ...



A fundamental notion. For example, it implements the
‘induced representations’ functor of Rieffel:

H ~ Y®QyH

the ‘composition tensor product’ (many other names)

For ‘operator spacers, W*-modules are much the same
thing as WTROs (= weak* closed operator space Z C
B(K,H) s.t. ZZ*Z C Z)

(Studied by Ruan and many others)



The original W*-algebraic theories are a big package of im-
portant results, tools, consequences, and ways of looking
at things. In the (selfadjoint) theory, ‘inner product mod-
ules’ are essentially the same thing as Morita equivalence

However in the nonselfadjoint setting, this is not true, as
simple 2 X 2 examples show



Why generalize it to dual operator algebra? A few of the
reasons...

e These are beautiful and fundamental ideas, for example
‘induced representations’

e Imbed the C*-module universe in a bigger setting (where
you can eg. fuse W*-modules and general dual operator
modaules)

e Great application of pretty operator space ideas

e There is something worthwhile about pulling on the right
lever, and getting the cascade/big package of hundreds of
nice theorems



What are these ‘hundreds of nice theorems’?

e This is a fundamental notion in mathematics, and thus
has very many different facets and ‘pictures’, corollaries,
and special features. If you try write down a comprehensive
account it will be quite lengthy

e This is a ubiquitous notion. Eg. in the C*-literature, and
related fields, everybody is using it, and in different ways,
and you'll find everybody has a new theorem about it
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e In the nonselfadjoint setting vyou also get a bunch of
theorems relating it to the selfadjoint setting

e You also get a bunch of theorems reprising important
results from the theory of rings and modules, which only
make sense for modules satisfying our definition (because
e.g. direct sums are very problematic for general operator
modules)

e It generalizes Hilbert spaces, so it has got to go in many
nice directions
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How to generalize it to modules over a dual operator alge-
bra M

e \We begin by agreeing on one example of something that
certainly should be a ‘generalized W*-module’

e Operator space notation: C,, (M) (= first column of M,;,(M))
IS a right M-module

e In the W*-algebra case, these are your basic building
block:
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Theorem A dual Banach space and module Y over a W*-
algebra M is a W*-module iff there are nets of contractive
module maps ¢ : Y — Yy and ¢4+ : Y — Y, where each Y;
is of the form C,, (M) for some n, such that ¥¢(pt(y)) — vy
weak* for all y € Y.

In this case the inner product is w*lim¢ p¢(y)* p(2)

(3 simpler proof? Tempting to use ultraproducts, but...)
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Definition Say that a dual operator space and module Y
over a W*-algebra M is a w*-rigged module iff there are
nets of completely contractive module maps ¢ : ¥ — Y
and ¢; : Yy — Y, where each Y; is of the form C, (M) for
some n, such that ¥¢(p¢(y)) — y weak* for all y € Y.

e We have many alternative definitions

e In the norm topology case, a similar condition defines the
rigged modules. But then you need a deep theorem to go
further ([Hay], [B-Hay-Neal])

e In the weak* case we need operator space multipliers to
begin cooking... did’'nt know how to do it until recently...
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e One can obtain a C*-algebra valued inner product on
such Y:
(Y, z) = w*limg p¢(y)* pi(z)

[Hint: tensor everything in the definition on the last slide
with I for a von Neumann algebras containing IN. Then
appeal to the last theorem]

(this is just viewing Y inside its canonical ‘W*-module en-
velope’, the W*-dilation)

e However usually it is preferable to work instead with a
bilinear pairing with a canonical dual left w*-rigged module:
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e Define Y = w*CB(Y, M), a left M-module

Fact: T :Y — Z is a weak* continuous cb module map iff
T is adjointable:

3S : Z — Y such that (Sx,y) = (2, Ty) Vx,y
Write B(Y, Z) for these adjointables (= w*CB(Y, Z)pr)
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Theorem IfY is a w*-rigged module over M then

(1) B(Y) is weak* closed in CB(Y ), and is a dual operator
algebra

(2) Y is a left dual operator module over B(Y)

(3) Y is a right w*-rigged module over M

4 Y=Y
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Main new ingredients: 1) left multipliers of an operator
space X, and their deep properties (see e.g. Chapter 4 of
[B+Le Merdy])

e I defined multipliers originally in terms of the NC Shilov
boundary, but characterized them in many ways (e.g. with
Effros and Zarikian, as the (scalar multiples of) maps T :
X — X such that for all z,y € X:

¥Rl

and similarly for matrices)

e The collection M,(X) of left multipliers of X is an op-
erator algebra, indeed is a dual operator algebra if X is a
dual operator space
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e For special classes of operator spaces, M/ (X) often are
exactly the maps of interest. Eg.

Theorem Mp(Y)=B(Y) ifY is w*-rigged

2) We also need ®J”, the ‘module version’ of the Ef-
fros/Kishimoto/Ruan o-Haagerup tensor product.

e This module version was introduced in [EP], as the quo-
tient of the usual o-Haagerup tensor product by the weak?*
closure of the span of terms tm Qy —x ® my for m € M.
What we use from [EP] is the universal property of Q1

Every completely contractive separately weak* continuous
map v : E X F — Z such that u(xm,y) = u(x,my) for
m € M, gives a completely contractive weak* continuous
complete contraction E QI F — Z
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Theorem If H is a Hilbert space on which M is normally
represented, then K =Y ®ﬂ" HE¢€ is a Hilbert space

e After establishing a few such basic theorems, one can
fairly easily transfer everything in the older (norm topology)
theory of rigged modules, to the weak* setting of w*-rigged
modules

e Get the whole big package...

e Here are some of the most important ideas:
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The linking algebra

a I
y b
with the obvious multiplication.

- |

] : aeM,beIB%(Y),a;ef/,er},

If H is a Hilbert space on which Y is normally represented,
let K =Y ®J" HC. This is a Hilbert space (“the induced
representation in Rieffel’s language” ), and LY has a natural
representation on HP K, making LY a dual operator algebra

The linking algebra is always a major tool, since now we
can treat Y as a concrete subspace of B(H, K). Can treat
everything as happening on H § K

(Need operator space multipliers M, for this!)
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Tensor products

Theorem IfY is aright w*-rigged module over M, and if
Z is also a right w*-rigged module over N, and if Z is a left
dual operator M-module, then Y®ﬁ‘Z is a right w*-rigged
module over N. Moreover, Y Q" Z 2 B(Y, Z)

e Latter holds even if Z is not w*-rigged on the right; i.e.
IS just a dual operator module

Corollary On W*-modules, the normal Haagerup module
tensor product equals the extended Haagerup module ten-
sor product, and equals the classical composition tensor
product of W*-correspondences due to Rieffel
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The W*-dilation: Setting Z in the last theorem to be a von
Neumann algebra R containing M, we see that Y ®‘]{£,’R IS
a W*-module canonically containing Y. So we are back in
the classical von Neumann algebra setting, and Y now has
a genuine von Neumann algebra valued inner product

Conversely, you can define w*-rigged modules to be a sub-
space of a W*-module over a von Neumann algebra R
satisfying a natural condition
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Direct sums:

A direct sum @5 Yy of w*-rigged modules over M is again
a w*-rigged module over M, has a nice universal property,

and works as it should, e.g.

(Or Yi) %) Z = O (Yi ®F) Z)

Everything is working right...
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Examples of w*-rigged modules

e W*-modules/ WTROs

e \Weak* Morita equivalence bimodules (which in turn in-
clude all examples of Morita equivalence hitherto consid-

ered in the dual operator algebra literature, e.g. similar nest
algebras)

e Second duals of strong Morita equivalence bimodules,
or second duals of rigged modules
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o If C(M) is the ‘infinite column sum’ of copies of M
(= ‘first column’ of M®XB(H)), and if P € B(C%(M)) is an
orthogonal projection, then P(C%(M)) is w*-rigged

e If Z is a WTRO, and suppose that Z*Z is contained in
a dual operator algebra M. Then Y = ZM """ is w*-rigged
over M

(this is a one-sided variant of Eleftherakis’ TRO-equivalence)

e Selfdual rigged modules over dual operator algebra M
(B+Magajna)
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III. Weak* Morita equivalence (September, 07)

History:

IB+Magajna JFA 05] tight Morita equivalence (self dual-
ity).

[Eleftherakis 06] TRO-equivalence, A-equivalence

[Eleftherakis + Paulsen (EP), 07]: Theorem Two dual
operator algebras are A-equivalent if and only if they are
weak* stably isomorphic; i.e., Mj(M) = Mj(N)
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[B+Kashyap 07] We define dual operator algebras M and
N to be weak* Morita equivalent if if there exist a pair of
dual operator bimodules X and Y, such that M = X Q{!Y
and N @Y ®%F X

e Natural, if you are familiar with the B-Muhly-Paulsen
strong Morita equivalence

e Our definition contains all examples hitherto in the liter-
ature of Morita-like equivalence in a dual (weak*) setting
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The connection to Eleftherakis’ equivalence relation

e In [EP] it was shown that A-equivalence implies weak™
Morita equivalence in our language. That is, any of his
equivalences is one of our weak* Morita equivalences ...

Both have (different) advantages: for example...

e A-equivalence matches ‘weak* stable isomorphism’ per-
fectly, and contains other very nice new ideas.

e There are some examples which are important for us,
which are not A-equivalent. AIlso ours is a very natural
variant of the entire earlier strong Morita equivalence the-
ory, and you get the same big package of theorems, so why
not... .
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Loosely speaking, ours corresponds to a mere change in
the tensor product used.

e I like to think about A-equivalence as ‘containing a W*-
Morita’ and our notion as ‘contained inside a W*-Morita’
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Now I should write down the ‘big package of theorems’,
but I won'’t

T hey are the usual ‘package’ occurring in some form in pure
algebra, and most perfectly in C*-algebra theory (in various
sources), and reprised in the [B-Muhly-Paulsen] setting

Eg. The following is the nonselfadjoint analogue of a
theorem of Rieffel.

Theorem IfY is a weak* Morita equivalence N-M-bimodule,
and H is a universal normal representation for M, let K be
the induced representation of N. Then M’ = N’. Writing
R for either of these commutants, we have Y = Bgr(H, K)

e SO every such Y is of this nice form
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e Every weak* Morita equivalence between M and N sits
naturally inside a von Neumann algebra Morita equivalence
between von Neumann algebras generated by M and N

Still to do: ... Iff an equivalence of categories of represen-
tations

That is, M should be weak* Morita equivalent to N iff
the categories of normal Hilbert space representations of

M and N are equivalent categories

and, probably, Iiff their categories of dual operator modules
are equivalent
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