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Outline

In this talk, we look at Connes-Moscovici’s higher index theo-
rem from deformation quantization point of view, and discuss its
extension to orbifolds.

This is a joint work with Markus Pflaum and Hessel Posthuma.

Plan:

I. Cyclic cocycles on Weyl algebra

II. Cyclic cocycles on deformation quantization

III. Algebraic higher index theorem

IV. Formal and analytic index theorem
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Part I: Cocycles on Weyl algebras

We illustrate explicit formulas for cyclic cocycles on Weyl alge-

bras.
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Weyl algebra Wpoly(V )

Let (V, ω) be a finitely dimensional symplectic vector space. In
canonical coordinates (p1, . . . pn, q1, . . . qn) the symplectic form
simply reads ω =

∑
i dpi ∧ dqi.

The Weyl algebra Wpoly(V ) is a deformation of the algebra of
polynomials S(V ∗) on V : we have Wpoly(V ) = S(V ∗) ⊗ C[~, ~−1]
with algebra structure given by the Moyal–Weyl product

f ? g = (m ◦ exp(
~
2

α))(f ⊗ g)

where m is the commutative multiplication and α ∈ End
(
Wpoly(V )⊗

Wpoly(V )
)

is basically the Poisson bracket associated to ω:

α(f ⊗ g) =
n∑

i=1

(
∂f

∂pi
⊗

∂g

∂qi
−

∂f

∂qi
⊗

∂g

∂pi

)
.
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Cyclic cohomology of Wpoly
2n

By spectral sequence arguments with respect to the ~-filtration,

we can compute the cyclic cohomology of the Weyl algebra.

HCk(Wpoly
2n ) =

C[~, ~−1] if k = 2n + 2p, p ≥ 0,

0 else;

HCk(Wpoly
2n ) =

C[~, ~−1] if k = 2n + 2p, p ≥ 0,

0 else.

Nest and Tsygan proved that 1⊗p1∧q1∧· · ·∧pn∧qn is a normalized

b + B cycle which generates the cyclic homology of Wpoly
2n .
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Some notations

To introduce this cocycle, we need some notations.

For 0 ≤ i 6= j ≤ k ≤ 2n, define αij ∈ End
(
(Wpoly

2n )⊗k+1
)

by

αij(a0 ⊗ . . .⊗ ak) =
∑n

s=1

(
a0 ⊗ . . .⊗ ∂ai

∂ps
⊗ . . .⊗ ∂aj

∂qs
⊗ . . .⊗ ak

− a0 . . .⊗ ∂ai
∂qs

⊗ . . .⊗ ∂aj
∂ps

⊗ . . .⊗ ak

)
,

i.e., the Poisson tensor acting on i’th and j’th slot of the tensor

product

And µi : (Wpoly
2n )⊗(i+1) → C[~, ~−1] is given by

µi(a0 ⊗ . . .⊗ ai) = a0(0) · · · ai(0).
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Cyclic cocycles on Wpoly
2n

For all i with 0 ≤ i ≤ 2n define the cochains τi ∈ C
i(Wpoly

2n ) as

follows.

τ2k(a) = (−1)kµ2k

∫
∆2k

∏
0≤i<j≤2k

e~(ui−uj+
1
2)αij

∣∣∣∣∣∣
u0=0

1⊗ (~α)∧k(a)du1 · · · du2k,

τ2k−1(a) = (−1)k−1µ2k−1

∫
∆2k−1

∏
0≤i<j≤2k−1

e~(ui−uj+
1
2)αij

∣∣∣∣∣∣
u0=0

(~α)∧k(a)du1 · · · du2k−1.

The cocycle τ2n ∈ C
2n(Wpoly

2n ) is the Hochschild cocycle intro-

duced by Feigin, Felder, and Shoikhet up to a sign (−1)n.
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Properties of (τ0, · · · , τ2n)

Let ιa : Ck(A) → Ck+1(A) and La : Ck(A) → Ck(A) be defined by

ιa(a0 ⊗ . . .⊗ ak) =
k∑

i=0

(−1)i+1(a0 ⊗ . . .⊗ ai ⊗ a⊗ ai+1 ⊗ . . .⊗ ak),

La(a0 ⊗ . . .⊗ ak) =
k∑

i=0

(a0 ⊗ . . .⊗ [a, ai]⊗ . . .⊗ ak).

Theorem 1 The cochains τi ∈ C
i(Wpoly

2n ) satisfy the relation

−Bτ2k = τ2k−1 = bτ2k−2.

Hence, (τ0, · · · , τ2n) is a b + B cocycle on Wpoly
2n . Furthermore,

τ2k ∈ C
2k(Wpoly

2n ), 0 ≤ k ≤ n are invariant and basic with respect
to sp2n, i.e.,

Laτ2k = 0 and ιaτ2k = 0 for all a ∈ sp2n ⊂ Wpoly
2n .
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Part II: Cocycles on deformation quantization

We construct cyclic cocycles on deformation quantization of a

symplectic manifold.
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Symplectic manifold and deformation quantiza-
tion

Let M be a symplectic manifold with a symplectic form ω, a
nondegenerated closed 2-form on M . Define the Poisson bracket
on C∞(M) by {f, g} = ω−1(df, dg) ∈ C∞(M) for f, g ∈ C∞(M).

Let (q1, · · · , qn, p1, · · · , pn) be coordinates on T ∗Q. Then M =
T ∗Q and ω =

∑
i dpi ∧ dqi is a symplectic manifold. We can

generalize symbol calculus of pseudodifferential operators on Q

to the following structure on a general symplectic manifold.

A formal deformation quantization of a symplectic manifold (M, ω)
is an associative product ? on C∞(M)[[~]], such that
(i) f ? g = fg + ~

2{f, g}+
∑

i≥2 ~iCi(f, g),
(ii) Ci’s are bilinear local differential operators.
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Weyl algebra bundle

The Weyl algebra Wpoly
2n is a formal deformation quantization of

the symplectic vector space (R2n, ω).

To construct a deformation quantization of a symplectic mani-
fold (M, ω), we introduce a notion a Weyl algebra bundle.

Let FM be the symplectic frame bundle of TM . Define W =
FM ×Sp2n

W+V , where W+(V ) consists of power series on V
and the Moyal product extends naturally to define an associate
product on W+(V ).

We fix a symplectic connection ∇ on TM , which lifts to a con-
nection ∇̃ on W. Let R ∈ Ω2

(
M ; End(TM)

)
be the curvature of

∇. Then ∇̃2 is equal to 1
~[R̃,−] ∈ Ω2

(
M ; End(W)

)
, where R̃ is

obtained from R via the embedding sp2n ↪→ W+
2n.
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Fedosov connection and deformation quantiza-
tion

Fedosov proved that there exists a smooth section Ã ∈ Ω1(M ;W)
such that D = ∇̃+ 1

~[A,−] defines a flat connection on W, i.e.

D2 = 0 ∈ Ω2
(
M ; End(W)

)
.

This implies that the Weyl curvature Ω = R̃+ ∇̃(A)+ 1
2~[A, A] is

in the center of W since D2 = 1
~[Ω,−] = 0. Since the center of

W+
2n is given by C[[~]], Ω = −ω + ~ω1 + · · · is a closed 2-form in

Ω2
(
M ;C[[~]]

)
.

Fedosov also proved that the sheaf A~
D of flat sections with re-

spect to D is isomorphic to C∞M [[~]] as a C[[~]]-module sheaf.
Moreover, the induced product on C∞(M)[[~]] defines a star
product on M .
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Shuffle product

Let A be a graded algebra with a degree 1 derivation ∇. Recall

that the shuffle product between a0 ⊗ · · · ⊗ ap ∈ Cp(A) and b0 ⊗
· · · ⊗ bq ∈ Cq(A) is defined to be

(a0 ⊗ · · · ⊗ ap)× (b0 ⊗ · · · ⊗ bq) =

= (−1)deg(b0)(
∑

j deg(aj)) Shp,q(a0b0 ⊗ a1 ⊗ · · · ⊗ ap ⊗ b1 ⊗ · · · ⊗ bq),

where

Shp,q(c0 ⊗ · · · ⊗ cp+q) =
∑

σ∈Sp,q

sgn(σ) c0 ⊗ cσ(1) ⊗ · · · ⊗ cσ(p+q)

with sum over all (p, q)-shuffles in Sp+q.
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Cyclic cocycles on A((~))
D

Let A((~))
D := A~

D[~−1] be the kernel of a Fedosov connection
D = ∇+ 1

~[A,−] on W[~−1].

Definition 2 Define Ψi
2k ∈ Ωi(M)⊗C∞(M)

(
W⊗(2k−i+1)

)∗
(M) by

putting

Ψi
2k

(
a0⊗· · ·⊗a2k−i

)
:=

(
1

~

)i
τ2k

(
(a0⊗· · ·⊗a2k−i)× (1, A, · · · , A)

)
.

Proposition 3 For every chain a0⊗· · ·⊗a2k−i ∈ C2k+1−i

(
A((~))

cpt

)
the above defined Ψi

2k satisfies the following equality:

(−1)idΨi
2n−2k(a0 ⊗ · · · ⊗ a2k+1−i)

= Ψi+1
2n−2k(b(a0 ⊗ · · · ⊗ a2k+1−i))

+ Ψi+1
2n−2k+2(B(a0 ⊗ · · · ⊗ a2k+1−i)).
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A quasi-isomorphism

Definition 4 For every i, r with 2r ≤ i and every open U ⊂ M
define a morphism χi−2r

i,U : Ωi(U)((~)) → C
i−2r

(
A((~))

cpt

)
(U) by

χi−2r
i,U (α)(a0 ⊗ · · · ⊗ ai−2r) =

∫
U

α ∧Ψ2n−i
2n−2r(a0 ⊗ · · · ⊗ ai−2r),

where α ∈ Ωi(U)((~)) and a0, · · · , ai−2r ∈ A
((~))
cpt (U). Using these,

define morphisms χi : Ωi
M((~)) → TotiBC

•(A((~))) by

χi =
∑
2r≤i

χi−2r
i .

The χi have the following crucial property.

Proposition 5 For every α ∈ Ω•(U)((~)) with U ⊂ M open one
has

(b + B)χ•(α) = χ•(dα).
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Cyclic cohomology of A((~))
D

For every i, define a sheaf morphism

Qi : TotiBΩ•
M((~)) :=

⊕
2r≤i

Ωi−2r
M ((~)) → TotiBC

•(A((~)))
which over U ⊂ M open evaluated on forms αi−2r ∈ Ωi−2r(U)((~))
gives

Qi
U

( ∑
2r≤i

αi−2r

)
=

1

(2π
√
−1)n

∑
2r≤i

χi−2r,U(αi−2r).

Theorem 6 The above defined sheaf morphism

Q :
(
Tot•BΩ•

M((~)), d
)
→
(
Tot•BC

•(A((~))), b + B
)

is a quasi-isomorphism.
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Part III: Higher index theorem

We prove a higher index theorem by computing the pairing be-

tween a cyclic cocycle and the Chern-Connes character of a K0-

element.
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Pairing between cyclic cocycles and K-theory

Let A be a unital algebra over a field k and let e be an idempotent
of A. The Chern character Chk(e) is a b + B cycle defined by
the following formulas

Chk(e) = (ck, ck−1, · · · , c1) ∈ BC2k(A), where

ci = (−1)i2(2i)!

i!
(e−

1

2
)⊗ e⊗(2i) ∈ A⊗A

2i for 0 ≤ i ≤ k.

For a (b + B)-cocycle φ = (φ2k, · · · , φ0) and a projection e ∈ A,
define

〈φ, e〉 := 〈φ,Chk(e)〉 =
k∑

l=0

(−1)l2(2l)!

l!
φ2l

(
(e−

1

2
)⊗ e⊗ · · · ⊗ e

)
.

This construction descends to cohomology and yields the desired
pairing

HC2k(A)×K0(A) → k.
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Pairing on A((~))

Let M be a symplectic manifold and A((~))(M) be a Fedosov
deformation quantization of M . We apply the above construction
to obtain a pairing between the cyclic cohomology HC•(A((~))

cpt )

and the K0 group of A((~))
cpt (M).

An element in K0

(
A((~))

cpt

)
can be represented by a pairing of

projections P0, P1 in Mk

(
A((~))

)
for some k ≥ 0 such that P0−P1

is compactly supported.

The pairing between φ = (φ0, · · · , φ2k) a b + B cocycle and e =
(P1, P2) a representative of a K-group element of A((~))

cpt is defined
as

〈φ, e〉 := 〈φ, P1〉 − 〈φ, P2〉.
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A special element

In the following talk of this part, we will assume that M is a

compact symplectic manifold, and consider the special element

1 ∈ K0(A
((~))
cpt (M)). We show how to compute its pairing be-

tween a cyclic cocycle Q(α) with α ∈ Tot•BΩ•
M((~)).

〈Q(α),1〉 =
k∑

l=0

1

(2π
√
−1)n

∫
M

α2l ∧Ψ2n−2l
2n−2l(1).

We are reduced to compute the expression of Ψ2n−2l
2n−2l(1), for

0 ≤ l ≤ n.
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Hochschild cohomology and Lie algebra cohomol-
ogy

Let A be a unital algebra, and glN(A) be the Lie algebra of
N ×N-matrices with coefficients in A. There is a chain map φN

from the Hochschild cochain complex C•(A) to the Lie algebra
cochain complex C•

(
glN(A); glN(A)∗

)
:

φN(c)
(
(M1 ⊗ a1)⊗ · · · ⊗ (Mk ⊗ ak)

)
(M1 ⊗ a1)

=
∑

σ∈Sk

sgn(σ)c(a0 ⊗ aσ(1) ⊗ · · · ⊗ aσ(k)) tr(M0Mσ(1) · · ·Mσ(k)).

We define ΘN,2k to be φN(τ2k) ∈ C2k
(
glN(W2n); glN(W2n)

∗
)
. It

is easy to check that Ψ2n−2k
2n−2k(1) =

(
1
~
)2n−2k 1

(2n−2k)!Θ2n−2k(A ∧
· · · ∧A)(1).
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Chern-Weil maps

Proposition 7 For any k ≤ n, ΘN,2k(1) is a cocycle in the rela-

tive Lie algebra cohomology complex C2k
(
glN(W2n), glN ⊕ sp2n

)
.

Recall that Fedosov connection D is a flat connection on the
Weyl algebra bundle W. Accordingly, we have a flat connection
on the corresponding Aut(Wpoly

2n ) “principal” bundle. It is known
that all derivations of Wpoly

2n are inner, in fact there is a short
exact sequence of Lie algebras

0 → C[~, ~−1] → Wpoly
2n → Der

(
Wpoly

2n

)
→ 0.

By Chern-Weil theory, we have a chain map

ρD : C•
(
glN(W2n), glN ⊕ sp2n

)
→ Ω•(M)((~)),

and ρD(ΘN,2k(1)) = Θ2n−2k(A ∧ · · · ∧A)(1).
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Lie algebra Chern-Weil theory

Using Lie algebra cohomology and Chern Weil theory, we have
reduced the computation of 〈Q(α),1〉 to understand the Lie alge-
bra cocycles ΘN,2k(1) ∈ C•

(
glN(W2n), glN ⊕ sp2n

)
for 0 ≤ k ≤ n.

Let g be a Lie algebra and h a Lie subalgebra with an h-invariant
projection pr : g → h. The curvature C ∈ Hom(∧2g, h) of pr is
defined by C(u ∧ v) := [pr(u),pr(v)] − pr([u, v]). Let (S•h∗)h be
the algebra of h-invariant polynomials on h graded by polynomial
degree. Define a homomorphism σ : (S•h∗)h → C2•(g, h) by

σ(P )(v1 ∧ · · · ∧ v2q)

=
1

q!

∑
σ∈S2q,

σ(2i−1)<σ(2i)

(−1)σP
(
C(vσ(1), vσ(2)), · · · , C(vσ(2q−1), vσ(2q))

)
.
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Characteristic classes

Recall the following invariant polynomials on the Lie algebras glN
and sp2n: on glN we have the Chern character

Ch(X) := tr (expX) , for X ∈ glN .

On sp2n, we have the Â-genus:

Â~(Y ) := det

(
~Y/2

sinh(~Y/2)

)1/2

, for Y ∈ sp2n.

With this, we can now state:

Proposition 8 In H2k
(
glN(W2n), glN⊕sp2n

)
we have the identity

[ΘN,2k] = σ((Â~ Ch)k)

for k ≤ n and N � 0.
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Algebraic higher index theorem

In summary, using Lie algebra Chern-Weil theory, we have proved

the following theorem.

Theorem 9 (Nest-Tsygan, Pflaum-Posthuma-Tang) For a se-

quence of closed forms α = (α0, · · · , α2k) ∈ Tot2k BΩ•(M)((~))
and two projects P1, P2 in A((~)) with P1 − P2 compactly sup-

ported, one has

〈Q(α), P1 − P2〉

=
k∑

l=0

1

(2π
√
−1)l

∫
M

α2l ∧ Â(M)Ch(V1 − V2) exp
(
−

Ω

2π
√
−1~

)
,

where V1 and V2 are vector bundles on M determined by the

zero-th order terms of P1 and P2.
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Part IV: Formal and analytic index theorem

We connect the algebraic higher index theorem with Connes-

Moscovici’s higher index theorem for elliptic differential opera-

tors.
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Alexander-Spanier cohomology

Let O be the sheaf C∞Q of smooth functions on Q.

Define Ck
AS(O)(U) ∼= O�̂k+1

(
Uk+1

)
/J

(
∆k+1(U), Uk+1

)
, where

J
(
∆k+1(U), Uk+1

)
denotes the ideal of sections of O�̂k+1 over

Uk+1 which vanish on the diagonal ∆k+1(U).

And define δ : Ck
AS(O)(U) → Ck+1

AS (O)(U) by the formula

δf =
∑k

i=0(−1)i δif, where

δif(x0, . . . , xk+1) = f(x0, . . . , xi−1, xi+1, . . . , xk+1).

We have a sheaf cochain complex
(
C•AS(O), δ

)
. The Alexander–

Spanier cochain complex of O is defined by C•AS(O) := Γ(Q, C•AS(O))
the complex of global sections with the differential δ.
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Cyclic cocycles on Ψ−∞(Q)

Let Ψ−∞(Q) be the algebra of smoothing pseudo-differential op-

erators on Q.

Given an antisymmetric Alexander–Spanier cocycle f of degree

k, Connes-Moscovici introduced a cyclic cocycle on Ψ−∞ by the

expression

τf(A0, · · · , Ak)

= (−1)k
∫
Qk+1

tr
(
R0(x0, x1) · . . . ·Rk(xk−1, xk)

)
f(x0, . . . , xk),

where Ri is the distribution kernel of Ai.
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Analytic higher index

Let D be an elliptic differential operator on a compact man-
ifold Q with principal symbol a. a defines an element [a] in
K1(C

∞(S∗Q)), where S∗Q is the sphere bundle over Q.

By the exact sequence of K-groups, we have a map

∂ : K1

(
C∞(S∗Q)

)
→ K0

(
ΨDO−∞(Q)

)
,

which is the index map. Therefore, R := ∂([a]) is a difference
of two pseudodifferential projections of order −∞ on Q,and is
homotopic to the graph projection of D .

Given an antisymmetric Alexander–Spanier cocycle f of degree
2k, Connes-Moscovici defined

indf(D) = τf(R).
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Generalized traces on deformation quantization

Let Tr be a trace functional on A((~))
cpt (essentially unique). For

f0, f1, . . . , fk ∈ C∞(U)((~)) with U ⊂ M open and a0, . . . , ak ∈
A((~))

cpt (U), the formula

χTr(f0 ⊗ f1 ⊗ . . .⊗ fk) (a0 ⊗ . . .⊗ ak) := Tr
(
f0 ? a0 ? . . . ? fk ? ak

)
defines a chain map χTr : C•AS

(
C∞M((~))

)
→ C•

(
A((~))

cpt

)
.

We have the following commutative diagram of chain maps,

TotBΩ•
M((~)) TotBC•

(
A((~))

cpt

)

C•λAS

(
C∞M((~))

)

-
Q

6

λ

���
���

���
���

��*

χTr
.
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Asymptotic symbol calculus

The symbol calculus for pseudo-differential operators on Q

Op : Symm(U) → ΨDOm(U) ⊂ Hom
(
C∞cpt(U), C∞(U)

)
,(

Op(a)f
)
(x) :=

∫
T ∗xQ

∫
Q

e−i〈ξ,Exp−1
x (y)〉χ(x, y)a(x, ξ)f(y) dy dξ,

naturally defines a deformation quantization A((~))
op on T ∗Q. Fur-

thermore, the operator trace tr on Ψ−∞(Q) defines a trace func-

tional on A((~))
op .

Under the above symbol calculus, we have

indf(D) = τf(R) = χTr(f)(r) = Q ◦ λ(r),

where r is the asymptotic symbol of R
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Analytic higher index theorem

In summary, by the asymptotic symbol calculus and the algebraic

higher index theorem, we have proved the following theorem.

Theorem 10 (Connes-Moscovici) For an elliptic differential op-

erator D on a riemannian manifold Q and an Alexander-Spanier

cohomology class [f ] of degree 2k with compact support the

localized index is given by

ind[f ](D) =
1

(2π
√
−1)k

∫
T ∗Q

f0df1∧ . . .∧df2k∧ Â(T ∗Q)Ch(σpr(D)).
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Generalization to orbifold

We can extend the above constructions on manifolds to orbifolds.

Theorem 11 (Pflaum-Posthuma-Tang)Let D be an elliptic pseu-
dodifferential operators on a reduced orbifold X = M/Γ, and [f ]
be a 2j orbifold cyclic Alexander-Spanier cochomology class.

ind[f ](D) =
∑

<γ>

j∑
r=0

∫
˜T ∗Mγ/C(γ)

1

(2π
√
−1)j−rmγ

λ̃
2j−2r
γ (f) ∧ Â( ˜T ∗Mγ/C(γ)) Chγ(σpr(D))

Chγ(λ−1N)
,

where C(γ) is the centralizer of γ, Chγ is the γ-twisted Chern
character, Chγ(λ−1N) is the localization data about the normal
bundle of the γ-fixed point in T ∗M , and mγ is the order of local
isotopy group.
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Strategy for the proof of orbifold higher index
theorem

The route we take to establish the orbifold index theorem is

analogous to what we have done on manifolds. There are several

new ingredients.

• Present an orbifold by a proper étale groupoid, and work with

deformation quantization of the corresponding groupoid algebra.

• Construct cyclic cocycles on the crossed product algebra Wpolyo
Γ for a finite group Γ.

• Geometry of groupoids and orbifolds, in particular the geometry

of Burghelea spaces.
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