Hopf-cyclic cohomology in braided monoidal
categories

Abstract

We start with a Hopf algebra (H, m, n, A, €, 6, o)
in a strict symmetric braided monoidal abelian
category (C, ®, I, 1), and define a Hopf cyclic
theory for H. As a non-trivial example we
develop a Hopf cyclic theory for super Hopf
algebras. At the end we give some results for
non-symmetric categories.

This is joint work with M. Khalkhali.



1 Preliminaries

Definition 1.1. (monoidal categry)
A monoidal category (C,®,1,a,l,r) consists of a cat-

egory C, a functor ® : C x C — C, an object I € C
(called the unit object), and natural isomorphisms

a=aspc:A®(B®C)— (A® B)®C,

=14 IT®RA— A, r=rps. AR I — A,

such that the following diagrams commute

(A® B)®(C)®
/ \\
(AR (B () ® (A® B)® (C® D)
| |
AR (B C)® D) AR (B® (C®D))
(A I)® B A® (I ® B)

\/

A®B



Definition 1.2. (braided monoidal category)

A braided monoidal category, is a monoidal cat-
egory C endowed with a natural isomorphisms

¢A’BZA®B—>B®A,

called braiding such that the following diagrams
commute

A® (BeC)-“~(BR(C)® A

A®(B®C) (C®A)®B

A®(C®B)-“~(A®C)® B



A braided monoidal category is called symmetric
if

YapoYpA=id,

for all objects A and B of C.( Sometimes we just
write % = id )

It is well known that any braided monoidal cat-
egory is equivalent to a strict one in which a,/ and
r are just equalities and the above axioms are re-
duced to the following ones:

(A@B)®C=A®(BaC),
T@A=A®T=A
Yapec = (1dp @ Yac)(Yap ®ide),
Vaepc = (Yac ®idp)(ida @ ¥p o),

for all objects A,B,C of C.



Example 1.1.

Let (H, R = RY®RY) be a quasitriangular Hopf al-
gebra and C be the category of all left H-modules.
Then C is a braided monoidal abelian category,
which is symmetric if and only if R~' = R® @ RW,
Here the tensor structure is defined by

hes (v@w)=hY>oeh? > w,

and the braiding map Yy by

Yrew( @ w) = (R >we® RY > v),

for any V and W in C, where > denotes the action
of H.



Example 1.2. (category of super vector spaces)

As a very special case of Example (1.1), let H =

CZs, with the non-trivial quasitriangular structure
R =RW @ R® defined by

1
R::(§)(1®1+1®g+g®1—g®g),

where ¢ is the generator of the cyclic group Zs,.

The category C = Zs- Mod then is the category of
super vector spaces. The braiding map Y.y for
any V =V, Vi and W =W, ® W; in C acts as below

Yrew(v ©w) = (=11 (w @ v).

Remark 1.1.

One can extend Example (1.2) to CZ, for any n > 2
which provides a good source of non-symmetric
braided monoidal categories.



Example 1.3. (Yetter Drinfeld category)

Let H be a Hopf algebra over a field k¥ with comul-
tiplication Ah = h(Y @ h? and the bijective antipode
S.

A left-left Yetter Drinfeld (YD) H-module consist

of
A vector space V', a H-module structure on V

HeV -V
h®v— hv,

a H-comodule structure on V

V-HQV

U V1) O V),

and a compatibility (YD) condition

(hv)(_l) @ (h?})(o) = h(l)v(_l)S(h(?’)) @ h(2)2}(0).



The category YD of all YD H-modules is a braided
monoidal abelian category with the braiding map

Vvew (v @ w) = v_Hw @ v().

This category is in general not symmetric and the
inverse of the braiding is

braw(w ®v) = v0) ® S™(vy))w.



Definition 1.3. (Braided Hopf algebra)

Let (C, ®, I, 1)) be a braided monoidal category. A
Hopf algebra (H,m,n,A,¢,S) in C consists of:

An object H € objC and morphisms m : H ® H —
H, n:I—-H,A:H—-HKH, K6 ec:H—1TIandS:
H— H s.t.

m(id @ m) =m(m ® id), associativity
m(n ®id) = m(id ®n) =id, unit
(id @ A)A = (A®id)A, coassociativity
(e ®id)A = (id ® e)A =1id, counit
Am =(me@m)(id ® Y @ id)(A ® A), compatibility
An=n®n, em=ec®Re, en=1ids
m(S ®id)A = m(id ® S)A = ne. antipode



Example 1.4. (super Hopf algebra)

Any Hopf algebra in Z,-Mod is a super Hopf al-
gebra.

Example 1.5. (T(V) in #YD)

For any V in YD the Yetter Drinfeld category
attached to a given Hopf algebra H, the tensor
algebra T(V) is a braided Hopf algebra in #)D
with the comultiplication and counit defined by
Alv)=10v+v®1 and ¢(v) =0 for all v in V.
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Definition 1.4. (H-modules and comodules)
Let H be a braided Hopf algebra in C.

- A right H-module M is an object in C equipped
with a morphism ¢,; : M ® H — M, called H action,
such that

(¢)(idy @ mur) = (6)(¢ © idr),
(9)(idy @ mur) = idyy.

- A left H-comodule M is an object in C equipped
with a morphism p,; : M — H ® M, called H coac-
tion such that

(Ag @ idar)(p) = (idu @ p)(p),
(er @ idn)(p) = (idy @ €x)(Ymm)(p) = tdy.
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Definition 1.5. (stable anti Yetter Drinfeld H-module)

A right-left braided stable anti Yetter Drinfeld H-
module in C is an object M in C such that:

— M is a right H-module via an action ¢, : M@ H —
M

— M is a left H-comodule via a coaction p); : M —
HeM

— M satisfies the braided anti Yetter Drinfeld con-
dition 1.e

(p)(@) = [(m)(S@m)@¢||(Yge2, HRidy@idp ) (id e @y n@idp)

(¢d ee®id @ 1) (idH@@bM,H@idH@z)] [p@AQ} :
11)

- M 1is stable i.e

(&) (WVmar)(p) = idyy.
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Definition 1.6. (H-module-coalgebra)

A quadruple (C, A¢, €c, ¢¢) is called a left (braided)
H-module-coalgebra in C if (C,Aq,ec) is a coalge-
bra in C, and C is a left H-module via an action
¢c : H® C — C such that

¢c is a coalgebra map in C i.e.

Acpc = (¢c @ ¢c)(idg @ Yo @ide)(Ag @ Ac),

EcPc =g R EC.

Now we are going to define a cocyclic module for
any triples (H,C, M), where H is a Hopf algebra,
C' is a H-module coalgebra and M is a SAYD H-
module, all in C.

13



Let C"=C"(C,M) := M @ C""', n > 0.

We define faces §; : C"! — (", degeneracies o; :
C"tl — O™ and cyclic maps 7, : C" — C" by

5 — { (1ars Lei, Ac, 1on-in1) 0<i1<n
Z (1M7 ¢C,C”)(1Ma (/bCa 10")(¢H,M7 1C”+1)<pM7 AC? 10"_1) L=mn

o, — (1M; 1Cz‘+1, EC, 1Cn—i), 0 < ) <n
Ty = (Lars oon)(Lars @y Lon) (Wmars Lon)(pars Lontt).

Proposition 1.1.

If C is a symmetric monoidal abelian category, then
(C*,0;,04,T) is a para-cocyclic module in C.
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Now let C% = C%H(C,M) := M @y C"" n >0,

with induced faces, degeneracies and cyclic maps
denoted by the same letters ¢,, o; and 7,.

Theorem 1.1. (main Theorem)

If C is a symmetric braided monoidal abelian cate-
gory then, (C%,6;, 0; , 7) is a cocyclic module in C.

Example 1.6.

As an special case, if we put ' = H as a H-module
coalgebra over itself via my for module structure
and Ay for coalgebra structure, and put M = 71,
then the cyclic theory in Theorem (1.1) reduces to a
braided version of Connes-Moscovici’s Hopf cyclic
theory in any symmetric abelian braided monoidal
category C. We will explain this example in more
details, in the next section.
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2 Braided version of Connes-Moscovici’s Hopf cyclic theory

Let C be a braided monoidal abelian category and
H be a Hopf algebra in C.

Definition 2.1. (character, co-character and modu-
lar pair)

A character for H is a morphism 6 : H — [ in C
which is an algebra map i.e

m=0®0 and on=1id;.

A co-character for H is a morphism ¢ : [ — H which
is a coalgebra map i.e

Ac=c®oc and co=1dj.

A pair (J,0) consisting of a character and a co-
character is called a modular pair if

0o = ’id].
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Definition 2.2. (J-twisted antipode)

If 6 is a character for H, the J-twisted antipode

~

S is defined by

~

S:=(0®S5)A

Proposition 2.1.
If S is a -twisted antipode for H then

Sm =mi(S @ S),
gﬁ =1,
AS = (S ® S)A,
652(5, 5§:5, §a:50,
m(So @ o) =m(So® o) =n.

17



Definition 2.3. (braided modular pair in involution
(BMPI))

A modular pair (6,0) for H is called a modular pair
in involution if

m((id ® m)(So @ S’ ® o)) = id.

Example 2.1. (°1;)

One can easily check that, if I is considered as a
right H-module via a character 0

br=6T@QH=H—1I,

and as a left H-comodule via a co-character o

pr=0:1—-HXI=1,

then ?J; is a braided SAYD module over H if and
only if (§,0) is a braided MPI.
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Theorem 2.1. (braided version of Connes-Moscovici’s
Hopf cyclic theory)

Suppose (H, (9,0), g) is a braided Hopf algebra in
a symmetric braided monoidal abelian category C,
where (6,0) is a braided MPI and S is the braided
twisted antipode as above.

If we put (C; ¢c, Ac) = (H; my, Ay), and M =15 as
in example (2.1), then the theory provided in The-
orem (1.1) reduces to the following one

CH)=1 and C"(H)=H", n>1

with faces degeneracies and cyclic maps given by

(1,1,1,...,1) ;=
s_ )1, A 1.1 1<i<n—1
! ithposition

(1,1,..,1,0) i=n
o= (1,1,.., € J1,1..1), 0<i<n

(i+1)thposition
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- id] n=>0
T ) (AT1S, Ly, o) n £ 0

Here by m, we mean, m; :=m, and for n > 2

my, = mpn = (m,m, ...,m)F,(1),

n t‘mrnes
where
n—1
fn(¢) = (1Hjawaw7°“7¢,a 1Hj)°

J=1 n—j times
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A NON-TRIVIAL EXAMPLE:

3 Hopf cyclic theory for super Hopf algebras

Definition 3.1. ( super Hopf algebra)

A Hopf algebra H in Z,-Mod is called a super Hopf
algebra. Thus:

— H is a super vector space H = Hy ® H,.

— H is a super algebra i.e. |ab| = |a|+ |b| where a and
b are homogeneous elements of H. Here |a| denotes
the degree of a for any homogeneous element a in
H.

— H is a super coalgebra i.e. |a| = |aq)| + |a)]| for
any homogeneous element a of H and for any term
a(1) & ag) in A(CL) = a(1) @ a)-

— H is a super bialgebra i.e.we have the compati-
bility condition:

A(ab) = (ab)(l) & (ab)(g) = (—1)‘“(2)’“7(1)‘ (0(1)5(1) & a(g)b(g)).

— the antipode S is degree preserving i.e. |S(a)| = |q
for all homogeneous elements a in H.

21



Definition 3.2. (BMPI for super Hopf algebras)

Consider a super Hopf algebra H = Hy ® H; as
in definition (3.1)

— A character for H is an algebra map 6 : H — C
which is degree preserving i.e. d(a) =0 for all a in
Hy .

— A grouplike element (co-character) in H is a group
like element o of H which is of degree 0, i.e. 0 € H,,.

— A twisted antipode is a usual twisted antipode
S which is degree preserving i.e. |S(a)| = |a| for all
homogeneous elements a in H.

— The pair (6, 0) is called a modular pair if §(¢) = 1¢,
and is called a modular pair in involution (MPI) if

~

in addition oc71(S)%0 = id.
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Theorem 3.1. (Hopf cyclic theory for super Hopf
algebras)

Consider a super Hopf algebra H = Hy® H; with an
MPI (6, 0)

then the complex, faces, degeneracies and cyclic
maps of theorem (2.1) can be written as below

CH)=C and C"(H)=H", n>1

(17 h17 h27 . 7hn—1) 1 =10
Si(hy ooy hn1) = % (R, hoy o Y B By ) 1<i<n—1
(h17h27 '7hn—170) 1=

O-i(hla h27 ey hn—i—l) - 8(hi+1) (h17 h27 ey hia hi+27 ey hn+1)7 0<i1<m

23



Tulhn, oy oo b)) = B (S(B)ho, SR D)ha, ..., S(B Ry, S(Y)a),

where h;’s are homogeneous elements and

n (1) (D) py 17, +1)
hy [+t A D (R )

9

1=1

—_

n—

6 |h2‘+|h3|+ +|hn j+1|)

:1

.
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APPLICATION:
Let g = gy & g1 be a super Lie algebra, let

._ T(g)
/\g " (a®@b+ (=1l a)’

be the exterior algebra of g and

T(g)
([a,0] —a® b+ (—1)llblp @ a)’

H=1U(g) =

be the enveloping algebra of g.

U(g) is a super Hopf algebra and

Theorem 3.2.

HP;,(U(g) = @ H;(g; Cy).

i=%(mod 2)
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4 Connes-Moscovici’s Hopf cyclic theory in non-symmetric
monoidal categories

Theorem 4.1. (para-cyclic structure for non-symmetric

case)

Suppose (H, (6,0), S) is a braided Hopf algebra in
a braided abelian monoidal category C, where (0, 0)
is a BMPI and S is the braided twisted antipode as
in definitions (2.3) and (2.2). If we define complex
C"(H), faces ¢;, degeneracies o; and cyclic maps 7,
as below, then we will have a para-cyclic structure.

CH)=1 and C"(H)=H", n>1

[ (n,1,1,...,1) i =
(1,1,..,1, A ,1,1,..1) 1<i<n-—1

0; ithposition
(1,1, 1,0) i—n
o= (1,1,..., € 1,1.,1), 0<i<n

(i+1)thposition
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id] n=>0
Tn = 1N
(mn)(A" 15, 1Hn—1,0') n# 0

Here by m, we mean, m; := m, and for n > 2

my, == mpyn = (m,m, ..., m)F,(¥),

n times
where
n—1
fn(w) = (1Hj7,¢7¢7"'7¢,7 1Hj)'

J=1 n—j times
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Remark 4.1.

In general we have

n+l _ n
Tn - wH(n—l)’Ha

which is equal to id if ¢* = id.
Remark 4.2.

The above procedure of eliminating the symme-
try condition can be extended to the more general
case of braided triples in Theorem (1.1).
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