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*+x Eilnstein-Hilbert Action and Area +x

Let M be a compact Riemannian spin manifold
with Dirac operator .

Observation (Connes '96):

We have
Fp=t2 = e, [ w(@)\/g(@)d",

where + is the Dixmier trace and « is the scalar
curvature.




Observation (Connes '‘96):

In QFT ds = lD‘l iSs the free propagator for
Fermions. Therefore:

e ds has the physical dimension of a length;

e fds? can be interpreted as the area of M.




Consequence:

When dim M = 4 the Einstein-Hilbert action,

| r@)s(@d*a.

yvields a differential geometric expression of the
area of M.




*+x Lower Dimensional VVolumes xx

Let (M",g) be a compact Riemannian manifold.

Question:

For any £k = 1,2,....,n — 1 can we also give
sense to the k£'th dimensional volume of M7




Answer (RP ‘07):

The answer uses 2 main tools:

e Noncommutative residue trace of WodzicKi
and Guillemin;

e Quantized calculus of Connes.




** Noncommutative Residue xx*
(Wodzicki, Guillemin)

e [race on the algebra of WDOs on a compact
manifold M"™ independently found by Wodzicki
and Guillemin.

e Numerous applications and generalizations,
e.d., this is an essential tool in the framework
for the local index formula in NCG of Connes-
Moscovici.

e Elementary construction in terms of the log-
arithmic singularity of the kernel near the di-
agonal (Connes-Moscovici).




Let U C R™ be a local chart.

Symbols of order m:

e Smooth functions p(x,£) on U x R™ with an

asymptotic expansion,

p(ZC,f) ~ Z pm—j(xag)a

720
pm—j(xatf) — tm_me—j(maf) vt > 0.




W DOs of order m:

e To a symbol p(z, &) we associate the operator
P = p(x,D) from C*(U) to C*°(U) such that

Pu(z) = 2m)™" [ @8 p(a, £)a(e)de.

e A WDO of order m on the manifold M is
a continuous operator P : C°°(M) — C°°(M)
which is locally of the form:

P = p(z,D) + R,

with p(x, &) symbol of order m and R smooth-
ing operator.




Logarithmic singularity:

e The kernel kp(xz,y) of P has a behavior near
the diagonal y = « of the form:

kp(z,y) =
> gz, z—y)—cp(z)log lz—y[+O(1),
—(m+n)<I<0

where

ay(z, ty) = tlay(z,y) VYt >0,

cp@) =@M " [ b€t

Lemma. The coefficient ¢p(x) makes sense glob-
ally on M as a density which is functorial with

respect to diffeomorphisms.




Noncommutative residue:

e | he nhoncommutative residue of P is

Res P .= /M cp(x).

Proposition (Guillemin, Wodzicki). The fol-

lowing hold:

1. Locality: Res P =0 if ordP < —n.

2. Invariance: we have Res;; ¢*P = Res); P
for any diffeomorphism ¢ : M’ — M.

3. Trace: Res P{P, = Res P>P;.




*+ Quantized Calculus *x
(Connes)

e /{ — separable Hilbert space.

Classical Quantum

Complex variable Operator on H
Real variable Selfadjoint operator
Infinitesimal variable Compact operator

Infinitesimal of order | Compact operator 1T s.t.
a >0 pp(T) = O(k™%)

Integral Dixmier trace +
e Here u.(T) := (k + 1)'th eigenvalue of |T.

o If ' € IC+, then:

1
log N

3 uk(T)_>L=;»7[T=L.
k<N




e For H = L2(M) we have:

Theorem (Connes ‘88). Let P be a WDO of
order m, m < 0.

1. P is an infinitesimal of order @

2. If ordP = —n, then

1
Y[P:—ResP.
mn

Consequence:

We can integrate any WDQO, even if it is not
an infinitesimal of order < 1, by setting

1
7[P .— ~ Res P.
mn




*+x Lower dimensional volumes »x
(n even, M spin)

e Assume M has even dimension and is spin
with Dirac operator .

e As (D7) = o_n[(P?) 2] = |¢| " we get

cjp_n(az) = n.

| 1@ s@da.

Thus )" allows us to recover the Riemannian
volume form.




Noncommutative length element:

e It is defined to be

1
ds = cnlD_l, Cn = \/27rl_(g + 1)n.

e \We have

7[ds” — Volg M.




Lower dimensional volumes:

eFork=1,...,nthe kth dimensional volume is

Vol u = fdsk.

e [ he area of M is

Areag M = VOI§2) M = 7[d32.




Proposition (RP ‘07).
1. Volgk)M vanishes when £ is odd.

2. When k is even, we have

VoI M = v, || v i(@)/g(@)d",

- k
Vn,k — E(277)/14;_77“_(71{4_ 1)n7
’ i r(j + 1)
where ~v,,_.(x) is a universal polynomial in com-
plete contractions of the covariant derivatives

of the curvature tensor depending only on n—k.




e Forn— Lk =20,2,4 we have

@ =1, wa) =22,
1

Ya(2) = 75 (5k(2)? = 8lp()[ = T|R(2)[?).

where R denotes the curvature tensor, p is the
Ricci tensor and k is the scalar curvature.




*+x Lower dimensional volumes *x
(n even, general case)

e In general the kth dimensional volume is

Volgk)M .— { Unk Javr Yn—k(x)y/g(x)d"x ?f k ?S even,
0 if kis odd.

e [ his definition is purely differential geometric
and does not make reference to noncommuta-
tive geometry anymore.




Examples:

o IfdimM = 4, then

Areag M = 967“/7 k(z)\/g(x)d*x.

o If dimM = 6, then

AreagM —
o [ (55>~ 8lp(@) 2= TIR@) ) g(@)dx.

6912OW




*+ Lower dimensional volumes (n odd) *x

e Fork=1,...,n the kth dimensional volume is

VolF) ar — V;%k It Yn—k(x)y/g(x)d™z if k is odd,
’ 0 if k is even,

e [ he length of M is

Length, M := Volgl)M =4 /M’Yn—l(m) g(x)d" .




Examples:

o If dim M = 3, then

—1
Length, M = —72 g/M k(z)\/g(z)d>z.
iy

o If dimM =5, then

1 5/ 1572
Length, M = 18002 \/ -

| (55(@)2 = 8lp(@)2 = 7|R@)2)/g(2)d%.




