Noncommutative Geometry and Lower Dimensional Volumes in Riemannian Geometry

Raphaël Ponge (University of Toronto)
$\star \star$ Einstein-Hilbert Action and Area **

Let M be a compact Riemannian spin manifold with Dirac operator $\not D$.

Observation (Connes '96):
We have

$$
f \not D^{-n+2}=-c_{n} \int_{M} \kappa(x) \sqrt{g(x)} d^{n} x
$$

where f is the Dixmier trace and κ is the scalar curvature.

Observation (Connes '96):
In QFT $d s:=\not D^{-1}$ is the free propagator for Fermions. Therefore:

- $d s$ has the physical dimension of a length;
- $f d s^{2}$ can be interpreted as the area of M.

Consequence:

When $\operatorname{dim} M=4$ the Einstein-Hilbert action,

$$
\int_{M} \kappa(x) \sqrt{g(x)} d^{4} x
$$

yields a differential geometric expression of the area of M.

** Lower Dimensional Volumes $\star \star$

Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold.

Question:
For any $k=1,2, \ldots, n-1$ can we also give sense to the k 'th dimensional volume of M ?

Answer (RP ‘07):

The answer uses 2 main tools:

- Noncommutative residue trace of Wodzicki and Guillemin;
- Quantized calculus of Connes.
** Noncommutative Residue $\star \star$ (Wodzicki, Guillemin)
- Trace on the algebra of $\Psi D O$ s on a compact manifold M^{n} independently found by Wodzicki and Guillemin.
- Numerous applications and generalizations, e.g., this is an essential tool in the framework for the local index formula in NCG of ConnesMoscovici.
- Elementary construction in terms of the logarithmic singularity of the kernel near the diagonal (Connes-Moscovici).

Let $U \subset \mathbb{R}^{n}$ be a local chart.

Symbols of order m:

- Smooth functions $p(x, \xi)$ on $U \times \mathbb{R}^{n}$ with an asymptotic expansion,

$$
\begin{gathered}
p(x, \xi) \sim \sum_{j \geq 0} p_{m-j}(x, \xi) \\
p_{m-j}(x, t \xi)=t^{m-j} p_{m-j}(x, \xi) \quad \forall t>0
\end{gathered}
$$

$\Psi D O$ s of order m :

- To a symbol $p(x, \xi)$ we associate the operator $P=p(x, D)$ from $C_{c}^{\infty}(U)$ to $C^{\infty}(U)$ such that

$$
P u(x)=(2 \pi)^{-n} \int e^{i\langle x, \xi\rangle} p(x, \xi) \widehat{u}(\xi) d \xi
$$

- A $\Psi D O$ of order m on the manifold M is a continuous operator $P: C^{\infty}(M) \rightarrow C^{\infty}(M)$ which is locally of the form:

$$
P=p(x, D)+R
$$

with $p(x, \xi)$ symbol of order m and R smoothing operator.

Logarithmic singularity:

- The kernel $k_{P}(x, y)$ of P has a behavior near the diagonal $y=x$ of the form:

$$
\begin{aligned}
& k_{P}(x, y)= \\
& -(m+n) \leq l \leq 0
\end{aligned} a_{l}(x, x-y)-c_{P}(x) \log |x-y|+\bigcirc(1)
$$

where

$$
\begin{gathered}
a_{l}(x, t y)=t^{l} a_{l}(x, y) \quad \forall t>0 \\
c_{P}(x)=(2 \pi)^{-n} \int_{|\xi|=1} p_{-n}(x, \xi) d \xi
\end{gathered}
$$

Lemma. The coefficient $c_{P}(x)$ makes sense globally on M as a density which is functorial with respect to diffeomorphisms.

Noncommutative residue:

- The noncommutative residue of P is

$$
\operatorname{Res} P:=\int_{M} c_{P}(x)
$$

Proposition (Guillemin, Wodzicki). The following hold:

1. Locality: Res $P=0$ if $\operatorname{ord} P<-n$.
2. Invariance: we have $\operatorname{Res}_{M^{\prime}} \phi^{*} P=\operatorname{Res}_{M} P$ for any diffeomorphism $\phi: M^{\prime} \rightarrow M$.
3. Trace: Res $P_{1} P_{2}=\operatorname{Res} P_{2} P_{1}$.

- $\mathcal{H}=$ separable Hilbert space.

Classical	Quantum
Complex variable	Operator on \mathcal{H}
Real variable	Selfadjoint operator
Infinitesimal variable	Compact operator
Infinitesimal of order	Compact operator T s.t. $\alpha>0$
$\mu_{k}(T)=O\left(k^{-\alpha}\right)$	
Integral	Dixmier trace f

- Here $\mu_{k}(T):=(k+1)$ 'th eigenvalue of $|T|$.
- If $T \in \mathcal{K}_{+}$, then:

$$
\frac{1}{\log N} \sum_{k<N} \mu_{k}(T) \rightarrow L \Longrightarrow f T=L
$$

- For $\mathcal{H}=L^{2}(M)$ we have:

Theorem (Connes '88). Let P be a $\Psi D O$ of order $m, m<0$.

1. P is an infinitesimal of order $\frac{|m|}{n}$.
2. If $\operatorname{ord} P=-n$, then

$$
f P=\frac{1}{n} \operatorname{Res} P
$$

Consequence:

We can integrate any $\Psi D O$, even if it is not an infinitesimal of order ≤ 1, by setting

$$
f P:=\frac{1}{n} \operatorname{Res} P
$$

```
** Lower dimensional volumes **
    ( }n\mathrm{ even, }M\mathrm{ spin)
```

- Assume M has even dimension and is spin with Dirac operator $D D$.
- As $\sigma_{-n}\left(\not D^{-n}\right)=\sigma_{-n}\left[\left(\not D^{2}\right)^{-\frac{n}{2}}\right]=|\xi|^{-n}$ we get

$$
c_{\not D D^{-n}}(x)=n \cdot \frac{(2 \pi)^{-\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)} \sqrt{g(x)} d^{n} x .
$$

- From this we deduce that, for any $f \in C^{\infty}(M)$,

$$
f f \not D^{-n}=\frac{(2 \pi)^{-\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)} \int_{M} f(x) \sqrt{g(x)} d^{n} x .
$$

Thus $\not D^{-n}$ allows us to recover the Riemannian volume form.

Noncommutative length element:

- It is defined to be

$$
d s:=c_{n} D^{-1}, \quad c_{n}=\sqrt{2 \pi} \Gamma\left(\frac{n}{2}+1\right)^{\frac{1}{n}} .
$$

- We have

$$
f d s^{n}=\operatorname{Vol}_{g} M
$$

Lower dimensional volumes:

- For $k=1, \ldots, n$ the k th dimensional volume is

$$
\mathrm{Vol}_{g}^{(k)} M:=f d s^{k}
$$

- The area of M is

$$
\text { Area }_{g} M:=\operatorname{Vol}_{g}^{(2)} M=f d s^{2}
$$

Proposition (RP '07).

1. $\mathrm{Vol}_{g}^{(k)} M$ vanishes when k is odd.
2. When k is even, we have

$$
\begin{aligned}
\mathrm{Vol}_{g}^{(k)} M & =\nu_{n, k} \int_{M} \gamma_{n-k}(x) \sqrt{g(x)} d^{n} x, \\
\nu_{n, k} & =\frac{k}{n}(2 \pi)^{\frac{k-n}{2}} \frac{\Gamma\left(\frac{n}{2}+1\right)^{\frac{k}{n}}}{\Gamma\left(\frac{k}{2}+1\right)},
\end{aligned}
$$

where $\gamma_{n-k}(x)$ is a universal polynomial in complete contractions of the covariant derivatives of the curvature tensor depending only on $n-k$.

- For $n-k=0,2,4$ we have

$$
\begin{gathered}
\gamma_{0}(x)=1, \quad \gamma_{2}(x)=\frac{-\kappa(x)}{12} \\
\gamma_{4}(x)=\frac{1}{1440}\left(5 \kappa(x)^{2}-8|\rho(x)|^{2}-7|R(x)|^{2}\right)
\end{gathered}
$$

where R denotes the curvature tensor, ρ is the Ricci tensor and κ is the scalar curvature.
** Lower dimensional volumes $\star \star$ (n even, general case)

- In general the k th dimensional volume is

$$
\operatorname{Vol}_{g}^{(k)} M:= \begin{cases}\nu_{n, k} \int_{M} \gamma_{n-k}(x) \sqrt{g(x)} d^{n} x & \text { if } k \text { is even } \\ 0 & \text { if } k \text { is odd }\end{cases}
$$

- This definition is purely differential geometric and does not make reference to noncommutative geometry anymore.

Examples:

- If $\operatorname{dim} M=4$, then

$$
\text { Area }_{g} M=\frac{-1}{96 \pi \sqrt{2}} \int_{M} \kappa(x) \sqrt{g(x)} d^{4} x
$$

- If $\operatorname{dim} M=6$, then

$$
\begin{aligned}
& \text { Area }_{g} M= \\
& \frac{\sqrt[3]{6}}{69120 \pi^{2}} \int_{M}\left(5 \kappa(x)^{2}-8|\rho(x)|^{2}-7|R(x)|^{2}\right) \sqrt{g(x)} d^{6} x
\end{aligned}
$$

** Lower dimensional volumes (n odd) **

- For $k=1, \ldots, n$ the k th dimensional volume is

$$
\operatorname{Vol}_{g}^{(k)} M= \begin{cases}\nu_{n, k}^{\prime} \int_{M} \gamma_{n-k}(x) \sqrt{g(x)} d^{n} x & \text { if } k \text { is odd } \\ 0 & \text { if } k \text { is even }\end{cases}
$$

where

$$
\nu_{n, k}^{\prime}=\frac{k}{n} 2^{\frac{k-n}{2 n}}(2 \pi)^{\frac{k-n}{2}} \frac{\Gamma\left(\frac{n}{2}+1\right)^{\frac{k}{n}}}{\Gamma\left(\frac{k}{2}+1\right)}
$$

- The length of M is

$$
\operatorname{Length}_{g} M:=\operatorname{Vol}_{g}^{(1)} M=\nu_{n 1}^{\prime} \int_{M} \gamma_{n-1}(x) \sqrt{g(x)} d^{n} x
$$

Examples:

- If $\operatorname{dim} M=3$, then

$$
\text { Length }_{g} M=\frac{-1}{72 \pi^{\frac{5}{6}}} \int_{M} \kappa(x) \sqrt{g(x)} d^{3} x
$$

- If $\operatorname{dim} M=5$, then

$$
\begin{aligned}
& \text { Length }_{g} M=\frac{1}{1800 \pi^{2}} \sqrt[5]{\frac{15 \pi^{2}}{2}} \\
& \int_{M}\left(5 \kappa(x)^{2}-8|\rho(x)|^{2}-7|R(x)|^{2}\right) \sqrt{g(x)} d^{5} x
\end{aligned}
$$

