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!! Einstein-Hilbert Action and Area !!

Let M be a compact Riemannian spin manifold
with Dirac operator /D.

Observation (Connes ‘96):

We have

−
∫

/D−n+2 = −cn

∫

M
κ(x)

√
g(x)dnx,

where −
∫

is the Dixmier trace and κ is the scalar
curvature.



Observation (Connes ‘96):

In QFT ds := /D−1 is the free propagator for
Fermions. Therefore:

• ds has the physical dimension of a length;

• −
∫

ds2 can be interpreted as the area of M .



Consequence:

When dimM = 4 the Einstein-Hilbert action,
∫

M
κ(x)

√
g(x)d4x,

yields a differential geometric expression of the
area of M .



Let (Mn, g) be a compact Riemannian manifold.

!! Lower Dimensional Volumes !!

Question:

For any k = 1,2, . . . , n − 1 can we also give
sense to the k’th dimensional volume of M?



The answer uses 2 main tools:

• Noncommutative residue trace of Wodzicki
and Guillemin;

• Quantized calculus of Connes.

Answer (RP ‘07):



!! Noncommutative Residue !!

(Wodzicki, Guillemin)

• Trace on the algebra of ΨDOs on a compact
manifold Mn independently found by Wodzicki
and Guillemin.

• Numerous applications and generalizations,
e.g., this is an essential tool in the framework
for the local index formula in NCG of Connes-
Moscovici.

• Elementary construction in terms of the log-
arithmic singularity of the kernel near the di-
agonal (Connes-Moscovici).



Let U ⊂ Rn be a local chart.

Symbols of order m:

• Smooth functions p(x, ξ) on U × Rn with an
asymptotic expansion,

p(x, ξ) ∼
∑

j≥0
pm−j(x, ξ),

pm−j(x, tξ) = tm−jpm−j(x, ξ) ∀t > 0.



ΨDOs of order m:

• To a symbol p(x, ξ) we associate the operator
P = p(x, D) from C∞

c (U) to C∞(U) such that

Pu(x) = (2π)−n
∫

ei〈x,ξ〉p(x, ξ)û(ξ)dξ.

• A ΨDO of order m on the manifold M is
a continuous operator P : C∞(M) → C∞(M)
which is locally of the form:

P = p(x, D) + R,

with p(x, ξ) symbol of order m and R smooth-
ing operator.



Logarithmic singularity:

• The kernel kP (x, y) of P has a behavior near
the diagonal y = x of the form:

kP (x, y) =
∑

−(m+n)≤l≤0

al(x, x−y)−cP (x) log |x−y|+O(1),

where

al(x, ty) = tlal(x, y) ∀t > 0,

cP (x) = (2π)−n
∫

|ξ|=1
p−n(x, ξ)dξ.

Lemma.The coefficient cP (x) makes sense glob-
ally on M as a density which is functorial with
respect to diffeomorphisms.



Noncommutative residue:

1. Locality: ResP = 0 if ordP < −n.

2. Invariance: we have ResM ′ φ∗P = ResM P

for any diffeomorphism φ : M ′ → M .

3. Trace: ResP1P2 = ResP2P1.

• The noncommutative residue of P is

ResP :=
∫

M
cP (x).

Proposition (Guillemin, Wodzicki). The fol-
lowing hold:



!! Quantized Calculus !!

(Connes)

• H = separable Hilbert space.

Classical Quantum

Complex variable Operator on H

Real variable Selfadjoint operator

Infinitesimal variable Compact operator

Infinitesimal of order Compact operator T s.t.
α > 0 µk(T ) = O(k−α)

Integral Dixmier trace −
∫

• If T ∈ K+, then:

1

logN

∑

k<N

µk(T )→ L =⇒ −
∫

T = L.

• Here µk(T ) := (k + 1)’th eigenvalue of |T |.



• For H = L2(M) we have:

Consequence:

We can integrate any ΨDO, even if it is not
an infinitesimal of order ≤ 1, by setting

−
∫

P :=
1

n
ResP.

Theorem (Connes ‘88). Let P be a ΨDO of
order m, m < 0.

1. P is an infinitesimal of order |m|
n .

2. If ordP = −n, then

−
∫

P =
1

n
ResP.



!! Lower dimensional volumes !!

(n even, M spin)

• Assume M has even dimension and is spin
with Dirac operator /D.

• From this we deduce that, for any f ∈ C∞(M),

−
∫

f/D−n =
(2π)−

n
2

Γ(n
2 + 1)

∫

M
f(x)

√
g(x)dnx.

Thus /D−n allows us to recover the Riemannian
volume form.

• As σ−n(/D
−n) = σ−n[(/D

2)−
n
2] = |ξ|−n we get

c/D−n(x) = n.
(2π)−

n
2

Γ(n
2 + 1)

√
g(x)dnx.



Noncommutative length element:

• It is defined to be

ds := cn/D−1, cn =
√

2πΓ(
n

2
+ 1)

1
n.

• We have

−
∫

dsn = Volg M.



Lower dimensional volumes:

• For k = 1, . . . , n the kth dimensional volume is

Vol(k)g M := −
∫

dsk.

• The area of M is

Areag M := Vol(2)g M = −
∫

ds2.



Proposition (RP ‘07).

1. Vol(k)g M vanishes when k is odd.

2. When k is even, we have

Vol(k)g M = νn,k

∫

M
γn−k(x)

√
g(x)dnx,

νn,k =
k

n
(2π)

k−n
2

Γ(n
2 + 1)

k
n

Γ(k
2 + 1)

,

where γn−k(x) is a universal polynomial in com-
plete contractions of the covariant derivatives
of the curvature tensor depending only on n−k.



• For n− k = 0,2,4 we have

γ0(x) = 1, γ2(x) =
−κ(x)

12
,

γ4(x) =
1

1440
(5κ(x)2 − 8|ρ(x)|2 − 7|R(x)|2).

where R denotes the curvature tensor, ρ is the
Ricci tensor and κ is the scalar curvature.



• In general the kth dimensional volume is

!! Lower dimensional volumes !!

(n even, general case)

Vol(k)g M :=

{
νn,k

∫
M γn−k(x)

√
g(x)dnx if k is even,

0 if k is odd.

• This definition is purely differential geometric
and does not make reference to noncommuta-
tive geometry anymore.



Examples:

• If dimM = 4, then

Areag M =
−1

96π
√

2

∫

M
κ(x)

√
g(x)d4x.

• If dimM = 6, then

Areag M =
3√6

69120π2

∫

M
(5κ(x)2−8|ρ(x)|2−7|R(x)|2)

√
g(x)d6x.



!! Lower dimensional volumes (n odd) !!

• For k = 1, . . . , n the kth dimensional volume is

Vol(k)g M =





ν′n,k

∫
M γn−k(x)

√
g(x)dnx if k is odd,

0 if k is even,

where

ν′n,k =
k

n
2

k−n
2n (2π)

k−n
2

Γ(n
2 + 1)

k
n

Γ(k
2 + 1)

.

• The length of M is

Lengthg M := Vol(1)g M = ν′n1

∫

M
γn−1(x)

√
g(x)dnx.



Examples:

• If dimM = 3, then

Lengthg M =
−1

72π
5
6

∫

M
κ(x)

√
g(x)d3x.

• If dimM = 5, then

Lengthg M =
1

1800π2
5

√
15π2

2
.

∫

M
(5κ(x)2 − 8|ρ(x)|2 − 7|R(x)|2)

√
g(x)d5x.


