Heisenberg modules and arithmetic properties of noncommutative tori

Jorge Plazas

I.H.E.S.

May 2008 Toronto

Noncommutative tori

Let $\theta \in \mathbb{R}$ be an irrational number

$$A_{\theta} = C^* \langle U, V | U, V \text{ unitaries}, UV = e^{2\pi i \theta} VU \rangle$$

= $C(\mathbb{T}^2_{\theta})$

$$A_{\theta} \supset A_{\theta} = \text{Smooth elements for the } \mathbb{T}^2 \text{ action}$$

= $C^{\infty}(\mathbb{T}^2_{\theta})$

Noncommutative tori

The Lie algebra $L = \mathbb{R}^2$ acts on \mathcal{A}_{θ} by derivations. A basis for this action is given by the derivations:

$$\delta_1(U) = 2\pi i U;$$
 $\delta_1(V) = 0$
 $\delta_2(U) = 0;$ $\delta_2(V) = 2\pi i V.$

A complex parameter

$$\tau\in\mathbb{C}\setminus\mathbb{R}$$

induces a complex structure on $L = \mathbb{R}^2$.

The corresponding complex structure on A_{θ} is given by the derivation:

$$\delta_{\tau} = \tau \delta_1 + \delta_2$$

A complex parameter

$$\tau \in \mathbb{C} \setminus \mathbb{R}$$

induces a complex structure on $L = \mathbb{R}^2$.

The corresponding complex structure on A_{θ} is given by the derivation:

$$\delta_{\tau} = \tau \delta_1 + \delta_2$$
.

The complexified noncommutative torus $\mathbb{T}^2_{\theta,\tau}$ can be consider as:

- The noncommutative torus \mathbb{T}^2_{θ} together with the complex structure determined by τ .
- The elliptic curve $X_{\tau} = \mathbb{C}/(\mathbb{Z} \oplus \tau \mathbb{Z})$ together with the noncommutative structure determined by θ .
- The quotient $\mathbb{C}/(\mathbb{Z} \oplus \tau \mathbb{Z} \oplus \theta \mathbb{Z})$

The complexified noncommutative torus $\mathbb{T}^2_{\theta,\tau}$ can be consider as:

- The noncommutative torus \mathbb{T}^2_{θ} together with the complex structure determined by τ .
- The elliptic curve $X_{\tau} = \mathbb{C}/(\mathbb{Z} \oplus \tau \mathbb{Z})$ together with the noncommutative structure determined by θ .
- The quotient $\mathbb{C}/(\mathbb{Z} \oplus \tau \mathbb{Z} \oplus \theta \mathbb{Z})$

The complexified noncommutative torus $\mathbb{T}^2_{\theta,\tau}$ can be consider as:

- The noncommutative torus \mathbb{T}^2_{θ} together with the complex structure determined by τ .
- The elliptic curve $X_{\tau} = \mathbb{C}/(\mathbb{Z} \oplus \tau \mathbb{Z})$ together with the noncommutative structure determined by θ .
- The quotient $\mathbb{C}/(\mathbb{Z} \oplus \tau \mathbb{Z} \oplus \theta \mathbb{Z})$

Holomorphic vector bundles on $\mathbb{T}^2_{\theta,\tau}$

A holomorphic vector bundle on $\mathbb{T}^2_{\theta,\tau}$ is given by a pair $(E,\bar{\nabla})$ where

- *E* is a right A_{θ} -module (finite type, projective).
- $\bar{\nabla}: E \to E$ is a \mathbb{C} -linear operator satisfying

$$ar{
abla}(ea) = ar{
abla}(e)a + e\delta_{ au}(a), \qquad e \in E, a \in \mathcal{A}_{ heta}$$

Holomorphic vector bundles on $\mathbb{T}^2_{\theta,\tau}$

Theorem (Polishchuk, Schwarz)

The category of holomorphic vector bundles on $\mathbb{T}^2_{ heta, au}$

$$\mathcal{H}ol(\mathbb{T}^2_{ heta, au})$$

is an abelian category.

Holomorphic vector bundles on $\mathbb{T}^2_{\theta,\tau}$

There is an equivalence of categories

$$\mathcal{H}ol(\mathbb{T}^2_{\theta, au}) \simeq \mathcal{C}^{\theta}$$

where

$$\mathcal{C}^{\theta} \subset \mathcal{D}^{b}(X_{\tau})$$

is the heart of a t-structure on $\mathcal{D}^b(X_\tau)$ depending on θ .

- Can $\mathbb{T}^2_{\theta,\tau}$ be considered as a noncommutative projective algebraic variety?
- What is the ring of homogeneous coordinates for this noncommutative projective algebraic variety?

- Can $\mathbb{T}^2_{\theta,\tau}$ be considered as a noncommutative projective algebraic variety?
- What is the ring of homogeneous coordinates for this noncommutative projective algebraic variety?

Holomorphic sections

Let $(E, \bar{\nabla})$ be a holomorphic vector bundle on $\mathbb{T}^2_{\theta, \tau}$

$$ar{\Gamma}(E,ar{
abla}) := \mathit{Ker}(ar{
abla})$$

Rings of holomorphic sections

Let $(E, \bar{\nabla})$ be a holomorphic vector bundle on $\mathbb{T}^2_{\theta, \tau}$ and assume E is a \mathcal{A}_{θ} - \mathcal{A}_{θ} -bimodule.

$$E^{\otimes_{\theta} n} := \underbrace{E \otimes_{\mathcal{A}_{\theta}} E \otimes_{\mathcal{A}_{\theta}} \cdots \otimes_{\mathcal{A}_{\theta}} E}_{n}$$

and

$$B(E,\bar{\nabla}) := \bigoplus_{n\geqslant 0} \bar{\Gamma}(E^{\otimes_{\theta}n},\bar{\nabla})$$

Real multiplication noncommutative tori

Theorem (Rieffel)

Let $\theta \in \mathbb{R}$ be an irrational number. Then there are nontrivial A_{θ} - A_{θ} -bimodules if and only if θ is a quadratic irrationality.

In this case we call $\mathbb{T}^2_ heta$ a real multiplication noncommutative torus

Real multiplication noncommutative tori

Theorem (Rieffel)

Let $\theta \in \mathbb{R}$ be an irrational number. Then there are nontrivial A_{θ} - A_{θ} -bimodules if and only if θ is a quadratic irrationality.

In this case we call \mathbb{T}^2_{θ} a real multiplication noncommutative torus.

Consider a split central extension:

$$1 \to \mathbb{C}_1^* \to G \!\to\! K \to 0$$

where K is a locally compact abelian group and

$$\mathbb{C}_1^* = \{ z \in \mathbb{C} | |z| = 1 \}$$

Assume that the exact sequence splits thus $G = \mathbb{C}_1^* \times K$ and the group structure is given by:

$$(\lambda, \mathbf{x})(\mu, \mathbf{y}) = (\lambda \mu \psi(\mathbf{x}, \mathbf{y}), \mathbf{x} + \mathbf{y})$$

where $\psi: K \times K \to \mathbb{C}_1^*$ is a two-cocycle in K with values in \mathbb{C}_1^* .

The cocycle ψ induces a skew multiplicative pairing

$$e: K \times K \longrightarrow \mathbb{C}_1^*$$

$$(x,y) \longmapsto \frac{\psi(x,y)}{\psi(y,x)}.$$

Definition

If the morphism from K to its Pontrjagin dual \widehat{K} given by e is a isomorphism then G is a *Heisenberg group*.

The cocycle ψ induces a skew multiplicative pairing

$$\begin{array}{cccc} e: \ K \times K & \longrightarrow & \mathbb{C}_1^* \\ (x,y) & \longmapsto & \frac{\psi(x,y)}{\psi(y,x)}. \end{array}$$

Definition

If the morphism from K to its Pontrjagin dual \widehat{K} given by e is a isomorphism then G is a *Heisenberg group*.

Definition

A subgroup *H* of *K* is called *isotropic* if there exist a section of *G* over *H*:

$$\sigma: \ K \longrightarrow \ G$$
$$x \longmapsto (\alpha(x), x).$$

Theorem (Stone, Von Neumann, Makey)

Let G be a Heisenberg group. Then G has a unique irreducible unitary representation in which \mathbb{C}_1^* acts by multiples of the identity.

Theorem (Stone, Von Neumann, Makey)

Let G be a Heisenberg group. Given a maximal isotropic subgroup $H \subset K$ let \mathcal{H} be the space of measurable functions on K satisfying

Then G acts on H by

$$U_{(\lambda,y)}f(x) = \lambda \psi(x,y)f(x+y).$$

and \mathcal{H} is an irreducible unitary representation of G.

Theorem

lf

$$1 \rightarrow \mathbb{C}_1^* \rightarrow G_i \rightarrow K_i \rightarrow 0 \qquad i = 1, 2$$

are two Heisenberg groups with Heisenberg representations \mathcal{H}_1 and \mathcal{H}_2 then

$$1 \, \rightarrow \, \mathbb{C}_1^* \, \rightarrow \, \textit{G}_1 \times \textit{G}_2/\{(\lambda,\lambda^{-1})|\lambda \in \mathbb{C}_1^*\} \, \rightarrow \textit{K}_1 \times \textit{K}_2 \, \rightarrow \, 0$$

is a Heisenberg group and its Heisenberg representation is $\mathcal{H}_1 \hat{\otimes} \mathcal{H}_2$.

Let $K = \mathbb{R}^2$ and let $\varepsilon \in \mathbb{R}_+^*$. $G = K \times \mathbb{C}_1^*$ is a Heisenberg group with

$$\psi(x,y) = \exp\left(\frac{\pi \imath}{\varepsilon}(x_1y_2 - y_1x_2)\right)$$

$$e(x,y) = \exp\left(\frac{2\pi \imath}{\varepsilon}(x_1y_2 - y_1x_2)\right).$$

where $x = (x_1, x_2), y = (y_1, y_2) \in K$.

To obtain the usual Heisenberg representation consider the maximal isotropic subgroup

$$H = \{x = (x_1, x_2) \in K \mid x_2 = 0\}$$

Then

$$\mathcal{H}\simeq L^2(\mathbb{R})$$

And

$$U_{(1,(y_1,0))}f(x) = f(x+y_1).$$

$$U_{(1,(0,y_2))}f(x) = e\left(\frac{2\pi i}{\varepsilon}xy_2\right)f(x).$$

 $f \in \mathcal{H}$ is smooth if

$$\delta U_{X_1} \delta U_{X_2} \cdots \delta U_{X_n}(f)$$

is well defined for any n and any $X_1, X_2, \dots X_n \in Lie(G)$ where

$$\delta U_X(f) = \lim_{t \to 0} \frac{U_{\exp(tX)}f - f}{t}$$

Choose a basis $\{A, B, C\}$ for the Lie algebra Lie(G) such that

$$\exp(tA) = (1, (t, 0)), \exp(tB) = (1, (0, t)), \exp(tC) = (e^{2\pi i t}, (0, 0))$$

Given $\tau \in \mathbb{C} \setminus \mathbb{R}$ let

$$W_{\tau} = \langle \delta U_{A} - \tau \delta U_{B} \rangle$$

$$W_{\bar{\tau}} = \langle \delta U_{A} - \bar{\tau} \delta U_{B} \rangle.$$

Theorem

In any Heisenberg representation of G there exists an element f_{τ} , unique up to a scalar, such that $\delta U_X(f_{\tau})$ is defined and equal to 0 for all $X \in W_{\tau}$.

Choose a basis $\{A, B, C\}$ for the Lie algebra Lie(G) such that

$$\exp(tA) = (1, (t, 0)), \exp(tB) = (1, (0, t)), \exp(tC) = (e^{2\pi i t}, (0, 0))$$

Given $\tau \in \mathbb{C} \setminus \mathbb{R}$ let

$$W_{\tau} = \langle \delta U_{A} - \tau \delta U_{B} \rangle$$

$$W_{\bar{\tau}} = \langle \delta U_{A} - \bar{\tau} \delta U_{B} \rangle.$$

Theorem

In any Heisenberg representation of G there exists an element f_{τ} , unique up to a scalar, such that $\delta U_X(f_{\tau})$ is defined and equal to 0 for all $X \in W_{\tau}$.

Finite Heisenberg groups

Let *c* be a positive integer and let $K = (\mathbb{Z}/c\mathbb{Z})^2$.

$$\psi(([n_1],[n_2]),([m_1],[m_2])) = \exp\left(\frac{2\pi i}{2c}(n_1m_2-m_1n_2)\right)$$

$$e([n_1],[n_2]),([m_1],[m_2])) = \exp\left(\frac{2\pi i}{c}(n_1m_2-m_1n_2)\right)$$
where $([n_1],[n_2]),([m_1],[m_2]) \in K$.

Finite Heisenberg groups

If we choose as maximal isotropic subgroup $H = \{([n_1], [n_2]) \in K \mid [n_2] = 0\}$ we may realize the Heisenberg representation as the action of G on $C(\mathbb{Z}/c\mathbb{Z})$ given by

$$\begin{array}{lcl} U_{(1,([m_1],0))}\phi([n]) & = & \phi([n+m_2]). \\ \\ U_{(1,(0,[m_2]))}\phi([n]) & = & \exp\left(\frac{2\pi\imath}{c}nm_2\right)f([n]). \end{array}$$

Heisenberg group schemes

A Heisenberg group scheme is a central extensions of the form

$$1 \,\rightarrow\, \mathbb{G}_m \,\rightarrow\, \mathcal{G} \!\rightarrow\! \mathcal{K} \,\rightarrow\, 0$$

where K is a finite abelian group scheme aver a base field k. These groups arise in a natural way by considering ample line bundles on abelian varieties over the base field k.

Heisenberg modules

Let $\theta \in \mathbb{R}$ be a quadratic irrationality and let

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$$

be a matrix fixing θ .

Holomorphic sections of Heisenberg modules

Let

$$\varepsilon = \frac{c\theta + d}{c}$$

and consider the following operators on the Schwartz space $\mathcal{S}(\mathbb{R})$:

$$\begin{array}{rcl} (\check{U}f)(x) & = & f(x-\varepsilon) \\ (\check{V}f)(x) & = & exp(2\pi\imath x)f(x) \\ (\hat{U}f)(x) & = & f\left(x-\frac{1}{c}\right) \\ (\hat{V}f)(x) & = & exp\left(\frac{2\pi\imath x}{c\varepsilon}\right)f(x). \end{array}$$

The Schwartz space $S(\mathbb{R})$ is identified with the set of smooth elements of the real Heisenberg representation.

Heisenberg modules

Consider also the following operators on $C(\mathbb{Z}/c\mathbb{Z})$

$$\begin{array}{lcl} (\check{u}\phi)([n]) & = & \phi([n-1]) \\ (\check{v}\phi)([n]) & = & \exp\left(-\frac{2\pi\imath dn}{c}\right)\phi([n]) \\ (\hat{u}\phi)([n]) & = & \phi([n-a]) \\ (\hat{v}\phi)([n]) & = & \exp\left(-\frac{2\pi\imath n}{c}\right)\phi([n]). \end{array}$$

$$E_g = \mathcal{S}(\mathbb{R}) \otimes C(\mathbb{Z}/c\mathbb{Z})$$

becomes a A_{θ} - A_{θ} -bimodule by defining:

$$(f \otimes \phi)U = (\check{U} \otimes \check{u})(f \otimes \phi)$$

$$(f \otimes \phi)V = (\check{V} \otimes \check{v})(f \otimes \phi)$$

$$U(f \otimes \phi) = (\hat{U} \otimes \hat{u})(f \otimes \phi)$$

$$V(f \otimes \phi) = (\hat{V} \otimes \hat{v})(f \otimes \phi)$$

where $f \in \mathcal{S}(\mathbb{R})$ and $\phi \in C(\mathbb{Z}/c\mathbb{Z})$.

There is a natural identification:

$$E_g \otimes_{\mathcal{A}_\theta} E_g \simeq E_{g^2}.$$

$$E_{g} \hat{\otimes} E_{g} = [\mathcal{S}(\mathbb{R}) \otimes C(\mathbb{Z}/c\mathbb{Z})] \hat{\otimes} [\mathcal{S}(\mathbb{R}) \otimes C(\mathbb{Z}/c\mathbb{Z})]$$

$$= [\mathcal{S}(\mathbb{R}) \hat{\otimes} \mathcal{S}(\mathbb{R})] \otimes [C(\mathbb{Z}/c\mathbb{Z}) \otimes C(\mathbb{Z}/c\mathbb{Z})]$$

$$= [\mathcal{S}(\mathbb{R} \times \mathbb{R})] \otimes [C(\mathbb{Z}/c\mathbb{Z} \times \mathbb{Z}/c\mathbb{Z})].$$

To pass from $E_g \hat{\otimes} E_g$ to $E_g \otimes_{\mathcal{A}_\theta} E_g$ we have to quotient $E_g \hat{\otimes} E_g$ by the space spanned by the relations:

$$[(f \otimes \phi)U] \hat{\otimes} [g \otimes \omega] = [f \otimes \phi] \hat{\otimes} [U(g \otimes \omega)]$$

$$[(f \otimes \phi)V] \hat{\otimes} [g \otimes \omega] = [f \otimes \phi] \hat{\otimes} [V(g \otimes \omega)]$$

where $f,g \in \mathcal{S}(\mathbb{R})$ and $\phi,\omega \in C(\mathbb{Z}/c\mathbb{Z})$. At the level of the Heisenberg representations involved this amounts to restrict to the subspaces of $\mathcal{S}(\mathbb{R} \times \mathbb{R})$ and $C(\mathbb{Z}/c\mathbb{Z} \times \mathbb{Z}/c\mathbb{Z})$ which are invariant under the action of the subgroups of $\mathrm{Heis}(\mathbb{R}^4)$ and $\mathrm{Heis}((\mathbb{Z}/c\mathbb{Z})^4)$ generated by the elements giving these relations.

To pass from $E_g \hat{\otimes} E_g$ to $E_g \otimes_{\mathcal{A}_\theta} E_g$ we have to quotient $E_g \hat{\otimes} E_g$ by the space spanned by the relations:

$$[(f \otimes \phi)U] \hat{\otimes} [g \otimes \omega] = [f \otimes \phi] \hat{\otimes} [U(g \otimes \omega)]$$

$$[(f \otimes \phi)V] \hat{\otimes} [g \otimes \omega] = [f \otimes \phi] \hat{\otimes} [V(g \otimes \omega)]$$

where $f,g\in\mathcal{S}(\mathbb{R})$ and $\phi,\omega\in C(\mathbb{Z}/c\mathbb{Z})$. At the level of the Heisenberg representations involved this amounts to restrict to the subspaces of $\mathcal{S}(\mathbb{R}\times\mathbb{R})$ and $C(\mathbb{Z}/c\mathbb{Z}\times\mathbb{Z}/c\mathbb{Z})$ which are invariant under the action of the subgroups of $\mathrm{Heis}(\mathbb{R}^4)$ and $\mathrm{Heis}(\mathbb{Z}/c\mathbb{Z})^4)$ generated by the elements giving these relations.

The corresponding space of invariant elements in $\mathcal{S}(\mathbb{R}\times\mathbb{R})$ is canonically isomorphic to the space $\mathcal{S}(\mathbb{R})$ of smooth elements of the Heisenberg representation of $\mathrm{Heis}(\mathbb{R}^2)$ with $c\varepsilon^2/(a+d)$ playing the role of ε . In $C((\mathbb{Z}/c\mathbb{Z})\times(\mathbb{Z}/c\mathbb{Z}))$ the corresponding invariant subspace is canonically isomorphic to the Heisenber representation $C(\mathbb{Z}/c(a+d)\mathbb{Z})$ of $\mathrm{Heis}((\mathbb{Z}/c(a+d)\mathbb{Z})^2)$. Thus we get:

$$E_g \otimes_{\mathcal{A}_{\theta}} E_g \simeq \mathcal{S}(\mathbb{R}) \otimes C(\mathbb{Z}/c(a+d)\mathbb{Z})$$

= E_{g^2}

The compatibility of the module structures in this isomorphism is implied by the the compatibility of the Heisenberg representations involved.

There are isomorphisms:

$$\underbrace{E_g \otimes_{\mathcal{A}_\theta} \cdots \otimes_{\mathcal{A}_\theta} E_g}_{n} \simeq E_{g^n}.$$

$$g^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}, \qquad n > 0.$$

Given a Heisenberg A_{θ} - A_{θ} -bimodule E_g we may define a holomorphic structure on E_g by:

$$\nabla_0 = \tau \nabla_1 + \nabla_2$$

where

$$(\nabla_1 f \otimes \phi)(x, [n]) = 2\pi i \left(\frac{x}{\varepsilon}\right) (f \otimes \phi)(x, [n])$$

$$(\nabla_2 f \otimes \phi)(x, [n]) = \frac{d}{dx} (f \otimes \phi)(x, [n]).$$

The operators ∇_1 and ∇_2 correspond to the action of the Lie algebra of $\mathrm{Heis}(\mathbb{R}^2)$ on the left factor of $\mathcal{S}(\mathbb{R}) \otimes C(\mathbb{Z}/c\mathbb{Z})$ given by the derivations δU_A and δU_B .

Let

$$egin{array}{lll} R_g &=& \{f_{ au} \otimes \phi \in E_g \, | \, \phi \in C(\mathbb{Z}/c\mathbb{Z}) \} \ &=& \left\{ exp\left(rac{2\pi\imath}{2arepsilon} au x^2
ight) \otimes \phi \in E_g \, | \, \phi \in C(\mathbb{Z}/c\mathbb{Z})
ight\} \ &\simeq& ar{\Gamma}(E_g,ar{
abla}_0) \end{array}$$

Homogeneous coordinate ring

We denote by $f_{\tau,n}$ the corresponding element on the left factor of E_{g^n} and let

$$R_{g^n} = \left\{ f_{\tau,n} \otimes \phi \in E_{g^n} \, | \, \phi \in C(\mathbb{Z}/c_n\mathbb{Z}) \right\}.$$

Definition

The homogeneous coordinate ring for the complexified noncommutative torus $\mathbb{T}^2_{\theta,\tau}$ is the graded ring:

$$egin{array}{lll} B_g(heta, au) &=& \displaystyle igoplus_{n\geq 0} R_{g^n} \ &\simeq & B(E_g,ar
abla_0) \end{array}$$

It is possible to realize each space R_{g^n} as the space of sections of a line bundle over X_{τ} . For this we consider the matrix coefficients obtained by pairing $f_{\tau,n}$ with functionals in the distribution completion of the Heisenberg representation which are invariant under the action of elements in $\operatorname{Heis}(\mathbb{R}^2)$ corresponding to a lattice in \mathbb{R}^2 associated to g^n .

Homogeneous coordinate rings for $\mathbb{T}^2_{\theta,\tau}$

This fact has the following consequence:

Theorem

Let $\theta \in \mathbb{R}$ be a quadratic irrationality fixed by a matrix $g \in SL_2(\mathbb{Z})$. Let k be the minimal field of definition of the elliptic curve X_{τ} . Then the algebra $B_g(\theta, \tau)$ admits a rational presentation over a finite algebraic extension of k.

An algebraic endomotive from $\mathbb{T}^2_{ heta, au}$

If $n \mid m$ then $c_n \mid c_m$, explicitly

$$c_m = \eta_n^m c_n$$

where

$$\eta_n^m = \sum_{i=0}^{l} a_n^{l-i} d_{(i-1)n}, m = ln$$

Thus there are morphisms

$$\eta_n^m: \mathbb{Z}/c_m\mathbb{Z} \to \mathbb{Z}/c_n\mathbb{Z}$$

An algebraic endomotive from $\mathbb{T}^2_{ heta, au}$

The data

$$\{\mathbb{Z}/c_m\mathbb{Z}\}_{m\in\mathbb{N}}\;,\qquad S=\mathbb{N}$$

Defines an algebraic endomotive over \mathbb{Q} .

An algebraic endomotive from $\overline{\mathbb{T}^2_{ heta, au}}$

We consider η_n^m as an isogeny on the elliptic curve whose period lattice is spanned by τ . Via $n \mapsto (c\theta + d)^n$ we can view the semigroup S as the semigroup of positive units of $k = \mathbb{Q}(\theta)$.