Noncommutative Geometry Workshop;
Fields Institute, Toronto May 27-31, 2008

Monopoles and Laplacians
 on quantum Hopf bundles

Giovanni Landi

Trieste

Math motivation:
(M, g) a cmpt Riemannian manifold
$P \rightarrow M$ a principal bundle with cmpt structure group G
a connection on P with covariant derivative ∇
(ρ, V) a representation of G; the identification of sections of the associated vector bundle $E=P \times{ }_{G} V$ on M with equivariant maps from P to V :
$\Gamma(M, E) \simeq C^{\infty}(P, V)_{G} \subset C^{\infty}(P) \otimes V$

The Laplacians,
$\Delta^{P}=-\left(\mathrm{dd}^{*}+\mathrm{d}^{*} \mathrm{~d}\right) \quad$ on $P ; \quad$ it acts on $C^{\infty}(P)$
$\Delta^{E}=-\left(\nabla \nabla^{*}+\nabla^{*} \nabla\right) \quad$ on $E ; \quad$ it acts on $\Gamma(M, E)$
are related by
$\Delta^{E}=\left.\left(\Delta^{P} \otimes 1+1 \otimes C_{G}\right)\right|_{C^{\infty}(P, V)_{G}}$
$C_{G}=\sum_{a} \rho\left(e_{a}\right)^{2} \in \operatorname{End}(E)$; the quadratic Casimir op. of G
Δ^{E} is the gauged Laplacian:
$\Delta^{M} \mapsto \Delta^{E} \quad$ as $\quad \mathrm{d} \mapsto \nabla$

For $P=H$ a cmpt group
$\Delta^{P}=C_{H}$
and diagonalization of Δ^{E} is easy

Phys motivation:

The Laughlin wave functions for the fractional quantum Hall effect (on the plane) is not translationally invariant.

This problem was overcome by Haldane with a model on a sphere with a magnetic monopole at the origin.

The full Euclidean group of symmetries of the plane is recovered from the rotation group $S O(3)$ of symmetries of the sphere.

One is considering the Hopf fibration of the sphere S^{3} over the sphere S^{2} with $U(1)$ as gauge (or structure) group
and needs to diagonalize the
Laplacian of S^{2} gauged with the monopole connection

Two classes of examples:
q-spaces: manly the monopoles over $A\left(\mathrm{~S}_{q}^{2}\right)$
θ-spaces: manly instantons over $A\left(S_{\theta}^{4}\right)$
but also the nctorus

GL, C Reina, A Zampini
Gauged Laplacians on quantum Hopf bundles, arXiv:0801.3376
GL,
Spin-Hall effect with quantum group symmetries Lett. Math. Phys., 75 (2006) 187-200
and work in progress

The geometry of quantum $\mathrm{SU}_{q}(2)$

The algebra:

With $0<q<1$, let $\mathcal{A}=A\left(\mathrm{SU}_{q}(2)\right)$ be the $*$-algebra generated by a and c, with relations:

$$
\begin{gathered}
a c=q c a, \quad a c^{*}=q c^{*} a, \quad c c^{*}=c^{*} c, \\
a^{*} a+c^{*} c=a a^{*}+q^{2} c c^{*}=1
\end{gathered}
$$

these state that the defining matrix is unitary

$$
U=\left(\begin{array}{cc}
a & -q c^{*} \\
c & a^{*}
\end{array}\right)
$$

$A\left(\mathrm{SU}_{q}(2)\right)$ is a Hopf $*$-algebra (a quantum group) with

- coproduct:

$$
\Delta\left(\begin{array}{cc}
a & -q c^{*} \\
c & a^{*}
\end{array}\right):=\left(\begin{array}{cc}
a & -q c^{*} \\
c & a^{*}
\end{array}\right) \dot{\otimes}\left(\begin{array}{cc}
a & -q c^{*} \\
c & a^{*}
\end{array}\right)
$$

- counit:

$$
\varepsilon\left(\begin{array}{cc}
a & -q c^{*} \\
c & a^{*}
\end{array}\right):=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- antipode:

$$
S\left(\begin{array}{cc}
a & -q c^{*} \\
c & a^{*}
\end{array}\right)=\left(\begin{array}{cc}
a^{*} & c^{*} \\
-q c & a
\end{array}\right)
$$

The quantum universal envelopping algebra $\mathcal{U}=\mathcal{U}_{q}(\operatorname{su}(2))$ is the *-algebra generated by E, F, K, with K invertible, and relations

$$
K E=q E K, \quad K F=q^{-1} F K, \quad K^{2}-K^{-2}=\left(q-q^{-1}\right)(E F-F E)
$$

The $*$-structure: $K^{*}=K, \quad F^{*}=E, \quad E^{*}=F$.

The Hopf $*$-algebra structure

- coproduct:
$\Delta K=K \otimes K, \quad \Delta F=F \otimes K+K^{-1} \otimes F, \quad \Delta E=E \otimes K+K^{-1} \otimes E$
- counit:

$$
\epsilon(K)=1, \quad \epsilon(F)=0, \quad \epsilon(E)=0
$$

- antipode:

$$
S K=K^{-1}, \quad S E=-q E, \quad S F=-q^{-1} F
$$

The Casimir operator

$$
C_{q}=\left(q-q^{-1}\right)^{-2}\left(q^{\frac{1}{2}} K-q^{-\frac{1}{2}} K^{-1}\right)^{2}+F E-\frac{1}{4}
$$

The action of \mathcal{U} on \mathcal{A}
A natural bilinear pairing between \mathcal{U} and \mathcal{A},

$$
\langle K, a\rangle=q^{-\frac{1}{2}}, \quad\left\langle K, a^{*}\right\rangle=q^{\frac{1}{2}}, \quad\langle E, c\rangle=1, \quad\langle F, c\rangle=-q^{-1}
$$

gives commuting left and right \mathcal{U}-module algebra structures on \mathcal{A} :

$$
h \triangleright x:=x_{(1)}\left\langle h, x_{(2)}\right\rangle, \quad x \triangleleft h:=\left\langle h, x_{(1)}\right\rangle x_{(2)}
$$

with notation $\Delta(x)=x_{(1)} \otimes x_{(2)}$

A left-covariant calculus on $\mathrm{SU}_{q}(2)$; it is three dimensional
The quantum tangent space $\mathcal{X}_{\mathrm{SU}_{q}(2)}$ is generated by:

$$
X_{z}=\frac{1-K^{4}}{1-q^{-2}}, \quad X_{-}=q^{-1 / 2} F K, \quad X_{+}=q^{1 / 2} E K
$$

The dual basis for the one-forms: $\Omega^{1}\left(\mathrm{SU}_{q}(2)\right)$
$\omega_{z}=a^{*} \mathrm{~d} a+c^{*} \mathrm{~d} c, \quad \omega_{-}=c^{*} \mathrm{~d} a^{*}-q a^{*} \mathrm{~d} c^{*}, \quad \omega_{+}=a \mathrm{~d} c-q c \mathrm{~d} a$
comes with left-invariance: $\Phi_{L}\left(\omega_{s}\right)=1 \otimes \omega_{s}$;
with $\Phi_{L}\left(x \mathrm{~d} x^{\prime}\right)=\Delta(x)(i d \otimes \mathrm{~d}) \Delta\left(x^{\prime}\right)$

The exterior derivative is expressed as

$$
\mathrm{d} x=\left(X_{s} \triangleright x\right) \omega_{s}
$$

Higher dimensional forms:

$$
\begin{aligned}
& \mathrm{d} \omega_{z}=-\omega_{-} \wedge \omega_{+} \\
& \mathrm{d} \omega_{+}=q^{2}\left(1+q^{2}\right) \omega_{z} \wedge \omega_{+}, \quad \mathrm{d} \omega_{-}=-\left(1+q^{-2}\right) \omega_{z} \wedge \omega_{-}
\end{aligned}
$$

commutation relations among forms

A $U(1)$ principal bundle.
On $A\left(\mathrm{SU}_{q}(2)\right)$ a right coaction of $\left.U(1)=\mathbb{C}<z, z^{-1}\right\rangle$:

$$
\begin{aligned}
\Delta_{R}: A\left(\mathrm{SU}_{q}(2)\right) & \rightarrow A\left(\mathrm{SU}_{q}(2)\right) \otimes U(1) \\
\Delta_{R}\left(\begin{array}{cc}
a & -q c^{*} \\
c & a^{*}
\end{array}\right) & =\left(\begin{array}{cc}
a & -q c^{*} \\
c & a^{*}
\end{array}\right) \dot{\otimes}\left(\begin{array}{cc}
z & 0 \\
0 & z^{-1}
\end{array}\right)
\end{aligned}
$$

the subalgebra of coinvariants

$$
A\left(\mathrm{~S}_{q}^{2}\right):=\left\{p \in A\left(\mathrm{SU}_{q}(2)\right), \Delta_{R}(p)=p \otimes 1\right\}
$$

is Podleś standard sphere. Possible generators:

$$
\begin{aligned}
b_{-} & :=-q\left(1+q^{2}\right)^{-\frac{1}{2}} a c^{*}, \quad b_{+}:=q^{2}\left(1+q^{2}\right)^{-\frac{1}{2}} c a^{*} \\
b_{0} & :=a a^{*}-\left(1+q^{2}\right)^{-1}
\end{aligned}
$$

A left coaction of $A\left(\mathrm{SU}_{q}(2)\right)$ on $A\left(\mathrm{~S}_{q}^{2}\right)$:

$$
\begin{aligned}
& \Delta: A\left(\mathrm{~S}_{q}^{2}\right) \rightarrow A\left(\mathrm{SU}_{q}(2)\right) \otimes A\left(\mathrm{~S}_{q}^{2}\right), \\
& \Delta\left(b_{-}\right)=a^{2} \otimes b_{-}-\left(1+q^{-2}\right) b_{-} \otimes b_{0}+c^{* 2} \otimes b_{+} \\
& \Delta\left(b_{0}\right)=\left(1+q^{2}\right)^{\frac{1}{2}} a c \otimes b_{-}+\left(1+q^{-2}\right) b_{0} \otimes b_{0}-\left(1+q^{-2}\right)^{\frac{1}{2}} c^{*} a^{*} \otimes b_{+} \\
& \Delta\left(b_{+}\right)=q^{2} c^{2} \otimes b_{-}+\left(1+q^{-2}\right) b_{+} \otimes b_{0}+a^{* 2} \otimes b_{+}
\end{aligned}
$$

The left action of the group-like element K on $A\left(\mathrm{SU}_{q}(2)\right)$ defines (modules of sections) of line bundles over S_{q}^{2} :

$$
\mathcal{L}_{n}:=\left\{x \in A\left(\mathrm{SU}_{q}(2)\right): K \triangleright x=q^{n / 2} x\right\}
$$

this has winding number n, with $n \in \mathbb{Z}$.
In particular $A\left(\mathrm{~S}_{q}^{2}\right)=\mathcal{L}_{0}$. Also: $A\left(\mathrm{SU}_{q}(2)\right)=\oplus_{n} \mathcal{L}_{n}$

$$
\begin{aligned}
& \mathcal{L}_{n}^{*} \subset \mathcal{L}_{-n}, \quad \mathcal{L}_{n} \mathcal{L}_{m} \subset \mathcal{L}_{n+m} \\
& E \triangleright \mathcal{L}_{n} \subset \mathcal{L}_{n+2}, \quad F \triangleright \mathcal{L}_{n} \subset \mathcal{L}_{n-2} \\
& \mathcal{L}_{n} \triangleleft h \subset \mathcal{L}_{n}, \quad h \in \mathcal{U}_{q}(\mathrm{su}(2))
\end{aligned}
$$

The corresponding projections:
For $n>0: \quad \mathfrak{p}^{(n)}=\left|\Psi^{(n)}\right\rangle\left\langle\Psi^{(n)}\right|$

$$
\left|\Psi^{(n)}\right\rangle_{\mu} \sim c^{* \mu} a^{* n-\mu}
$$

For $n<0: \quad \check{\mathfrak{p}}^{(n)}=\left|\check{\Psi}^{(n)}\right\rangle\left\langle\check{\Psi}^{(n)}\right|$

$$
\left|\check{\Psi}^{(n)}\right\rangle_{\mu} \sim c^{|n|-\mu} a^{\mu}
$$

Let $\mathcal{E}_{n}:=\left(A\left(\mathrm{~S}_{q}^{2}\right)\right)^{n+1} \mathfrak{p}^{(n)}$ a left $A\left(\mathrm{~S}_{q}^{2}\right)$-modules isomorphism:

$$
\mathcal{L}_{n} \xrightarrow{\simeq} \mathcal{E}_{n}, \quad \phi_{f} \rightarrow \sigma_{f}:=\phi_{f}\left\langle\Psi^{(n)}\right|=\langle f| \mathfrak{p}^{(n)},
$$

with inverse

$$
\mathcal{E}_{n} \xrightarrow{\simeq} \mathcal{L}_{n}, \quad \sigma_{f}=\langle f| \mathfrak{p}^{(n)} \rightarrow \phi_{f}:=\left\langle f, \Psi^{(n)}\right\rangle
$$

and similar maps for the case $n \leq 0$.

The differential calculus on S_{q}^{2} :

$$
\Omega\left(A\left(\mathrm{~S}_{q}^{2}\right)\right) \simeq A\left(\mathrm{~S}_{q}^{2}\right) \oplus\left(\mathcal{L}_{-2} \oplus \mathcal{L}_{2}\right) \oplus A\left(\mathrm{~S}_{q}^{2}\right)
$$

In particular
$\Omega^{1}\left(A\left(S_{q}^{2}\right)\right)=\Omega^{+} \oplus \Omega^{-} \simeq \mathcal{L}_{-2} \oplus \mathcal{L}_{2}$
$\partial b_{-}=\frac{q^{3}}{\left(1+q^{2}\right)^{\frac{1}{2}}} c^{* 2} \omega_{+}, \quad \partial b_{0}=-q^{2} c^{*} a^{*} \omega_{+}, \quad \partial b_{+}=\frac{q^{3}}{\left(1+q^{2}\right)^{\frac{1}{2}}} a^{* 2} \omega_{+}$
$\bar{\partial} b_{-}=\frac{1}{\left(1+q^{2}\right)^{\frac{1}{2}}} a^{2} \omega_{-}, \quad \bar{\partial} b_{0}=a c \omega_{-}, \quad \bar{\partial} b_{+}=\frac{q^{2}}{\left(1+q^{2}\right)^{\frac{1}{2}}} c^{2} \omega_{-}$
Ω^{+}is generated by $\left\{c^{* 2}, c^{*} a^{*}, a^{* 2}\right\} \omega_{+}=\left\{\partial b_{-}, \partial b_{0}, \partial b_{+}\right\}$:

$$
\partial b_{0}=\left(q^{-1}+q^{-3}\right) b_{-} \partial b_{+}-\left(q+q^{3}\right) b_{+} \partial b_{-}
$$

Ω^{-}is generated by $\left\{c^{2}, c a, a^{2}\right\} \omega_{-}=\left\{\bar{\partial} b_{-}, \bar{\partial} b_{0}, \bar{\partial} b_{+}\right\}$:

$$
\bar{\partial} b_{0}=\left(q^{-1}+q\right) b_{+} \bar{\partial} b_{-}-\left(q^{-5}+q^{-3}\right) b_{-} \bar{\partial} b_{+}
$$

$$
\begin{aligned}
& \mathrm{d}=\partial+\bar{\partial}, \quad \mathrm{d} x=\left(X_{+} \triangleright x\right) \omega_{+}+\left(X_{-} \triangleright x\right) \omega_{-} \\
& \partial x=\left(X_{+} \triangleright x\right) \omega_{+}, \quad \bar{\partial} x=\left(X_{-} \triangleright x\right) \omega_{-}
\end{aligned}
$$

Also,

$$
\Omega^{2}\left(A\left(\mathrm{~S}_{q}^{2}\right)\right)=A\left(\mathrm{~S}_{q}^{2}\right)\left(\omega_{+} \wedge \omega_{-}\right)=\left(\omega_{+} \wedge \omega_{-}\right) A\left(\mathrm{~S}_{q}^{2}\right)
$$

The calculus on S_{q}^{2} can be realized via the Dirac operator

$$
d=[D, \cdot]
$$

$D=D_{\text {irac }}$

Dabrowski-Sitarz, Schmüdgen-Wagner

The Laplacian operator on S_{q}^{2}
First, a Hodge \star-operator on the forms

$$
\begin{aligned}
& \star 1=\omega_{+} \wedge \omega_{-}, \quad \star\left(\omega_{+} \wedge \omega_{-}\right)=1 \\
& \star \partial f=\partial f, \quad \star \bar{\partial} f=-\bar{\partial} f
\end{aligned}
$$

Then the Laplacian operator on S_{q}^{2} is defined as:

$$
\Delta^{\mathrm{S}_{q}^{2}} f:=-\frac{1}{2} \star \mathrm{~d} \star \mathrm{~d} f
$$

One finds also

$$
\begin{aligned}
& \Delta^{\mathrm{S}_{q}^{2}} f=-\bar{\partial} \partial f=\partial \bar{\partial} f \\
& \Delta^{\mathrm{S}_{q}^{2}} f=\frac{1}{2}\left[X_{+} X_{-}+q^{-2} X_{-} X_{+}\right] \triangleright f=q^{-1} F E \triangleright f
\end{aligned}
$$

Easy to diagonalise; it is the Casimir operator restrict to $A\left(\mathrm{~S}_{q}^{2}\right)$:

$$
\Delta^{\mathrm{S}_{q}^{2}}=C_{q}{ }_{A\left(\mathrm{~S}_{q}^{2}\right)}+q^{-1}\left(\frac{1}{4}-\left[\frac{1}{2}\right]^{2}\right)
$$

Note also that: $\quad \Delta^{\mathrm{S}_{q}^{2}} \sim\left(D_{\text {irac }}\right)^{2}$

Decompose $A\left(\mathrm{~S}_{q}^{2}\right)$ for the right action of $\mathcal{U}_{q}(\mathrm{su}(2))$: this yields the eigenspaces of the Laplacian since

$$
\Delta^{\mathrm{S}_{q}^{2}}(f \triangleleft h)=\left(\Delta^{\mathrm{S}_{q}^{2}} f\right) \triangleleft h, \quad h \in \mathcal{U}_{q}(\operatorname{su}(2))
$$

One has,

$$
A\left(\mathrm{~S}_{q}^{2}\right)=\oplus_{J \in 2 \mathbb{N}} V_{J}
$$

the lowest weight vector of V_{J} is $a^{J} c^{* J}$ and a basis of V_{J} is given by $\left(a^{J} c^{* J}\right) \triangleleft E^{m}$ with $m=0,1, \ldots, 2 J$.

Also the eigenvalues are

$$
\lambda_{J}=q^{-1}[J][J+1]
$$

a direct computation gives

$$
\Delta^{\mathrm{S}_{q}^{2}}\left(a^{J} c^{\star J}\right)=q^{-1}([J][J+1]) a^{J} c^{* J}
$$

Enter the connection

a calculus on $U(1)$:

$$
\begin{aligned}
& \mathrm{d} z=z \omega_{z}, \quad \mathrm{~d} z^{-1}=-q^{2} z^{-1} \omega_{z}, \quad \omega_{z}=z^{-1} \mathrm{~d} z \\
& \omega_{z} z=q^{-2} z \omega_{z}, \quad \omega_{z} z^{-1}=q^{2} z^{-1} \omega_{z}, \quad z \mathrm{~d} z=q^{2} \mathrm{~d} z z
\end{aligned}
$$

A principal connection; a right invariant splitting:

$$
\Omega_{\mathrm{SU}_{q}(2)}=\Omega_{\mathrm{SU}_{q}(2)}^{v e r} \oplus \Omega_{\mathrm{SU}_{q}(2)}^{h o r}, \quad \Pi: \Omega_{\mathrm{SU}_{q}(2)} \mapsto \Omega_{\mathrm{SU}_{q}(2)}^{v e r}
$$

with $\Delta_{R}^{(1)} \Pi=(\Pi \otimes i d) \Delta_{R}^{(1)}$

Now, $\Delta_{R}^{(1)}\left(\omega_{z}\right)=\omega_{z} \otimes 1$
a natural choice of a connection is to define ω_{z} to be vertical:

$$
\Pi_{z}\left(\omega_{z}\right)=\omega_{z}, \quad \Pi_{z}\left(\omega_{ \pm}\right)=0
$$

The corresponding covariant derivative on co-equivariant maps:

$$
\nabla \phi:=\left(1-\Pi_{z}\right) \mathrm{d} \phi
$$

explicitly

$$
\nabla \phi=\left(X_{+} \triangleright \phi\right) \omega_{+}+\left(X_{-} \triangleright \phi\right) \omega_{-}
$$

On the sections:

$$
\mathcal{E} \simeq \mathcal{L}_{n} \simeq \mathfrak{p}^{(n)}\left[A\left(\mathrm{~S}_{q}^{2}\right)\right]^{n}
$$

$$
\nabla \sigma_{\phi}:=\left(\mathfrak{p}^{(n)} \mathrm{d}\right) \sigma_{\phi}=\sigma_{\nabla \phi}
$$

The gauged Laplacian

$$
\Delta^{\mathcal{E}}: \mathcal{E} \rightarrow \mathcal{E}, \quad \Delta^{\mathcal{E}}:=-\frac{1}{2} \star \nabla \star \nabla
$$

One finds on equivariant maps \mathcal{L}_{n} :

$$
\begin{aligned}
& \qquad \Delta^{\mathcal{E}} \phi_{\phi}=\frac{1}{2} K^{-4}\left[X_{+} X_{-}+q^{-2} X_{-} X_{+}\right] \triangleright \phi \\
& \Rightarrow \\
& q K^{2} \square_{\nabla}=C_{q}+\frac{1}{4} \\
& \\
& \quad-\frac{1}{2}\left(\frac{q K^{2}-2+q^{-1} K^{-2}}{\left(q-q^{-1}\right)^{2}}+\frac{q^{-1} K^{2}-2+q K^{-2}}{\left(q-q^{-1}\right)^{2}}\right)
\end{aligned}
$$

To diagonalize $\Delta^{\mathcal{E}}$, one decomposes \mathcal{L}_{n} for the right action of $\mathcal{U}_{q}(\mathrm{su}(2))$: this yields the eigenspaces of the Laplacian since

$$
\Delta^{\mathcal{E}}\left(\phi_{f} \triangleleft h\right)=\left(\Delta^{\mathcal{E}} \phi_{f}\right) \triangleleft h, \quad h \in \mathcal{U}_{q}(\operatorname{su}(2))
$$

One has, $\mathcal{L}_{n}=\oplus V_{J}^{(n)}$ with $J=\frac{|n|}{2}+s, s \in \mathbb{N}$
in $V_{J}^{(n)}$ the highest weight elements is $\phi_{n, J}=c^{J-n / 2} a^{* J+n / 2}$, and the $2 J$ basis vectors are obtained via the right action of $\varangle E$

On the vectors $\phi_{n, J, l}=\left(c^{J-n / 2} a^{* J+n / 2}\right) \triangleleft E^{l}$ on finds:

$$
\square_{\nabla} \phi_{n, J, l}=\lambda_{n, J} \phi_{n, J, l},
$$

with the $(2 J+1)$-degenerate energies:

$$
\lambda_{n, J}=q^{-n-1}\left\{\left[J+\frac{1}{2}\right]^{2}-\frac{1}{2}\left(\left[\frac{n+1}{2}\right]^{2}+\left[\frac{n-1}{2}\right]^{2}\right)\right\}
$$

A remarkable fact is that, contrary to what happens in the classical limit, the energies are not symmetric under the exchange $n \leftrightarrow-n$ ('quantization removes degeneracy')

Writing $J=\frac{|n|}{2}+s$, with $s \in \mathbb{N}$, the energies become:

$$
\lambda_{n, s}=q^{-n-1}\left([s][n+s+1]+\frac{1}{2}[n]\right), \quad \text { for } \quad n \geq 0,
$$

with $(n+2 s+1)$ eigenfunctions $\phi_{n, s, l}=\left(c^{s} a^{* n+s}\right) \triangleleft E^{l}$,

$$
\lambda_{n, s}=q^{-n-1}\left([s-n][s+1]+\frac{1}{2}[n]\right), \quad \text { for } \quad n \leq 0,
$$

with $(|n|+2 s+1)$ eigenfunctions $\phi_{n, s, l}=\left(c^{s+|n|} a^{* s}\right) \triangleleft E^{l}$.

A physics parallel with the quantum Hall effect: the integer s labels Landau levels and the $\phi_{n, s, l}$ are the ('one excitation') Laughlin wave functions with energies $\lambda_{n, s}$. The lowest Landau, $s=0$, is $|n|$-degenerate with energy

$$
\lambda_{n, 0}=\frac{1}{2} q^{-n-1}[|n|]
$$

The classical limit. At the value $q=1$, the energies of the gauged Laplacian become

$$
\lambda_{n, s}(q \rightarrow 1)=J(J+1)-\frac{1}{4} n^{2}=|n|\left(s+\frac{1}{2}\right)+s(s+1)
$$

and coincide with the energies of the classical gauged Laplacian. They are symmetric under the exchange $n \leftrightarrow-n$ which corresponds to inverting the direction of the magnetic field.

The winding numbers:

The Chern character has a non trivial component in degree zero $\mathrm{ch}_{0}\left(\mathfrak{P}^{(n)}\right) \in \mathrm{HC}_{0}\left(\mathrm{~S}_{q}^{2}\right)$ given by a (partial) matrix trace:
$\operatorname{ch}_{0}\left(\mathfrak{P}^{(n)}\right)=\left\{\begin{array}{ll}\sum_{\mu=0}^{n} \beta_{n, \mu}\left(c^{*} c\right)^{\mu} \prod_{j=0}^{n-\mu-1}\left(1-q^{-2 j} c^{*} c\right), & n \geq 0 \\ \sum_{\mu=0}^{|n|} \alpha_{n, \mu}\left(c^{*} c\right)^{|n|-\mu} \prod_{j=0}^{\mu-1}\left(1-q^{2 j} c^{*} c\right), & n \leq 0\end{array}\right.$,

Dually, one needs a cyclic 0-cocycle on $A\left(\mathrm{~S}_{q}^{2}\right)$; Masuda et al. :

$$
\mu\left(\left(c^{*} c\right)^{k}\right)=\left(1-q^{2 k}\right)^{-1}, \quad k>0
$$

The pairing results in (Hajac)

$$
\left\langle[\mu],\left[\mathfrak{P}^{(n)}\right]\right\rangle:=\mu\left(\operatorname{ch}_{0}\left(\mathfrak{P}^{(n)}\right)\right)=-n
$$

This integer is a topological quantity that depends only on the bundle, both on the quantum sphere than on its classical limit

In the limit is also computed by integrating the curvature 2-form of a connection (indeed any connection) on the classical sphere

To integrate the gauge curvature on the quantum sphere S_{q}^{2} one needs a 'twisted integral'; furthermore the result is not an integer any longer but rather a q-integer

Integrating the curvature

h the Haar state on $A\left(\mathrm{~S}_{q}^{2}\right) ; \vartheta$ the modular automorphism:

$$
\vartheta(x):=x \triangleleft K^{2}, \quad x \in A\left(\mathrm{~S}_{q}^{2}\right)
$$

then the linear functional

$$
\int: \Omega^{2}\left(A\left(S_{q}^{2}\right)\right) \rightarrow \mathbb{C}, \quad \int x \omega_{+} \wedge \omega_{-}:=h(x)
$$

defines a non-trivial ϑ-twisted cyclic 2-cocycle on $A\left(\mathrm{~S}_{q}^{2}\right)$

$$
\begin{gathered}
\tau\left(a_{0}, a_{1}, a_{2}\right)=\int a_{0} \wedge \mathrm{~d} a_{1} \wedge \mathrm{~d} a_{2} \\
b_{\vartheta} \tau=0, \quad \lambda_{\vartheta} \tau=\tau
\end{gathered}
$$

Schmüdgen-Wagner
b_{ϑ} the ϑ-twisted coboundary operator:

$$
\begin{aligned}
\left(b_{\vartheta} \tau\right)\left(f_{0}, f_{1}, f_{2}, f_{3}\right):=\tau\left(f_{0} f_{1}\right. & \left., f_{2}, f_{3}\right)-\tau\left(f_{0}, f_{1} f_{2}, f_{3}\right) \\
& +\tau\left(f_{0}, f_{1}, f_{2} f_{3}\right)-\tau\left(\vartheta\left(f_{3}\right) f_{0}, f_{1}, f_{2}\right)
\end{aligned}
$$

λ_{ϑ} is the ϑ-twisted cyclicity operator:

$$
\left(\lambda_{\vartheta} \tau\right)\left(f_{0}, f_{1}, f_{2}\right):=\lambda_{\tau}\left(\vartheta\left(f_{2}\right), f_{0}, f_{1}\right)
$$

$[\tau] \in \mathrm{HC}_{\vartheta}^{2}\left(\mathrm{~S}_{q}^{2}\right)$
the degree 2 twisted cyclic cohomology of the sphere S_{q}^{2}
Couple τ with the bundles over S_{q}^{2}, via a twisted Chern character
It is enough to consider the lowest term, given by a twisted or 'quantum trace'

If $M \in \operatorname{Mat}_{m+1}\left(A\left(\mathrm{~S}_{q}^{2}\right)\right)$, its (partial) quantum trace
$\operatorname{tr}_{\mathrm{q}}(M):=\operatorname{tr}\left(M \sigma_{m / 2}\left(K^{2}\right)\right):=\sum_{j l} M_{j l}\left(\sigma_{m / 2}\left(K^{2}\right)\right)_{l j} \quad \in \quad A\left(\mathrm{~S}_{q}^{2}\right)$
$\sigma_{m / 2}\left(K^{2}\right)$ is the spin $J=m / 2$ representation of $\mathcal{U}_{q}(\operatorname{su}(2))$
The q-trace is 'twisted' by the automorphism ϑ

$$
\operatorname{tr}_{\mathrm{q}}\left(M_{1} M_{2}\right)=\operatorname{tr}_{\mathrm{q}}\left(\left(M_{2} \triangleleft K^{2}\right) M_{1}\right)=\operatorname{tr}_{\mathrm{q}}\left(\vartheta\left(M_{2}\right) M_{1}\right)
$$

One finds ($n>0$ say):

$$
\begin{gathered}
F_{\nabla}=\mathfrak{p}^{(n)} \mathrm{d} \mathfrak{p}^{(n)} \wedge \mathrm{d} \mathfrak{p}^{(n)}=-q^{-n-1}[n] \mathfrak{p}^{(n)} \omega_{+} \wedge \omega_{-} \\
\operatorname{tr}_{\mathrm{q}}\left(\mathfrak{p}^{(n)}\right):=\operatorname{tr}\left(\pi_{n / 2}\left(K^{2}\right) \mathfrak{p}^{(n)}\right)=q^{n}
\end{gathered}
$$

$\pi_{n / 2}$ is the spin $n / 2$ representation of $\mathcal{U}_{q}(\mathrm{su}(2))$

$$
\begin{aligned}
\Rightarrow \quad(q \tau) \circ \operatorname{tr}_{\mathfrak{q}}\left(\mathfrak{p}^{(n)}, \mathfrak{p}^{(n)}, \mathfrak{p}^{(n)}\right) & =q \int \operatorname{tr}_{\mathfrak{q}}\left(\mathfrak{p}^{(n)} \mathrm{dp}^{(n)} \wedge \mathrm{dp}^{(n)}\right) \\
& =q \int \operatorname{tr}_{\mathrm{q}} F_{\nabla}=-[n]
\end{aligned}
$$

it is the q-index of the Dirac operator on S_{q}^{2}
Wagner, Neshveyev-Tuset

A Hopf-Galois extension with $S U_{q}(2)$ as 'structure quantum group'
$S U_{q}(2)$ co-acts on a quantum sphere S_{q}^{7}
coming from the symplectic groups $S p_{q}(2)$
the co-fixed-point subalgebra is a quantum sphere S_{q}^{4}

GL, C. Pagani, C. Reina, CMP 263 (2006) 65-88

A noncommutative Hopf fibration on S_{θ}^{4}
θ a real parameter, the coordinate algebra $A\left(S_{\theta}^{4}\right)$ of the sphere S_{θ}^{4} is generated by elements $z_{0}=z_{0}^{*}, z_{j}, z_{j}^{*}, j=1,2$, with
$z_{\mu} z_{\nu}=\lambda_{\mu \nu} z_{\nu} z_{\mu}, \quad z_{\mu} z_{\nu}^{*}=\lambda_{\nu \mu} z_{\nu} z_{\mu}^{*}, \quad z_{\mu}^{*} z_{\nu}^{*}=\lambda_{\mu \nu} z_{\nu}^{*} z_{\mu}^{*}, \quad \mu, \nu=0,1,2$, and deformation parameters

$$
\lambda_{12}=\bar{\lambda}_{21}=: \lambda=e^{2 \pi \mathrm{i} \theta}, \quad \lambda_{j 0}=\lambda_{0 j}=1, \quad j=1,2
$$

also: $\sum_{\mu} z_{\mu}^{*} z_{\mu}=1$

The sphere S_{θ}^{4} comes with a noncommutative vector bundles endowed with an anti-self-dual gauge connection
$\mathrm{SU}(2)$ noncommutative principal fibration $S_{\theta^{\prime}}^{7} \rightarrow S_{\theta}^{4}$

With $\lambda_{a b}^{\prime}=e^{2 \pi \mathrm{i} \theta_{a b}^{\prime}} ;\left(\theta_{a b}^{\prime}=-\theta_{b a}^{\prime}\right)$, the coordinate algebra $A\left(S_{\theta^{\prime}}^{7}\right)$ of the sphere $S_{\theta^{\prime}}^{7}$: generators $\psi_{a}, \psi_{a}^{*}, a=1, \ldots, 4$, relations

$$
\psi_{a} \psi_{b}=\lambda_{a b} \psi_{b} \psi_{a}, \quad \psi_{a} \psi_{b}^{*}=\lambda_{b a} \psi_{b}^{*} \psi_{a}, \quad \psi_{a}^{*} \psi_{a}^{*}=\lambda_{a b} \psi_{b}^{*} \psi_{a}^{*}
$$

$\sum_{a} \psi_{a}^{*} \psi_{a}=1$.
The choice

$$
\lambda_{a b}^{\prime}=\left(\begin{array}{cccc}
1 & 1 & \bar{\mu} & \mu \\
1 & 1 & \mu & \bar{\mu} \\
\mu & \bar{\mu} & 1 & 1 \\
\bar{\mu} & \mu & 1 & 1
\end{array}\right), \quad \mu=\sqrt{\lambda},
$$

is the only one that allows the algebra $A\left(S_{\theta^{\prime}}^{7}\right)$ to carry an action of $\mathrm{SU}(2)$ by automorphisms s. t .

$$
A\left(S_{\theta^{\prime}}^{7}\right)^{\mathrm{SU}(2)}=A\left(S_{\theta}^{4}\right)
$$

A matrix-valued function on $A\left(S_{\theta^{\prime}}^{7}\right)$

$$
\Psi=\left(\begin{array}{cccc}
\psi_{1} & \psi_{2} & \psi_{3} & \psi_{4} \\
-\psi_{2}^{*} & \psi_{1}^{*} & -\psi_{4}^{*} & \psi_{3}^{*}
\end{array}\right)^{t}, \quad \psi^{\dagger} \Psi=\mathbb{I}_{2}
$$

$p=\Psi \Psi^{\dagger}$ is a projection, $p^{2}=p=p^{\dagger}$
its entries are (the generating) elements of $A\left(S_{\theta}^{4}\right)$

$$
p=\frac{1}{2}\left(\begin{array}{cccc}
1+z_{0} & 0 & z_{1} & -\bar{\mu} z_{2}^{*} \\
0 & 1+z_{0} & z_{2} & \mu z_{1}^{*} \\
z_{1}^{*} & z_{2}^{*} & 1-z_{0} & 0 \\
-\mu z_{2} & \bar{\mu} z_{1} & 0 & 1-z_{0}
\end{array}\right)
$$

The z_{μ} 's are quadratic in the ψ_{a} 's.
A vector bundle E over S_{θ}^{4} :

$$
\mathcal{E}=\Gamma\left(S_{\theta}^{4}, E\right)=p\left[A\left(S_{\theta}^{4}\right)\right]^{4}
$$

the connection $\nabla=p \circ \mathrm{~d}$ has anti-selfdual curvature $F=p(\mathrm{~d} p)^{2}$:

$$
*_{\theta} F=-F
$$

The $s u(2)$-valued connection 1 form on $S_{\theta^{\prime}}^{7}$ is most simply written in terms of the matrix-valued function Ψ :

$$
\omega=\Psi^{\dagger} d \psi
$$

The spin-Hall system on S_{θ}^{4}
The Hamiltonian of a "single particle" moving on the sphere S_{θ}^{4} and coupled to the gauge field ω :

$$
H_{\omega}=-(\mathrm{d}+\omega)^{*}(\mathrm{~d}+\omega)
$$

The gauge potential ω in an arbitrary representation J of $s u(2)$. The spin label $J \in \frac{1}{2} \mathbb{N}$ and the Casimir operator has value

$$
C_{s u(2)}=J(J+1)
$$

Expand the covariant derivative: $D=\mathrm{d} z_{\mu} D_{\mu}+\mathrm{d} z_{\mu}^{*} D_{\mu}^{*}$.
The Hamiltonian becomes,

$$
H_{\omega}=\widetilde{H}_{1}^{2}+\widetilde{H}_{2}^{2}+\sum_{r^{+}}\left(\widetilde{E}_{r} \widetilde{E}_{-r}+\widetilde{E}_{-r} \widetilde{E}_{r}\right)
$$

the operators \widetilde{H}_{j} and \widetilde{E}_{r} are 'gauged twisted derivations'
$H_{\omega=0}$ is the Casimir operator

$$
C=H_{1}^{2}+H_{2}^{2}+\sum_{r^{+}}\left(E_{r} E_{-r}+E_{-r} E_{r}\right)
$$

of the twisted algebra $U_{\theta}(s o(5))$.
In general, one needs also the curvature F. Expand

$$
F=\mathrm{d} z_{0} \mathrm{~d} z_{0} F_{00}+\frac{1}{2} \mathrm{~d} z_{\varepsilon_{\mu} \mu} \mathrm{d} z_{\varepsilon_{\nu \nu}} F_{\varepsilon_{\mu} \mu, \varepsilon_{\nu} \nu}
$$

with ε_{μ} and ε_{ν} taking values ± 1 and $\mathrm{d} z_{-\mu}=\mathrm{d} z_{\mu}^{*}$.
The operators
$H_{1}=\widetilde{H}_{1}-F_{00}, \quad H_{2}=\widetilde{H}_{2}-F_{00}, \quad E_{\varepsilon_{\mu} \mu, \varepsilon_{\nu} \nu}=\widetilde{E}_{\varepsilon_{\mu} \mu, \varepsilon_{\nu}}-F_{\varepsilon_{\mu} \mu, \varepsilon_{\nu} \nu}$
close the commutation relations of the Lie algebra so(5);
The operators $F_{\varepsilon_{\mu \mu}, \varepsilon_{\nu} \nu}$ carry a spin representation labelled by J.

With this, one finds that

$$
H_{\omega}=C_{U_{\theta}(s o(5))}-2 C_{s u(2)}
$$

Easy to diagonalize from representation theory. Two fundamental weights $W^{1}=\frac{1}{2}(1,1)$ and $W^{2}=(1,0)$; each representation is labelled by two integers s, n, with highest weight $W=s W^{1}+n W^{2}$ and has dimension

$$
d(s, n)=(1+s)(1+n)\left(1+\frac{s+n}{2}\right)\left(1+\frac{s+2 n}{3}\right)
$$

The integer s measures the "spinorial content" ; a spin label J, $s=2 J$, takes integer and half integer values. The Casimir is :
$C(s, n)=\frac{1}{2}\left(s^{2}+2 n^{2}+2 s n\right)+2 s+3 n$.

The eigenvalues of the Hamiltonian H_{ω} are the energies

$$
\begin{aligned}
E(J, n) & =C(s=2 J, n)-2 J(J+1) \\
& =n^{2}+n(2 J+3)+2 J
\end{aligned}
$$

with degeneracy $d(s=2 J, n)$.
The integer n labels Landau levels and J, which plays the role of the magnetic flux, label the degeneracy in each Landau level.

The ground state for a given J is obtained when $n=0$; energy

$$
E_{0}(J)=2 J
$$

with degeneration

$$
d_{0}(J)=d(s=2 J, n=0)=\frac{1}{6}(1+2 J)(2+2 J)(3+2 J)
$$

The representations of $U_{\theta}(s o(5))$, also gives wave functions.
For the ground state: the spinor $\psi=\left(\psi_{1}, \ldots, \psi_{4}\right)$ is an eigenfunction of the Hamiltonian with $J=\frac{1}{2}$, the fundamental spinorial representation having highest weight vector ψ_{4} :

$$
H_{1}\left(\psi_{4}\right)=\frac{1}{2}=H_{2}\left(\psi_{4}\right) .
$$

H_{1}, H_{2} are the Cartan elements.
A basis of eigenfunctions for the ground state, - with is the representation with $s=2 J$ and $n=0-$ is obtained by the corresponding highest weight vector, $\Phi=\left(\psi_{4}\right)^{2 J}$, by repeated action of the lowering operators E_{r} of $U_{\theta}(s o(5))$.

