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Math motivation:

(M, g) a cmpt Riemannian manifold
P — M a principal bundle with cmpt structure group G
a connection on P with covariant derivative V

(p,V) a representation of G ; the identification of sections of
the associated vector bundle E = P xoV on M with equivariant
maps from P to V:

FT(M,E) ~C*®(P,V)q CC®(P)®V

The Laplacians,

AP = —(dd* + d*d) on P: it acts on C°(P)

AE = (VV* 4+ V*V) on E; it acts on M'(M, E)



are related by

AP =(AP@1+1w CG>‘COO(PV)G

Co=,pler)? € End(E) ; the quadratic Casimir op. of G

ALY is the gauged Laplacian:

AM AP as d— V

For P = H a cmpt group
AP = Cy

and diagonalization of A% is easy



Phys motivation:

The Laughlin wave functions for the fractional quantum Hall
effect (on the plane) is not translationally invariant.

T his problem was overcome by Haldane with a model on a sphere
with a magnetic monopole at the origin.

T he full Euclidean group of symmetries of the plane is recovered
from the rotation group SO(3) of symmetries of the sphere.

One is considering the Hopf fibration of the sphere S3 over the
sphere S2 with U(1) as gauge (or structure) group

and needs to diagonalize the
Laplacian of 52 gauged with the monopole connection



Two classes of examples:

g-spaces: manly the monopoles over A(Sg)

f-spaces: manly instantons over A(Sg)

but also the nctorus

GL, C Reina, A Zampini

Gauged Laplacians on quantum Hopf bundles, arXiv:0801.3376
GL,

Spin-Hall effect with quantum group symmetries Lett. Math.

Phys., 75 (2006) 187—200

and work in progress



The geometry of quantum SU4(2)
The algebra:

With 0 < g < 1, let A = A(SU4(2)) be the x-algebra generated
by a and ¢, with relations:

*

ac = qgca, ac’ = qc a, cct = c'c,
* * * 2 x __
aa+cc=aa" +q°cct =1

these state that the defining matrix is unitary

__(a —qc*
v=(e )



A(SU4(2)) is a Hopf x-algebra (a quantum group) with

e coproduct:

e Counit;:

e antipode:



The quantum universal envelopping algebra U = Uy(su(2)) is the
x-algebra generated by FE, F, K, with K invertible, and relations

KE =qEK, KF=q¢ 'FK, K?°-K ?=(q—q Y)(EF-FE),

The x-structure: K*=K, F*=F, FE*=F.

The Hopf x-algebra structure
e Ccoproduct:

AK=K®K, AF=FK+K '9F AE=EQK+K 1QE
e counit:

e(K)=1, €e(F)=0, €eF)=0
e antipode:

SK=K 1, SE=-gE, SF=—-q¢lF



The Casimir operator

1. 1 1
Cq=(a—-q¢ ) %(2K —q 2K )+ FE -
The action of 4 on A

A natural bilinear pairing between & and A,
<K7a>:q 27 <K,CL >:q27 <E7C>:17 <F7C>:_q

gives commuting left and right &/-module algebra structures on A:

h>x = 56(1) <h,$(2)>, rdh = <h,£€(1)> w(z)

with notation A(z) = x(1) ® z(y)



A left-covariant calculus on SU4(2); it is three dimensional

The quantum tangent space Xsuq(z) IS generated by:

_ 1-K*
==,

X, X_=q1?FK, X, =q¢'/?EK

The dual basis for the one-forms: Q(SU,(2))

wy = a*da + c*dc, w_ = c*da*™ — ga*dc", w4 = adc — gcda

comes with left-invariance: @7 (ws) =1 ® ws;

with &7 (zdz’) = A(z)(id @ d)A(z)



T he exterior derivative is expressed as

dr = (XsbD x)ws

Higher dimensional forms:

dwy = —w_ A W4

dw =q2(1—|—q2)wz/\w_|_, dw_ = —(1—|—q_2)wz/\w_

commutation relations among forms



A U(1) principal bundle.

On A(SU4(2)) a right coaction of U(1) =C < z, 271 >:
AR A(SU4(2)) — A(SUq(2)) @ U(1)

a —qc* a —qc*\ - (z O
anle )= () el6 )

the subalgebra of coinvariants

A(ST) :={p € A(SUy(2)) , Ar(p) =p® 1}

is Podles standard sphere. Possible generators:

1 1
b_ = —q(1+¢%)"2 ac’, by = q*(1+¢°) 2 ca*
bg := aa* — (1 +¢°)~*



A left coaction of A(SU4(2)) on A(S3):

A A(SE) — A(SUq(2)) ® A(S?),
Ab)=a’@b_—(1+¢ 2)b_Qby+c= by
Abo) = (1 +¢DZac®@b_ 4+ (14 q 2)bg @ bp — (1 + ¢ 2)2c*a* @ by

Alby) =¢?c? @b+ (1+q 2)by @by +a*? @b



The left action of the group-like element K on A(SU4(2)) defines
(modules of sections) of line bundles over ng

Ln = {x € A(SU4(2)) : K>z =q"?z}

this has winding number n, with n € Z.

In particular A(S7) = Lg. Also: A(SU4(2)) = ®&nln

LY C Ly, LnLm C Lytm
El>£n C £n+2, F|>£n C Ln_Q

Ln<h C Ln, h € Ug(su(2))



The corresponding projections:
For n > 0: p(n) = |\u(n)> <\u(n)‘

|\|;(n)> ~ g

For n < O: p(n) = |1Tj(n)> <\Tj(n)‘

Let &n := (A(S2))"T1p() a left A(S2)-modules isomorphism:

Ln —— &En, ¢f— 0p 1= ¢y <W(n)‘ = (f]p"™,
with inverse

En — Ln, op={flp(" — ¢;:= <f,\|f(n)>,
and similar maps for the case n < 0.



The differential calculus on ng

QA(S])) ~ A(S9) @ (L2 ® L) ® A(S?)

In particular

QA =QteQ ~L Lo
q> q>

ob_ = I c*2w+, Obg = —q° c'a*wy, Oby = ! a*2w+
(1+ ¢2)2 (14 ¢<)2

— 1 2 = = q2 2

ob_ = ra°w_, 0bp=acw_, Oby = T C W
(144¢°%)2 (144¢%)2

QT is generated by {c*?, c*a*, a*?}wy = {9b_, Obg, Oby }:

Obo = (¢ +q b-0by — (q+q°)by b



Q™ is generated by {c?,ca,a?}w_ = {Ob_,dbg, b, }:

9bo = (71 + q)b-9b— — (¢7> + ¢ >)b_8b

d = 0+ 0, der = (Xypbx)wy + (X_p>x)w_

Ox = (Xyvz)wy, OJr=(X_p>x)w_

AlsoO,

Q?(A(S7)) = A(S) (wy Aw—) = (wy Aw_)A(S?)



The calculus on Sg can be realized via the Dirac operator

d=1[D, - ]

D = Djrqe

Dabrowski-Sitarz , Schmudgen-Wagner



The Laplacian operator on Sg

First, a Hodge x-operator on the forms

*1l=wy ANw_, *(wpr Aw_) =1
x0f = Of, *x0f = —0f

Then the Laplacian operator on Sg is defined as:

ASif = —Lxdxdf
One finds also

ASif =_Bof = 0df

2 _ _
ASTf = %[X_|_X_—|—q 2X_X+} >f=q 1FE> f



Easy to diagonalise; it is the Casimir operator restrict to A(Sg):

2 _
A% =Cy gy T GBI

2
Note also that: A>T ~ (Djrge)?

Decompose A(SZ) for the right action of Uy(su(2)):
this vields the eigenspaces of the Laplacian since

ASi(fah) = (ASTf)<ah, heUy(su(2))



One has,

A(ST) = @ jeanVy

the lowest weight vector of V; is a’c*’/ and a basis of V; is given
by (a’/c*/) < E™ with m =0,1,...,2J.

Also the eigenvalues are

Ay =q JIJ + 1)

a direct computation gives

ASi(a? Ty = ¢~ ([T + 1])a’ e



Enter the connection

a calculus on U(1):
dz = zw;, dz—1 = —q2z_1wz, Wy = 2z 1dz

Wyz = q_Qsz, wzz_l = q2z_1wz, zdz = qzdzz

A principal connection; a right invariant splitting:

ver

_ h .
quq(z) = geﬂq(z) @ngq(z)v n: QSUq(2) — QSUq(2)

with AV N = (Nwia) Al



Now, A%)(wz) = w,®1
a natural choice of a connection is to define w, to be vertical:

I_Iz(CUz) — Wz , rlz((x):l:) — O

The corresponding covariant derivative on co-equivariant maps:
Vo = (1—-T1,)do¢
explicitly
Vo= (Xypo)wp+(X_>od)w

On the sections: £~ L~ p() [A(Sg)]n

VO'¢ L= (p(n)d)O'qb = O0V¢



The gauged Laplacian

Ag:g—u‘!, Ag:z—%*V*V

One finds on equivariant maps Lny:

A = LK X X_+ q_QX_X+] > ¢

=

gK*Oy = Cy+
| (qK2 —2+q¢ 'K? ¢ 'K*-2+ qK—2>
2

(g—q1)2 + (g—q1)2




To diagonalize Ag, one decomposes L, for the right action of
Ug(su(2)): this yields the eigenspaces of the Laplacian since

A8 (prah) = (Apr)ah, h e Uy(su(2))

One has, £, =@ V™ with J =12 45 seN

in V" the highest weight elements is ¢,, ; = ¢/~"/2¢*/+7/2 and
the 2J basis vectors are obtained via the right action of <F

On the vectors ¢, 7; = (¢/7"/2a*/*7/2) 9 E! on finds:

Dvgbn,J,l — An,Jan,J,la
with the (2J 4+ 1)-degenerate energies:

Mg =a T4 - 5 (PE2 4 151) )



A remarkable fact is that, contrary to what happens in the clas-
sical limit, the energies are not symmetric under the exchange
n < —n (‘quantization removes degeneracy’)

Writing J = %' + s, with s € N, the energies become:

ns=q " ([slln+s+1143[n]),  for n>0,
with (n 4 2s+ 1) eigenfunctions ¢,, ,; = (c*a*"T$) < EI,

Mns=q "1 ([s—nlls+ 11+ 3n]),  for n<O,

with (| n | +2s + 1) eigenfunctions ¢, ,; = (c*T"la*$) < EL.



A physics parallel with the quantum Hall effect: the integer s la-
bels Landau levels and the ¢, ¢ ; are the (‘one excitation’) Laugh-
lin wave functions with energies A\n s. The lowest Landau, s = 0,
is | n |-degenerate with energy

—n—1
Ao =3¢ " n|l

The classical limit. At the value ¢ = 1, the energies of the
gauged Laplacian become

Ans(g— 1) = J(J+1) = zn® =|n|(s+3) +s(s+1)

and coincide with the energies of the classical gauged Lapla-
cian. They are symmetric under the exchange n +— —n which
corresponds to inverting the direction of the magnetic field.



The winding numbers:

The Chern character has a non trivial component in degree zero
cho(P(W) € HCO(Sg) given by a (partial) matrix trace:

(27 Bru(c P I (1 —q %c*e),  n>0
cho(P) =

Z'J"':o an,u(c*e)nl=+ H";—L;é(l — q%c*c), n <0

\

Dually, one needs a cyclic 0-cocycle on A(Sg) - Masuda et al. :

L4 ((c*c)k) = (1 - qzk)_l, k> 0.



The pairing results in (Hajac)

([u], IBM]) := g (cho(PU)) = —n

This integer is a topological quantity that depends only on the
bundle, both on the quantum sphere than on its classical limit

In the limit is also computed by integrating the curvature 2-form
of a connection (indeed any connection) on the classical sphere

To integrate the gauge curvature on the quantum sphere Sg one
needs a ‘twisted integral’; furthermore the result is not an integer
any longer but rather a g-integer



Integrating the curvature

h the Haar state on A(Sg) - 9 the modular automorphism:

I(z) = z<aK?, x € A(Sg)

then the linear functional

/  Q2(A(S2)) — C, /x wi Aw_ = h(z)

defines a non-trivial ¥-twisted cyclic 2-cocycle on A(Sg)

7(apg,a1,an) = /ao A daq A das

by = O, AT =T

Schmudgen-Wagner



by the ¥-twisted coboundary operator:

(by7)(fo, f1, f2, [3) := 7(fof1, f2, f3) — 7(fo, f1f2, f3)
+ 7(fo, f1, f2f3) — 7(¥(f3) fo, f1, f2),

Ag IS the ¥-twisted cyclicity operator:

(A7) (fo, f1, f2) = Ar(F(f2), fo, f1)

[7] € HC5(S2)
the degree 2 twisted cyclic cohomology of the sphere Sg

Couple 7 with the bundles over 52, via a twisted Chern character

It is enough to consider the lowest term, given by a twisted or
‘quantum trace’



If M € I\/Iatm_|_1(A(S§)), its (partial) quantum trace

trq(M) 1= tr (MGm/z(Kz)) =2 M (Om/Q(KQ))lj e A(S?)

0 2(K?) is the spin J = m/2 representation of Uy (su(2))

The g-trace is ‘twisted’ by the automorphism

trq(M1 M) = trq ((Mz < K2) My ) = trq (9(M2) M)



One finds (n > 0 say):
Fy = p(n) dp(n) A dp(n) = —q " 1n] p(n) w4 A w_

tr(pt™) i= tr (m, 2(K?) p™) = ¢

m,/2 IS the spin n/2 representation of U,(su(2))

= () otrq (0, pM,pM) =g [ trq (p™ dp™ A ap(™)

— g [ trq Fy = ~[n]

it is the g-index of the Dirac operator on Sg
Wagner, Neshveyev-Tuset



A Hopf-Galois extension with SU,(2) as ‘structure quantum group’
SU,(2) co-acts on a quantum sphere S/

coming from the symplectic groups Spq(2)

the co-fixed-point subalgebra is a quantum sphere Sf]L

GL, C. Pagani, C. Reina, CMP 263 (2006) 65-88



A noncommutative Hopf fibration on Sg

0 a real parameter, the coordinate algebra A(Sg) of the sphere
Sg is generated by elements zg = 25, 2 25, § = 1,2, with

Zutv = Auwzvzus 2z, = Mopvzy, 2%, = Awzpzy,,  p v =0,1,2,

and deformation parameters

A2 =Xp1 =1 A=¢2"17 Ajo =Ao; =1, =12

also: >, z,2u =1

The sphere Sg' comes with a noncommutative vector bundles
endowed with an anti-self-dual gauge connection

SU(2) noncommutative principal fibration Sj, — Sy



With X, = 2105, - (0!, = —6; ), the coordinate algebra A(Sg,)
of the sphere 597,: generators g, vk, a =1,...,4, relations

Yathp = Agppa, wawg — Aba%"wa, w;w; — Aab¢g¢za
Za %’Z% = 1.

T he choice

1
! 1 =V
l;l, Y Y

= =T T
R RrTIX

TTIRVLR

I

is the only one that allows the algebra A(Sg,) to carry an action
of SU(2) by automorphisms s. t.

A(SHHSYP) = A(sh



A matrix-valued function on A(Sg,

t
_ [ Y1 Y2 Y3 Yy v —
V= <—¢§ R wé) - YVER

p = \UWT IS a projection, p2 =p= pT

its entries are (the generating) elements of A(Sg)

1+ 20 0 21 — [z
p=1 0 1+20 2o pz]
2 zik ZE 1— 20 0 ’
—pz2 P21 0 1-=x

The z,'s are quadratic in the v4's.

A vector bundle E over Sg: E=T(Sy,E) = plA(S)]*



the connection V = pod has anti-selfdual curvature F = p(dp)Z:

*QF = —F

The su(2)-valued connection 1 form on 597, is most simply written
in terms of the matrix-valued function W :

w= Widw



The spin-Hall system on Sy

The Hamiltonian of a ‘single particle” moving on the sphere Sg
and coupled to the gauge field w :

Hy = —(d+w)"(d+w),

The gauge potential w in an arbitrary representation J of su(2).
The spin label J & %N and the Casimir operator has value

Expand the covariant derivative: D = dz,Dy, + dz;, D},
‘The Hamiltonian becomes,

H, = H{ + H5 + > (ErE_; + E_+Ey)
_|_
‘



—

the operators Hj and E’fr are ‘gauged twisted derivations’

H, ,—o is the Casimir operator

C=Hi+H5+)Y (E+E_, + E_,Ey),
_|_
N

of the twisted algebra Uy(so(5)).
In general, one needs also the curvature F. Expand

F = dzgd2qFoo + 3d2e,ud2e,0 Fepp e
with e, and e, taking values +1 and dz_, = dz},.

The operators

Hy = ﬁl_F007 Hy = ﬁz—Foo, Esuu,syl/ — Eeﬂﬂ,syv—Fsﬂu,syu
close the commutation relations of the Lie algebra so(5);

The operators F&-W,EW carry a spin representation labelled by J.



With this, one finds that

Ho = Cupy(so(s)) = 2Csu(2):

Easy to diagonalize from representation theory. Two fundamen-
tal weights W1 = 3(1,1) and W2 = (1,0) ; each representation is
labelled by two integers s, n, with highest weight W = sWlqnw?

and has dimension
2
d(s,m) = 1+ )1 +m) 1+ T+

The integer s measures the ‘“spinorial content” ; a spin label J,
s = 2.J, takes integer and half integer values. The Casimir is :

C(s,n) = %(32 + 2n2 + 2sn) 4+ 2s + 3n.



T he eigenvalues of the Hamiltonian H, are the energies

E(J,n) =C(s=2J,n) —2J(J+1)
=n? 4+ n(2J 4+ 3) +2J

with degeneracy d(s = 2J,n).

The integer n labels Landau levels and J, which plays the role

of the magnetic flux, label the degeneracy in each Landau level.

The ground state for a given J is obtained when n = 0O; energy
Eo(J) =2J

with degeneration

do(J) = d(s = 2J,n = 0) = é(1 F20)(2 4+ 20)(3 + 2J).



The representations of Uy(so(5)), also gives wave functions.

For the ground state: the spinor ¢ = (41,...,14) iS an eigenfunc-
tion of the Hamiltonian with J = % the fundamental spinorial
representation having highest weight vector 4:

Hi(¢a) = 3 = Hao(ya).

Hq, H> are the Cartan elements.

A Dbasis of eigenfunctions for the ground state, — with is the
representation with s = 2J and n = 0 — is obtained by the
corresponding highest weight vector, ® = (v4)2/, by repeated
action of the lowering operators E, of Uy(so(5)).



