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Math motivation:

(M, g) a cmpt Riemannian manifold

P →M a principal bundle with cmpt structure group G

a connection on P with covariant derivative ∇

(ρ, V ) a representation of G ; the identification of sections of

the associated vector bundle E = P ×G V on M with equivariant

maps from P to V :

Γ(M,E) ' C∞(P, V )G ⊂ C∞(P )⊗ V

The Laplacians,

∆P = −(dd∗+ d∗d) on P ; it acts on C∞(P )

∆E = −(∇∇∗+∇∗∇) on E; it acts on Γ(M,E)



are related by

∆E =
(
∆P ⊗ 1 + 1⊗ CG

)∣∣∣C∞(P,V )G

CG =
∑
a ρ(ea)2 ∈ End(E) ; the quadratic Casimir op. of G

∆E is the gauged Laplacian:

∆M 7→∆E as d 7→ ∇

For P = H a cmpt group

∆P = CH

and diagonalization of ∆E is easy



Phys motivation:

The Laughlin wave functions for the fractional quantum Hall

effect (on the plane) is not translationally invariant.

This problem was overcome by Haldane with a model on a sphere

with a magnetic monopole at the origin.

The full Euclidean group of symmetries of the plane is recovered

from the rotation group SO(3) of symmetries of the sphere.

One is considering the Hopf fibration of the sphere S3 over the

sphere S2 with U(1) as gauge (or structure) group

and needs to diagonalize the

Laplacian of S2 gauged with the monopole connection



Two classes of examples:

q-spaces: manly the monopoles over A(S2
q )

θ-spaces: manly instantons over A(S4
θ )

but also the nctorus

GL, C Reina, A Zampini
Gauged Laplacians on quantum Hopf bundles, arXiv:0801.3376

GL,
Spin-Hall effect with quantum group symmetries Lett. Math.
Phys., 75 (2006) 187–200

and work in progress



The geometry of quantum SUq(2)

The algebra:

With 0 < q < 1, let A = A(SUq(2)) be the ∗-algebra generated

by a and c, with relations:

ac = qca, ac∗ = qc∗a, cc∗ = c∗c,

a∗a+ c∗c = aa∗+ q2cc∗ = 1

these state that the defining matrix is unitary

U =

(
a −qc∗
c a∗

)



A(SUq(2)) is a Hopf ∗-algebra (a quantum group) with

• coproduct:

∆

(
a −qc∗
c a∗

)
:=

(
a −qc∗
c a∗

)
.
⊗
(
a −qc∗
c a∗

)

• counit:

ε

(
a −qc∗
c a∗

)
:=

(
1 0
0 1

)

• antipode:

S

(
a −qc∗
c a∗

)
=

(
a∗ c∗

−qc a

)



The quantum universal envelopping algebra U = Uq(su(2)) is the

∗-algebra generated by E,F,K, with K invertible, and relations

KE = qEK, KF = q−1FK, K2 −K−2 = (q − q−1)(EF − FE),

The ∗-structure: K∗ = K, F ∗ = E, E∗ = F .

The Hopf ∗-algebra structure

• coproduct:

∆K = K⊗K, ∆F = F⊗K+K−1⊗F, ∆E = E⊗K+K−1⊗E

• counit:

ε(K) = 1, ε(F ) = 0, ε(E) = 0

• antipode:

SK = K−1, SE = −qE, SF = −q−1F



The Casimir operator

Cq = (q − q−1)−2(q
1
2K − q−

1
2K−1)2 + FE − 1

4

The action of U on A

A natural bilinear pairing between U and A,

〈K, a〉 = q−
1
2, 〈K, a∗〉 = q

1
2, 〈E, c〉 = 1, 〈F, c〉 = −q−1

gives commuting left and right U-module algebra structures on A:

h . x := x(1)

〈
h, x(2)

〉
, x / h :=

〈
h, x(1)

〉
x(2)

with notation ∆(x) = x(1) ⊗ x(2)



A left-covariant calculus on SUq(2); it is three dimensional

The quantum tangent space XSUq(2) is generated by:

Xz =
1−K4

1− q−2
, X− = q−1/2FK, X+ = q1/2EK

The dual basis for the one-forms: Ω1(SUq(2))

ωz = a∗da+ c∗dc, ω− = c∗da∗ − qa∗dc∗, ω+ = adc− qcda

comes with left-invariance: ΦL(ωs) = 1⊗ ωs;

with ΦL(xdx′) = ∆(x)(id⊗ d)∆(x′)



The exterior derivative is expressed as

dx = (Xs . x)ωs

Higher dimensional forms:

dωz = −ω− ∧ ω+

dω+ = q2(1 + q2)ωz ∧ ω+, dω− = −(1 + q−2)ωz ∧ ω−

commutation relations among forms



A U(1) principal bundle.

On A(SUq(2)) a right coaction of U(1) = C < z, z−1 >:

∆R : A(SUq(2)) → A(SUq(2))⊗ U(1)

∆R

(
a −qc∗
c a∗

)
=

(
a −qc∗
c a∗

)
.
⊗
(
z 0
0 z−1

)

the subalgebra of coinvariants

A(S2
q ) := {p ∈ A(SUq(2)) , ∆R(p) = p⊗ 1}

is Podleś standard sphere. Possible generators:

b− := −q(1 + q2)−
1
2 ac∗, b+ := q2(1 + q2)−

1
2 ca∗

b0 := aa∗ − (1 + q2)−1



A left coaction of A(SUq(2)) on A(S2
q ):

∆ : A(S2
q )→ A(SUq(2))⊗A(S2

q ),

∆(b−) = a2 ⊗ b− − (1 + q−2)b− ⊗ b0 + c∗2 ⊗ b+

∆(b0) = (1 + q2)
1
2ac⊗ b−+ (1 + q−2)b0 ⊗ b0 − (1 + q−2)

1
2c∗a∗ ⊗ b+

∆(b+) = q2c2 ⊗ b−+ (1 + q−2)b+ ⊗ b0 + a∗2 ⊗ b+



The left action of the group-like element K on A(SUq(2)) defines

(modules of sections) of line bundles over S2
q :

Ln := {x ∈ A(SUq(2)) : K . x = qn/2x}

this has winding number n, with n ∈ Z.

In particular A(S2
q ) = L0. Also: A(SUq(2)) = ⊕nLn

L∗n ⊂ L−n, LnLm ⊂ Ln+m

E . Ln ⊂ Ln+2, F . Ln ⊂ Ln−2

Ln / h ⊂ Ln, h ∈ Uq(su(2))



The corresponding projections:

For n > 0: p(n) =
∣∣∣Ψ(n)

〉 〈
Ψ(n)

∣∣∣∣∣∣Ψ(n)
〉
µ
∼ c∗µa∗n−µ

For n < 0: p̌(n) =
∣∣∣Ψ̌(n)

〉 〈
Ψ̌(n)

∣∣∣∣∣∣Ψ̌(n)
〉
µ
∼ c|n|−µaµ

Let En := (A(S2
q ))n+1p(n) a left A(S2

q )-modules isomorphism:

Ln '−−→ En, φf → σf := φf
〈
Ψ(n)

∣∣∣ = 〈f | p(n),

with inverse

En '−−→ Ln, σf = 〈f | p(n) → φf :=
〈
f,Ψ(n)

〉
,

and similar maps for the case n ≤ 0.



The differential calculus on S2
q :

Ω(A(S2
q )) ' A(S2

q )⊕
(
L−2 ⊕ L2

)
⊕A(S2

q )

In particular

Ω1(A(S2
q )) = Ω+ ⊕Ω− ' L−2 ⊕ L2

∂b− =
q3

(1 + q2)
1
2

c∗2ω+, ∂b0 = −q2 c∗a∗ω+, ∂b+ =
q3

(1 + q2)
1
2

a∗2ω+

∂̄b− =
1

(1 + q2)
1
2

a2ω−, ∂̄b0 = acω−, ∂̄b+ =
q2

(1 + q2)
1
2

c2ω−

Ω+ is generated by {c∗2, c∗a∗, a∗2}ω+ = {∂b−, ∂b0, ∂b+}:

∂b0 = (q−1 + q−3)b−∂b+ − (q + q3)b+∂b−



Ω− is generated by {c2, ca, a2}ω− = {∂̄b−, ∂̄b0, ∂̄b+}:

∂̄b0 = (q−1 + q)b+∂̄b− − (q−5 + q−3)b−∂̄b+

d = ∂ + ∂̄, dx = (X+ . x)ω+ + (X− . x)ω−

∂x = (X+ . x)ω+, ∂̄x = (X− . x)ω−

Also,

Ω2(A(S2
q )) = A(S2

q )(ω+ ∧ ω−) = (ω+ ∧ ω−)A(S2
q )



The calculus on S2
q can be realized via the Dirac operator

d = [D, · ]

D = Dirac

Dabrowski-Sitarz , Schmüdgen-Wagner



The Laplacian operator on S2
q

First, a Hodge ?-operator on the forms

? 1 = ω+ ∧ ω−, ?(ω+ ∧ ω−) = 1

? ∂f = ∂f, ?∂̄f = −∂̄f

Then the Laplacian operator on S2
q is defined as:

∆S2
q f := − 1

2 ? d ? df

One finds also

∆S2
q f = − ∂̄∂f = ∂∂̄f

∆S2
q f = 1

2

[
X+X−+ q−2X−X+

]
. f = q−1FE . f



Easy to diagonalise; it is the Casimir operator restrict to A(S2
q ):

∆S2
q = Cq∣∣∣A(S2

q )
+ q−1(1

4 − [1
2]2)

Note also that: ∆S2
q ∼ (Dirac)

2

Decompose A(S2
q ) for the right action of Uq(su(2)):

this yields the eigenspaces of the Laplacian since

∆S2
q (f / h) = (∆S2

q f) / h, h ∈ Uq(su(2))



One has,

A(S2
q ) = ⊕J∈2NVJ

the lowest weight vector of VJ is aJc∗J and a basis of VJ is given

by (aJc∗J) / Em with m = 0,1, . . . ,2J.

Also the eigenvalues are

λJ = q−1[J][J + 1]

a direct computation gives

∆S2
q (aJc?J) = q−1([J][J + 1])aJc∗J



Enter the connection

a calculus on U(1):

dz = zωz, dz−1 = −q2z−1ωz, ωz = z−1dz

ωzz = q−2zωz, ωzz
−1 = q2z−1ωz, zdz = q2dzz

A principal connection; a right invariant splitting:

ΩSUq(2) = Ωver
SUq(2) ⊕Ωhor

SUq(2), Π : ΩSUq(2) 7→ Ωver
SUq(2)

with ∆(1)
R Π = (Π⊗ id) ∆(1)

R



Now, ∆(1)
R (ωz) = ωz ⊗ 1

a natural choice of a connection is to define ωz to be vertical:

Πz(ωz) = ωz , Πz(ω±) = 0

The corresponding covariant derivative on co-equivariant maps:

∇φ := (1−Πz) dφ

explicitly

∇φ =
(
X+ . φ

)
ω+ + (X− . φ)ω−

On the sections: E ' Ln ' p(n)
[
A(S2

q )
]n

∇σφ := (p(n)d)σφ = σ∇φ



The gauged Laplacian

∆E : E → E, ∆E := −1
2 ?∇ ?∇

One finds on equivariant maps Ln:

∆Eφ = 1
2K
−4

[
X+X−+ q−2X−X+

]
. φ

⇒

qK2�∇ = Cq + 1
4

− 1
2

(
qK2 − 2 + q−1K−2

(q − q−1)2
+
q−1K2 − 2 + qK−2

(q − q−1)2

)



To diagonalize ∆E, one decomposes Ln for the right action of

Uq(su(2)): this yields the eigenspaces of the Laplacian since

∆E(φf / h) = (∆Eφf) / h, h ∈ Uq(su(2))

One has, Ln =
⊕
V

(n)
J with J = |n|

2 + s, s ∈ N

in V
(n)
J the highest weight elements is φn,J = cJ−n/2a∗J+n/2, and

the 2J basis vectors are obtained via the right action of /E

On the vectors φn,J,l = (cJ−n/2a∗J+n/2) / El on finds:

�∇φn,J,l = λn,Jφn,J,l,

with the (2J + 1)-degenerate energies:

λn,J = q−n−1
{

[J + 1
2]2 − 1

2

(
[n+1

2 ]2 + [n−1
2 ]2

)}



A remarkable fact is that, contrary to what happens in the clas-

sical limit, the energies are not symmetric under the exchange

n↔ −n (‘quantization removes degeneracy’)

Writing J = |n|
2 + s, with s ∈ N, the energies become:

λn,s = q−n−1
(
[s][n+ s+ 1] + 1

2[n]
)
, for n ≥ 0,

with (n+ 2s+ 1) eigenfunctions φn,s,l = (csa∗n+s) / El,

λn,s = q−n−1
(
[s− n][s+ 1] + 1

2[n]
)
, for n ≤ 0,

with (| n | +2s+ 1) eigenfunctions φn,s,l = (cs+|n|a∗s) / El.



A physics parallel with the quantum Hall effect: the integer s la-

bels Landau levels and the φn,s,l are the (‘one excitation’) Laugh-

lin wave functions with energies λn,s. The lowest Landau, s = 0,

is | n |-degenerate with energy

λn,0 = 1
2q
−n−1[| n |]

The classical limit. At the value q = 1, the energies of the

gauged Laplacian become

λn,s(q → 1) = J(J + 1)− 1
4n

2 =| n | (s+ 1
2) + s(s+ 1)

and coincide with the energies of the classical gauged Lapla-

cian. They are symmetric under the exchange n ↔ −n which

corresponds to inverting the direction of the magnetic field.



The winding numbers:

The Chern character has a non trivial component in degree zero

ch0(P(n)) ∈ HC0(S2
q ) given by a (partial) matrix trace:

ch0(P(n)) =


∑n
µ=0 βn,µ(c∗c)µ

∏n−µ−1
j=0 (1− q−2jc∗c), n ≥ 0

∑|n|
µ=0αn,µ(c∗c)|n|−µ

∏µ−1
j=0(1− q2jc∗c), n ≤ 0

,

Dually, one needs a cyclic 0-cocycle on A(S2
q ) ; Masuda et al. :

µ
(
(c∗c)k

)
= (1− q2k)−1, k > 0.



The pairing results in (Hajac)〈
[µ], [P(n)]

〉
:= µ

(
ch0(P(n))

)
= −n

This integer is a topological quantity that depends only on the

bundle, both on the quantum sphere than on its classical limit

In the limit is also computed by integrating the curvature 2-form

of a connection (indeed any connection) on the classical sphere

To integrate the gauge curvature on the quantum sphere S2
q one

needs a ‘twisted integral’; furthermore the result is not an integer

any longer but rather a q-integer



Integrating the curvature

h the Haar state on A(S2
q ) ; ϑ the modular automorphism:

ϑ(x) := x / K2, x ∈ A(S2
q )

then the linear functional∫
: Ω2(A(S2

q ))→ C,
∫
x ω+ ∧ ω− := h(x)

defines a non-trivial ϑ-twisted cyclic 2-cocycle on A(S2
q )

τ(a0, a1, a2) =
∫
a0 ∧ da1 ∧ da2

bϑτ = 0, λϑτ = τ

Schmüdgen-Wagner



bϑ the ϑ-twisted coboundary operator:

(bϑτ)(f0, f1, f2, f3) := τ(f0f1, f2, f3)− τ(f0, f1f2, f3)

+ τ(f0, f1, f2f3)− τ(ϑ(f3)f0, f1, f2),

λϑ is the ϑ-twisted cyclicity operator:

(λϑτ)(f0, f1, f2) := λτ(ϑ(f2), f0, f1)

[τ ] ∈ HC2
ϑ(S2

q )

the degree 2 twisted cyclic cohomology of the sphere S2
q

Couple τ with the bundles over S2
q , via a twisted Chern character

It is enough to consider the lowest term, given by a twisted or

‘quantum trace’



If M ∈Matm+1(A(S2
q )), its (partial) quantum trace

trq(M) := tr
(
Mσm/2(K2)

)
:=

∑
jl
Mjl

(
σm/2(K2)

)
lj

∈ A(S2
q )

σm/2(K2) is the spin J = m/2 representation of Uq(su(2))

The q-trace is ‘twisted’ by the automorphism ϑ

trq(M1M2) = trq

(
(M2 / K

2)M1

)
= trq (ϑ(M2)M1)



One finds (n > 0 say):

F∇ = p(n) dp(n) ∧ dp(n) = −q−n−1[n] p(n) ω+ ∧ ω−

trq(p(n)) := tr
(
πn/2(K2) p(n)

)
= qn

πn/2 is the spin n/2 representation of Uq(su(2))

⇒ (qτ) ◦ trq (p(n), p(n), p(n)) = q
∫

trq

(
p(n) dp(n) ∧ dp(n)

)
= q

∫
trq F∇ = −[n]

it is the q-index of the Dirac operator on S2
q

Wagner, Neshveyev-Tuset



A Hopf-Galois extension with SUq(2) as ‘structure quantum group’

SUq(2) co-acts on a quantum sphere S7
q

coming from the symplectic groups Spq(2)

the co-fixed-point subalgebra is a quantum sphere S4
q

GL, C. Pagani, C. Reina, CMP 263 (2006) 65-88



A noncommutative Hopf fibration on S4
θ

θ a real parameter, the coordinate algebra A(S4
θ ) of the sphere

S4
θ is generated by elements z0 = z∗0, zj, z

∗
j , j = 1,2, with

zµzν = λµνzνzµ, zµz
∗
ν = λνµzνz

∗
µ, z∗µz

∗
ν = λµνz

∗
νz
∗
µ, µ, ν = 0,1,2,

and deformation parameters

λ12 = λ̄21 =: λ = e2π i θ, λj0 = λ0j = 1, j = 1,2,

also:
∑
µ z
∗
µzµ = 1

The sphere S4
θ comes with a noncommutative vector bundles

endowed with an anti-self-dual gauge connection

SU(2) noncommutative principal fibration S7
θ′ → S4

θ



With λ′ab = e2π i θ′ab ; (θ′ab = −θ′ba), the coordinate algebra A(S7
θ′)

of the sphere S7
θ′: generators ψa, ψ∗a, a = 1, . . . ,4, relations

ψaψb = λabψbψa, ψaψ
∗
b = λbaψ

∗
bψa, ψ∗aψ

∗
a = λabψ

∗
bψ
∗
a,∑

aψ
∗
aψa = 1.

The choice

λ′ab =


1 1 µ̄ µ
1 1 µ µ̄
µ µ̄ 1 1
µ̄ µ 1 1

 , µ =
√
λ,

is the only one that allows the algebra A(S7
θ′) to carry an action

of SU(2) by automorphisms s. t.

A(S7
θ′)

SU(2) = A(S4
θ )



A matrix-valued function on A(S7
θ′)

Ψ =

(
ψ1 ψ2 ψ3 ψ4
−ψ∗2 ψ∗1 −ψ

∗
4 ψ∗3

)t
, Ψ†Ψ = I2

p = ΨΨ† is a projection, p2 = p = p†

its entries are (the generating) elements of A(S4
θ )

p = 1
2


1 + z0 0 z1 −µ̄z∗2

0 1 + z0 z2 µz∗1
z∗1 z∗2 1− z0 0
−µz2 µ̄z1 0 1− z0

 ,

The zµ’s are quadratic in the ψa’s.

A vector bundle E over S4
θ : E = Γ(S4

θ , E) = p[A(S4
θ )]4



the connection ∇ = p ◦ d has anti-selfdual curvature F = p(dp)2:

∗θF = −F

The su(2)-valued connection 1 form on S7
θ′ is most simply written

in terms of the matrix-valued function Ψ :

ω = Ψ†dΨ



The spin-Hall system on S4
θ

The Hamiltonian of a “single particle” moving on the sphere S4
θ

and coupled to the gauge field ω :

Hω = −(d + ω)∗(d + ω),

The gauge potential ω in an arbitrary representation J of su(2).

The spin label J ∈ 1
2N and the Casimir operator has value

Csu(2) = J(J + 1)

Expand the covariant derivative: D = dzµDµ + dz∗µD
∗
µ.

The Hamiltonian becomes,

Hω = H̃2
1 + H̃2

2 +
∑
r+

(ẼrẼ−r + Ẽ−rẼr)



the operators H̃j and Ẽr are ‘gauged twisted derivations’

Hω=0 is the Casimir operator

C = H2
1 +H2

2 +
∑
r+

(ErE−r + E−rEr),

of the twisted algebra Uθ(so(5)).
In general, one needs also the curvature F . Expand

F = dz0dz0F00 + 1
2dzεµµdzεννFεµµ,ενν

with εµ and εν taking values ±1 and dz−µ = dz∗µ.

The operators

H1 = H̃1−F00, H2 = H̃2−F00, Eεµµ,ενν = Ẽεµµ,ενν−Fεµµ,ενν
close the commutation relations of the Lie algebra so(5);

The operators Fεµµ,ενν carry a spin representation labelled by J.



With this, one finds that

Hω = CUθ(so(5)) − 2Csu(2).

Easy to diagonalize from representation theory. Two fundamen-

tal weights W1 = 1
2(1,1) and W2 = (1,0) ; each representation is

labelled by two integers s, n, with highest weight W = sW1+nW2

and has dimension

d(s, n) = (1 + s)(1 + n)(1 +
s+ n

2
)(1 +

s+ 2n

3
).

The integer s measures the “spinorial content” ; a spin label J,

s = 2J, takes integer and half integer values. The Casimir is :

C(s, n) = 1
2(s2 + 2n2 + 2sn) + 2s+ 3n.



The eigenvalues of the Hamiltonian Hω are the energies

E(J, n) =C(s = 2J, n)− 2J(J + 1)

=n2 + n(2J + 3) + 2J

with degeneracy d(s = 2J, n).

The integer n labels Landau levels and J, which plays the role

of the magnetic flux, label the degeneracy in each Landau level.

The ground state for a given J is obtained when n = 0; energy

E0(J) = 2J

with degeneration

d0(J) = d(s = 2J, n = 0) =
1

6
(1 + 2J)(2 + 2J)(3 + 2J).



The representations of Uθ(so(5)), also gives wave functions.

For the ground state: the spinor ψ = (ψ1, . . . , ψ4) is an eigenfunc-

tion of the Hamiltonian with J = 1
2, the fundamental spinorial

representation having highest weight vector ψ4:

H1(ψ4) = 1
2 = H2(ψ4).

H1, H2 are the Cartan elements.

A basis of eigenfunctions for the ground state, – with is the

representation with s = 2J and n = 0 – is obtained by the

corresponding highest weight vector, Φ = (ψ4)2J, by repeated

action of the lowering operators Er of Uθ(so(5)).


