
Generalized CCR flows

Let K be a complex Hilbert space and let {St} be the shift semigroup on L2((0,∞), K)
defined by

(Stf)(s) = 0, s < t,

= f(s− t), s ≥ t,

for f ∈ L2((0,∞), K). The CCR flow of index dim K is the E0-semigroup α acting
on B(Γ(L2((0,∞), K))) defined by

αt(W (f)) = W (Stf),

where Γ(L2((0,∞), K))) the symmetric Fock space of L2((0,∞), K) and W (x) ∈
B(Γ(K)) be the Weyl operator corresponding to x.

To generalize the CCR flows, we ask the following question. Let G be a real Hilbert
space and H = Γ(GC), where GC is the complexification of C. Suppose we have two
semigroups of linear operators, St, Tt : G 7→ G for t ≥ 0, Consider the association

αt(W (x)) 7→ W (Stx), αt(W (iy)) 7→ W (iTty), x, y ∈ G.

When can we extend this map to an E0-semigroup on B(H)? The continuity and the
semigroup property of {αt} will immediately imply that both {St} and {Tt} have to
be C0-semigroups. Also, αt being an endomorphism satisfies

αt(W (u)W (v)) = αt(W (u))αt(W (v)), u, v ∈ GC.

Comparing both sides, using the canonical commutation relation, we get

〈Stx, Tty〉 = 〈x, y〉 ∀ x, y ∈ G

which is same as saying T ∗
t St = 1.

Assume that these conditions are satisfied, αt extends to an endomorphism to the
whole of B(H) if and only if Tt − St is a Hilbert-Schmidt operator.

Definition 0.1. Let {St} and {Tt} be C0-semigroups acting on a real Hilbert space
G. We say that {Tt} is a perturbation of {St}, if they satisfy,

(i) Tt
∗St = 1.

(ii) St − Tt is a Hilbert Schmidt operator.

Given a perturbation {Tt} of {St}, we say that the E0-semigroup {αt} acting on
B(Γ(GC)) given by

αt(W (x + iy)) = W (Stx + iTty), x, y ∈ G

is a generalized CCR flow associated with the pair {St} and {Tt}.
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Boris Tsirelson constructed an uncountable family of non-isomorphic type III prod-
uct systems. The construction involves associating measure type spaces to Gaussian
spaces. A construction from an operator algebraic view point was given by Bhat
and Sr. They were called as ‘product systems arising from a sum system’. This
construction is described as follows.

For two Hilbert spaces G1, G2, define

S(G1, G2) = {A ∈ B(G1, G2); A invertible and I − (A∗A)
1
2 Hilbert-Schmidt}.

For two real Hilbert spaces G1, G2 and A ∈ S(G1, G2), define a real liner operator
SA : GC

1 → GC
2 by SA(u + iv) = Au + i(A−1)∗v for u, v ∈ G1. In general SA is not

complex linear, unless A is unitary.

Theorem 0.2. (i) Let G1, G2 be real Hilbert spaces and A ∈ S(G1, G2) , then there
exists a unique unitary operator Γ(A) : Γ(GC

1 ) → Γ(GC
2 ) such that

Γ(A)W (u)Γ(A)∗ = W (SAu) ∀ u ∈ GC
1(0.1)

〈Γ(A)Φ1, Φ2〉 ∈ R+(0.2)

where Φ1 and Φ2 are the vacuum vectors in Γ(GC
1 ) and Γ(GC

2 ) respectively.

(ii) Suppose G1, G2, G3 be three real Hilbert spaces, and A ∈ S(G1, G2), B ∈ S(G2, G3),
then

Γ(A−1) = Γ(A)∗(0.3)

Γ(BA) = Γ(B)Γ(A)(0.4)

Definition 0.3. A sum system is a two parameter family of real Hilbert spaces {Gs,t}
for 0 < s < t ≤ ∞, satisfying Gs,t ⊂ Gs′,t′ if the interval (s, t) is contained in the
interval (s′, t′), together with a one parameter semigroup {St}, of bounded linear
operators on G(0,∞) for t ∈ (0,∞) such that

(i) Ss|G0,t ∈ S(G0,t, Gs,s+t) ∀ t ∈ (0,∞], s ∈ [0,∞).

(ii) If As,t : G0,s⊕Gs,s+t 7→ G0,s+t, is the map As,t(x⊕y) = x+y, for x ∈ G0,s, y ∈
Gs,s+t, then As,t ∈ S(G0,s ⊕Gs,s+t, G0,s+t), ∀ s, t ∈ (0,∞).

(iii) The semigroup {St} is strongly continuous.

Given a sum system ({Gs,t}, {St}), we define Hilbert spaces Ht = Γ(GC
0,t), and

unitary operators Us,t : Hs ⊗Ht 7→ Hs+t, by Us,t = Γ(As,t)(1Hs ⊗ Γ(Ss|G0,t)).

({Ht}, {Us,t}) forms a product system.
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Fix a sum system ({Ga,b}, {St}) and ({Ht}, {Us,t}) be the product system con-
structed out of it. Denote G = G0,∞, At = At,∞.

We may consider St as a bounded linear invertible map between G 7→ Gt,∞. Hence
(S∗t )

−1 is a well-defined bounded operator between G 7→ Gt,∞. When there is no
confusion, by misusing the notation, we consider (S∗t )

−1 as an element of B(G) itself.
Define Tt ∈ B(G), by

Tt = (A∗
t )
−1A−1

t (S∗t )
−1 ∀ t ∈ [0,∞).

Lemma 0.4. {Tt} forms a C0-semigroup on G and {Tt} is a perturbation of {St}.

The E0-semigroup associated with the product system (Ht, Us,t) can be described
in terms of these two semigroups, St, Tt as follows. Let H = Γ(GC).

Proposition 0.5. Let the notation be as above. Then there is a unique E0-semigroup
αt on B(H) satisfying

αt(W (x)) = W (Stx), αt(W (iy)) = W (iTty), x, y ∈ G.

Moreover the product system associated with this E0-semigroup is the one constructed
out of the sum system.
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Let G be a real Hilbert space and H = Γ(GC). We assume that a C0-semigroup
{Tt} is a perturbation of another C0-semigroup {St} acting on G.

Define

G0,t = Ker (T ∗
t ), G(0,∞) =

⋃
t>0

G0,t, Ga,b = Sa(G0,b−a).

Let P : G → G0,∞ be the orthogonal projection. We define S0
t and T 0

t by

S0
t = PStP, T 0

t = PTtP.

Then {S0
t } and {T 0

t } are C0-semigroups and one is a perturbation of the other.

Proposition 0.6. Let G be a real Hilbert space and let {St} and {Tt} be C0-semigroups
acting on G such that {Tt} is a perturbation of {St}. Let {Gs,t}, {S0

t }, and {T 0
t } be

as above. Then

(a) The system ({Ga,b}, {S0
t }) forms a sum system.

(b) The pair of C0-semigroups ({S0
t }, {T 0

t }) is associated with ({Ga,b}, {S0
t }). In

consequence, the product system for the generalized CCR flow arising from
({S0

t }, {T 0
t }) is isomorphic to the one arising from ({Ga,b}, {S0

t }).
(c) The product system for the generalized CCR flow arising from ({St}, {Tt})

is isomorphic to the product system arising from ({Ga,b}, {S0
t }). In conse-

quence, the generalized CCR flow arising from the pair ({St}, {Tt}) is cocycle
conjugate to that arising from ({S0

t }, {T 0
t }).
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Definition 0.7. Let ({Ga,b}, {St}) be a sum system. A real addit for the sum system
({G(a,b)}, {St}) is a family {xt}t∈(0,∞) such that xt ∈ G0,t, ∀ t ∈ (0,∞), satisfying the
following conditions.

(i) The map t 7→ 〈xt, x〉 is measurable for any x ∈ G0,∞.

(ii) xs + Ssxt = xs+t, ∀s, t,∈ (0,∞), (i. e.) As,t(xs ⊕ Ssxt) = xs+t.

An imaginary addit for the sum system ({Ga,b}, {St}) is a family {yt}t∈(0,∞) such
that yt ∈ G0,t, ∀ t ∈ (0,∞), satisfying the following conditions.

(i) The map t 7→ 〈yt, y〉 is measurable for any y ∈ G0,∞.

(ii) {yt} satisfies (A∗
s,t)

−1(ys ⊕ (S∗s )
−1yt) = ys+t, ∀s, t,∈ (0,∞).

We denote by RAU and IAU the set of all real and imaginary addits respectively,
which are real linear spaces. For a given real addit {xt}, define xs,t = Ss(xt−s) ∈ Gs,t.
Similarly for a given imaginary addit {yt} define ys,t = (S∗s )

−1(yt−s) ∈ Gs,t.

We also define for an imaginary addit {yt},
G0,s 3 sy′s1,s2

= (A∗)−1(0⊕ ys1,s2 ⊕ 0), for any (s1, s2) ⊂ (0, s),

where A : G0,s1 ⊕Gs1,s2 ⊕Gs2,s → G0,s is defined by x⊕ y⊕ z 7→ x + y + z. It is easy

to check that sy′s1,s2
∈ (G0,s1

∨
Gs2,s)

⊥ ∩G0,s. We have

xs + xs,s+t = xs+t, y′s + y′s,s+t = y′s+t.

Proposition 0.8. For any sum system ({Ga,b}, {St}) addits exist and generate the
sum system, (i. e.)

G0,s = span R[xs1,s2 ; (s1, s2) ⊆ (0, s), {xt} ∈ RAU ]

and
G0,s = span R[sy′s1,s2

; (s1, s2) ⊆ (0, s), {yt} ∈ IAU ].

Theorem 0.9. Every product system arising from a sum system is either of type I
or type III. Consequently every generalized CCR flow is either of type I or type III
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Definition 0.10. For a divisible sumsystem ({Ga,b}, {St}), the index ind G is the
number dim RAU = dim IAU ∈ N ∪ {∞}.

Assume that ind G = n is finite. In that case, both RAU and IAU carry unique
linear topologies. Denote

G0
0,t = span R[xs1,s2 ; (s1, s2) ⊆ (0, t), {xt} ∈ RAU ] ⊆ G0,t,

G0
0,t
′
= span R[ty′s1,s2

; (s1, s2) ⊆ (0, t), {yt} ∈ IAU ] ⊆ G0,t.

For a given linear map J : RAU → IAU , we set Jt,0 to be the linear map Jt,0 :

G0
0,t → G0

0,t
′
determined by

Jt,0(xs1,s2) = tJ(x)′s1,s2
,

for (s1, s2) ⊆ (0, t) and x ∈ RAU . When Jt,0 has a bounded extension to G0,t we
denote it by Jt.

Theorem 0.11. Let ({G(a,b)}, {St}) be a sum system with finite index and let ({Ht}, {Us,t})
be the product system constructed out of the above sum system. Then the following
statements are equivalent.

(i) The product system (Ht, Us,t) is of type I.

(ii) There exists a linear isomorphism J : RAU → IAU satisfying the follow-
ing property: for each t > 0, the operator Jt,0 extends to a bounded positive
operator on G0,t such that Jt ∈ S(G0,t, G0,t).

(iii) There exists a linear isomorphism J : RAU → IAU satisfying the following
property: the operator J1.0 extends to a bounded positive operator on G0,1 such
that J1 ∈ S(G0,1, G0,1).

Remark 0.12. Since only type I and type III product systems can be constructed
from divisible sum systems. So thanks to the above Theorem, violating the condition
J1 ∈ S(G0,1, G0,1) is necessary and sufficient for the associated product system to be
of type III. This criterion is much more powerful than the necessary condition for
type I already proved by Bhat and Sr. In fact we can arrive at that condition just by
assuming that J1 is bounded. there are examples of divisible sum systems of finite
index with bounded J1, which give rise to type III. In particular there are many type
III examples, which can not be distinguished from type I examples by the invariants
introduced by Tsirelson. product systems.


