Generalized CCR flows

Let K be a complex Hilbert space and let {S;} be the shift semigroup on L*((0, 00), K)
defined by

(Stf)(s) = 07 s <t,
= f(s—1t), s=>t,
for f € L*((0,00), K). The CCR flow of index dim K is the Fy-semigroup « acting
on B(T'(L?((0, 00), K))) defined by
ar(W(f)) = W(S:f),

where T'(L?*((0,0), K))) the symmetric Fock space of L*((0,00), K) and W(zx) €
B(I'(K)) be the Weyl operator corresponding to x.

To generalize the CCR flows, we ask the following question. Let G be a real Hilbert
space and H = I'(G®), where G is the complexification of C. Suppose we have two
semigroups of linear operators, Sy, T; : G — G for t > 0, Consider the association

a(W(z)) = W(Six), a(W(iy)) — W(iTy), v,y € G.

When can we extend this map to an Ey-semigroup on B(H)? The continuity and the
semigroup property of {a;} will immediately imply that both {S;} and {7;} have to
be Cy-semigroups. Also, o being an endomorphism satisfies

(W)W () = (W (u)) (W (v)), u,v € GE.
Comparing both sides, using the canonical commutation relation, we get
(Six, Tyy) = (z,y) YV z,y € G
which is same as saying 7;S; = 1.

Assume that these conditions are satisfied, o; extends to an endomorphism to the
whole of B(H) if and only if 7; — S; is a Hilbert-Schmidt operator.

Definition 0.1. Let {S;} and {7};} be Cy-semigroups acting on a real Hilbert space
G. We say that {T}} is a perturbation of {S,}, if they satisfy,

(l) Tt*St - ]_
(ii) Sy — Ty is a Hilbert Schmidt operator.
Given a perturbation {T;} of {S;}, we say that the Ey-semigroup {«o;} acting on
B(I'(G)) given by
ar(W(z +iy)) = W(Six +iThy), z,yeG

is a generalized CCR flow associated with the pair {S;} and {T}}.
1



Boris Tsirelson constructed an uncountable family of non-isomorphic type I1I prod-
uct systems. The construction involves associating measure type spaces to Gaussian
spaces. A construction from an operator algebraic view point was given by Bhat
and Sr. They were called as ‘product systems arising from a sum system’. This
construction is described as follows.

For two Hilbert spaces G, G, define
S(Gy1,Gy) = {A € B(Gy, Gs); A invertible and I — (A*A)% Hilbert-Schmidt}.

For two real Hilbert spaces G1,Gs and A € S(Gy, Gs), define a real liner operator
Sa: GY — GY by Sa(u+iv) = Au+ i(A™Y)*v for u,v € G;. In general Sy is not
complex linear, unless A is unitary.

Theorem 0.2. (i) Let G, G2 be real Hilbert spaces and A € S(G1,Gs) , then there
exists a unique unitary operator T'(A) : T(G%) — T(GYS) such that

(0.1) D(AW (u)(A) = W(Ssu)VueGt
(0.2) T(A)®,, ) € RF

where ®1 and ®y are the vacuum vectors in T'(GS) and T(GS) respectively.

(ii) Suppose G, Go, G3 be three real Hilbert spaces, and A € S(G1,G3), B € §(Ga, Gs),
then

(0.3) LA™Y = T(A)
(0.4) ['(BA) = T(B)I'(A)

Definition 0.3. A sum system is a two parameter family of real Hilbert spaces {G;}
for 0 < s <t < oo, satistfying G5, C Gy if the interval (s,t) is contained in the
interval (s,t'), together with a one parameter semigroup {S;}, of bounded linear
operators on G(g o for t € (0,00) such that

(1) Sslao, € S(Goy, Gssat) ¥V T € (0,00], 5 € [0,00).

(ii) If Ast: Gos® Gy 54t — Gosit, is the map Ag (x®y) = x+y, for x € Gos,y €
Gs,s+t7 then As,t € S(GO,S S¥ Gs,erta GO,s+t>7 v S,t € (07 OO)

(iii) The semigroup {S;} is strongly continuous.

Given a sum system ({G.},{S:}), we define Hilbert spaces H, = I'(G§,), and
unitary operators U, : Hy ® Hy v Hyyy, by Usy = I'(As)(1m, @ T'(Sslao,))

({H:},{Us+}) forms a product system.
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Fix a sum system ({G.;},{S:}) and ({H:},{Us:}) be the product system con-
structed out of it. Denote G = G o0, At = At -

We may consider S; as a bounded linear invertible map between G — G} . Hence
(S7)~! is a well-defined bounded operator between G +— G . When there is no
confusion, by misusing the notation, we consider (S;)~! as an element of B(G) itself.
Define T, € B(G), by

T, = (A)TATHSH) VY t € [0, 00).

Lemma 0.4. {T}} forms a Cy-semigroup on G and {1} is a perturbation of {S;}.

The Ej-semigroup associated with the product system (H;, U,,) can be described
in terms of these two semigroups, S;, Ty as follows. Let H = I'(G°).

Proposition 0.5. Let the notation be as above. Then there is a unique Ey-semigroup
a; on B(H) satisfying

(W (@) = W(Sia), a(W(iy)) = W(iTiy), 2y € G.
Moreover the product system associated with this Ey-semigroup is the one constructed
out of the sum system.



Let G be a real Hilbert space and H = I'(G®). We assume that a Cy-semigroup
{T}} is a perturbation of another Cy-semigroup {S;} acting on G.

Define

Go,t = Ker (Tt*), G(o,oo) = U GO,t; Ga,b = Sa<G0,bfa)-

>0
Let P: G — Gy be the orthogonal projection. We define SP and T} by
Sp = PS,P, T = PT,P.

Then {S?} and {T}} are Cy-semigroups and one is a perturbation of the other.

Proposition 0.6. Let G be a real Hilbert space and let {S;} and {T;} be Cy-semigroups
acting on G such that {T;} is a perturbation of {S;}. Let {Gs.}, {SP}, and {T} be
as above. Then

(a) The system ({Gap}, {SP}) forms a sum system.

(b) The pair of Cy-semigroups ({Sp},{T}) is associated with ({Gap},{SP}). In
consequence, the product system for the generalized CCR flow arising from
({S},{T}}) is isomorphic to the one arising from ({Gap}, {SP}).

(¢) The product system for the generalized CCR flow arising from ({S:},{T:})
is isomorphic to the product system arising from ({Gap}, {SP}). In conse-

quence, the generalized CCR flow arising from the pair ({S:},{T;}) is cocycle
conjugate to that arising from ({SP}, {T?}).
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Definition 0.7. Let ({G.}, {S:}) be a sum system. A real addit for the sum system
({Gap }- {Se}) is a family {z4 }1e(0,00) such that x, € Goy, ¥Vt € (0, 00), satisfying the
following conditions.

(i) The map t — (x4, x) is measurable for any = € G .
(il) @5 + S5t = Tspt, Vs, t,€ (0,00), (i. e.) Ast(xs ® Sst) = Topst

An imaginary addit for the sum system ({Ggp}, {S:}) is a family {y }ie(0,00) such
that y; € Got, V t € (0,00), satisfying the following conditions.

(i) The map t — (y;,y) is measurable for any y € G .
(if) {ye} satisfies (AL,) ™ (ys @ (S)7'9) = Yosr, Vs, 1, € (0, 00).

We denote by RAU and [ AU the set of all real and imaginary addits respectively,
which are real linear spaces. For a given real addit {z;}, define x5, = Ss(z;—5) € Gs4.
Similarly for a given imaginary addit {y;} define y,; = (S¥) " (y;_s) € Gy

We also define for an imaginary addit {y;},

GO,S > Sy;1,82 = (A*)*l(o D Ysi,s2 ©® 0)7 for any (517 82) - (075)7
where A : Gos, @ Gy, 5, D Gs, s — Go s is defined by s @y @ 2z — x +y + 2. It is easy
to check that *y., . € (Gos V GSQ,S)L N Gy s. We have

o / / )
Tg + xs,ert - strta ys + ys,ert - strt'

Proposition 0.8. For any sum system ({Gap}, {S:}) addits exist and generate the
sum system, (i. e.)

G07S == SpanR[xShSQ; (517 32) g (07 5)7 {xt} € R‘Au]

and

Go,s = spang[*y, ;5 (s1,s2) € (0,5), {:} € LAU|.

Theorem 0.9. Fvery product system arising from a sum system is either of type [
or type III. Consequently every generalized CCR flow is either of type I or type 111
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Definition 0.10. For a divisible sumsystem ({Gap}, {S¢}), the index ind G is the
number dim RAU = dim I AU € NU {oc}.

Assume that ind G = n is finite. In that case, both RAU and I AU carry unique
linear topologies. Denote

Gg,t - Spa’nR[xsl,sz; (817 82) g (07t>7 {xt} S RAU] g GO,tJ
Go, = spang['yl, ;5 (s1,9) € (0,1), {yi} € LAU) C Goy.

For a given linear map J : RAU — [ AU, we set J,o to be the linear map J; :
Gy, — G, determined by

Jt,O(x81,52) = t‘]<w>/51,52:

for (s1,s2) C (0,t) and x € RAU. When J;y has a bounded extension to G, we
denote it by J;.

Theorem 0.11. Let ({Gap)}, {St}) be a sum system with finite index and let ({H;}, {Us4})
be the product system constructed out of the above sum system. Then the following
statements are equivalent.

(i) The product system (Hy, Usy) is of type I.

(ii) There exists a linear isomorphism J : RAU — IAU satisfying the follow-
ing property: for each t > 0, the operator J,o extends to a bounded positive
operator on Gy, such that J, € S(Gor, Got).

(iii) There exists a linear isomorphism J : RAU — 1 AU satisfying the following
property: the operator J o extends to a bounded positive operator on Gg 1 such
that Jl € S(GOJ, GO,l)-

Remark 0.12. Since only type I and type III product systems can be constructed
from divisible sum systems. So thanks to the above Theorem, violating the condition
J1 € S(Goa,Go,) is necessary and sufficient for the associated product system to be
of type III. This criterion is much more powerful than the necessary condition for
type I already proved by Bhat and Sr. In fact we can arrive at that condition just by
assuming that J; is bounded. there are examples of divisible sum systems of finite
index with bounded J;, which give rise to type III. In particular there are many type
[T examples, which can not be distinguished from type I examples by the invariants
introduced by Tsirelson. product systems.



