E₀-dilation of strongly commuting pairs of CP₀-semigroups

Orr Shalit, Technion (under supervision of Baruch Solel)

Workshop on Noncommutative Dynamics and Applications Fields Institute, July 17, 2007

The Problem

- A separable Hilbert space *H*.
- A von Neumann algebra $\mathcal{M} \subseteq B(H)$.
- Two commuting CP-semigroups $\Phi = {\Phi_t}_{t \ge 0}$, $\Psi = {\Psi_t}_{t \ge 0}$ on \mathcal{M} , i.e., for all $s, t \ge 0$,

$$\Phi_s \circ \Psi_t = \Psi_t \circ \Phi_s.$$

 Question: Is it possible to dilate Φ and Ψ to a pair of commuting E-semigroups on some larger von Neumann algebra?

The expected answer is *yes*. We have shown that the answer is *yes* under some additional assumptions.

Definitions

• **CP-semigroup** - A semigroup $\Theta = \{\Theta_t\}_{t\geq 0}$ $(\Theta_s \circ \Theta_t = \Theta_{s+t})$ of normal, contractive, completely positive maps on $\mathcal{M} \subseteq B(H)$, continuous in the following sense: for all $h, g \in H$, and all $a \in \mathcal{M}$,

$$\lim_{t \to t_0} \left\langle \Theta_t(a)h, g \right\rangle = \left\langle \Theta_{t_0}(a)h, g \right\rangle$$

- E-semigroup a CP-semigroup with every element a *-endomorphism.
- CP₀-semigroup a CP-semigroup with unital elements.
- E₀-semigroup an E-semigroup with unital elements.

E-dilation of a CP-semigroup

Given a semigroup $\Theta = \{\Theta_s\}_{s \in S}$ of CP maps acting on $\mathcal{M} \subseteq B(H)$, an E-dilation is a triple (α, \mathcal{R}, K) , where

- $K \supseteq H$ is a Hilbert space,
- $\mathcal{R} \subseteq B(K)$ is a vN algebra such that $\mathcal{M} = P_H \mathcal{R} P_H$,
- $\alpha = {\alpha_s}_{s \in S}$ is an E-semigroup such that for all $T \in \mathcal{R}, s \in S$

$$\Theta_s(P_H T P_H) = P_H \alpha_s(T) P_H.$$

• α is to have the same kind of continuity as Θ .

E-dilation of CP-semigroups (Bhat-Skeide, SeLegue, Muhly-Solel, Arveson)

Theorem 1. Let $\Theta = \{\Theta_t\}_{t\geq 0}$ be a CP-semigroup acting on $\mathcal{M} \subseteq B(H)$. Then Θ has an E-dilation.

That is, There exists a Hilbert space $K \supseteq H$, a vN algebra $\mathcal{R} \subseteq B(K)$ such that $\mathcal{M} = P_H \mathcal{R} P_H$, and an E-semigroup $\{\alpha_t\}_{t\geq 0}$ on \mathcal{R} such that for all $T \in \mathcal{R}, t \geq 0$

$$\Theta_t(P_H T P_H) = P_H \alpha_t(T) P_H.$$

Remarks:

- Unitality.
- Minimality + uniqueness.

E-dilation of a commuting pair of CP maps (Bhat, Solel)

Theorem 2. Let Φ and Ψ be two commuting CP maps acting on $\mathcal{M} \subseteq B(H)$. Then the semigroup Θ (over \mathbb{N}^2) of CP-maps given by

$$\Theta_{(m,n)} = \Phi^m \circ \Psi^n$$

has an E-dilation.

That is, there exists a Hilbert space $K \supseteq H$, a vN algebra $\mathcal{R} \subseteq B(K)$ such that $\mathcal{M} = P_H \mathcal{R} P_H$, and there exists two commuting normal *-endomorph α and β on \mathcal{R} such that for all $T \in \mathcal{R}, m, n \in \mathbb{N}$

 $\Phi^m \circ \Psi^n(P_H T P_H) = P_H \alpha^m \circ \beta^n(T) P_H.$

Remarks:

- Unitality?
- Minimality + uniqueness?

0

Our main result

Theorem 3. Let $\Phi = {\Phi_t}_{t\geq 0}$, $\Psi = {\Psi_t}_{t\geq 0}$ be two **strongly commuting** CP_0 -semigroups on $\mathcal{M} \subseteq B(H)$. Then the semigroup Θ (over \mathbb{R}^2_+) of CP-maps given by

$$\Theta_{(s,t)} = \Phi_s \circ \Psi_t$$

has an E_0 -dilation.

That is, there exists a Hilbert space $K \supseteq H$, a vN algebra $\mathcal{R} \subseteq B(K)$ such that $\mathcal{M} = P_H \mathcal{R} P_H$, and there exists two commuting E_0 -semigroups α and β on \mathcal{R} such that for all $T \in \mathcal{R}, s, t \in \mathbb{R}^2_+$

$$\Phi_s \circ \Psi_t(P_H T P_H) = P_H \alpha_s \circ \beta_t(T) P_H.$$

Proof. This theorem is proved using Muhly and Solel's approach to dilation. We will give the idea for the case $\mathcal{M} = B(H)$.

6

Toy example

Assume that $\{T_t\}_{t\geq 0}, \{S_t\}_{t\geq 0}$ are two commuting contractive semigroups, and assume that Φ and Ψ are given by

$$\Phi_t(a) = T_t a T_t^*, \ \Psi_t(a) = S_t a S_t^*,$$

for $a \in B(H)$.

 Φ and Ψ are E-semigroups $\Leftrightarrow \{T_t\}_{t\geq 0}, \{S_t\}_{t\geq 0}$ are isometry semigroups.

Let $\{V_t\}_{t\geq 0}, \{U_t\}_{t\geq 0}$ be the (Słociński) isometric dilation on $K \supseteq H$. Define for all $a \in B(K)$

$$\alpha_t(a) = V_t a V_t^*, \ \beta_t(a) = U_t a U_t^*.$$

Then α and β are an E-dilation of Φ and Ψ .

In general, CP-semigroups are not given by such simple formulas. However, this example captures the essence of the Muhly-Solel approach.

The Muhly-Solel strategy for dilation

Given: a semigroup S, and CP-semigroup $\Theta = \{\Theta_s\}_{s \in S}$ on B(H).

1. Construct product system (of Hilbert spaces), $X = \{X(s)\}_{s \in \mathcal{S}}$. Construct product system representation T of X on H such that

$$\Theta_s(a) = \tilde{T}_s\left(I_{X(s)} \otimes a\right) \tilde{T}_s^*.$$

- 2. Dilate T to an isometric representation V on $K \supseteq H$.
- 3. Check that

$$\alpha_s(a) := \tilde{V}_s\left(I_{X(s)} \otimes a\right) \tilde{V}_s^*$$

defined on the algebra B(K) is the sought after dilation of Θ .

Step 1: Product system representations

E - a Hilbert space.

C.C. Representation: (of *E* on a Hilbert space *H*) A linear, completely contractive map $T : E \rightarrow B(H)$

 $E\otimes H$ is the usual tensor product of the spaces.

 $\tilde{T}: E \otimes H \to H$ is defined: $\tilde{T}(\xi \otimes h) = T(\xi)h$.

Product system: $X = \{X(s)\}_{s \in S}, X(0) = \mathbb{C},$ $X(s) \otimes X(t) \cong X(s+t).$

Product system representation: A family $T = \{T_s\}_{s \in S}, T_s \text{ is a c.c. representation of } X(s) \text{ on } H,$

$$T_{s+t}(x_s \otimes x_t) = T_s(x_s)T_t(x_t).$$

9

Step 1 (cont.): Representing the CP-semigroup

• M-S constructed $E = \{E(t)\}_{t \ge 0}, F = \{F(t)\}_{t \ge 0}$ with representation $T^E : E \to B(H), T^F :$ $F \to B(H)$ such that

$$\Phi_t(a) = \tilde{T}_t^E \left(I_{E(t)} \otimes a \right) (\tilde{T}_t^E)^*,$$
$$\Psi_t(a) = \tilde{T}_t^F \left(I_{F(t)} \otimes a \right) (\tilde{T}_t^F)^*.$$

• Define $X = \{X(s,t)\}_{(s,t) \in \mathbb{R}^2_+}$ by $X(s,t) = E(s) \otimes F(t).$

This is rather technical. Here the **strong commutativity** assumption plays.

• Define
$$T = \{T_{(s,t)}\}_{(s,t)\in\mathbb{R}^2_+}$$
 by
 $T_{(s,t)}(e_s\otimes f_t) = T^E_s(e_s)T^F_t(f_t).$

Step 2: Dilating the product system representation

The product system X and representation T constructed in step 1 satisfy

$$\Phi_s(\Psi_t(a)) = \tilde{T}_{(s,t)}(I_{X(s)} \otimes a)\tilde{T}^*_{(s,t)}.$$

 \tilde{T} is isometric \Rightarrow the CP-semigroup is actually an E-semigroup.

 \tilde{T} is coisometric \Leftrightarrow the CP-semigroup is a CP₀-semigroup (unitality).

Isometric representation: a representation T such that \tilde{T}_s is an isometry for all $s \in \mathbb{R}^2_+$.

Fully-coisometric representation: a representation T such that \tilde{T}_s is a coisometry for all $s \in \mathbb{R}^2_+$.

Step 2 (continued)

Theorem 4. Let $X = \{X(s)\}_{s \in \mathbb{R}^k_+}$ be a product system, and let T be a fully coisometric representation of X on H. Then there exists a Hilbert space $K \supseteq H$ and a fully coisometric ric and isometric representation V of X on K, such that

1.
$$P_H V_s(x)\Big|_H = T_s(x)$$
 for all $s \in \mathbb{R}^k_+$, $x \in X(s)$.

2.
$$P_H V_s(x)\Big|_{K \ominus H} = 0$$
 for all $s \in S$, $x \in X(s)$.

This is the part where the **unitality** of the semigroups is used (fully-coisometric).

Let

$$\mathcal{H} = \bigoplus_{s \in \mathbb{R}^k_+} X(s) \otimes H.$$

We define a family $\hat{T} = \{\hat{T}_s\}_{s \in \mathbb{R}^k_+}$ on \mathcal{H} as follows:

•
$$\widehat{T}_0 = I$$
.

- $t \not\geq s > 0$: $\widehat{T}_s(\delta_t \cdot x_t \otimes h) = 0$.
- $t \ge s > 0$: $\widehat{T}_s \left(\delta_t \cdot (x_{t-s} \otimes x_s \otimes h) \right) = \delta_{t-s} \cdot \left(x_{t-s} \otimes \widetilde{T}_s (x_s \otimes h) \right)$
- \widehat{T} is a semigroup of *coisometries* on \mathcal{H} .

Step 2: Proof (continued)

By classical dilation theory, \hat{T} has a minimal isometric dilation $\hat{V} = \{\hat{V}_s\}_{s \in \mathbb{R}^k_+}$ on a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ satisfying

$$P_{\mathcal{H}}\widehat{V}_{s_{-}}^{*}\widehat{V}_{s_{+}}P_{\mathcal{H}} = \widehat{T}_{s_{+}}\widehat{T}_{s_{-}}^{*}, \ s \in \mathbb{R}^{k}.$$

Define

$$K = \bigvee \{ \hat{V}_s(\delta_s \cdot (x_s \otimes h)) : s \in \mathcal{S}, x_s \in X(s), h \in H \}.$$

We define the representation V of X on K by $V_t(x_t) \left(\hat{V}_s(\delta_s \cdot (x_s \otimes h)) \right) = \hat{V}_{s+t}(\delta_{s+t} \cdot (x_t \otimes x_s \otimes h)).$

Step 2: Proof (continued)

V is a well defined, covariant, fully-coisometric and isometric product system representation. For example:

$$V_{s+t}(x_s \otimes x_t) \hat{V}_u(\delta_u \cdot x_u \otimes h) =$$

= $\hat{V}_{s+t+u}(\delta_{s+t+u} \cdot x_s \otimes x_t \otimes x_u \otimes h)$
= $V_s(x_s) \hat{V}_{t+u}(\delta_{t+u} \cdot x_t \otimes x_u \otimes h)$
= $V_s(x_s) V_t(x_t) \hat{V}_u(\delta_u \cdot x_u \otimes h),$

the "semigroup property".

V is a dilation of T:

.

$$P_{H}V_{s}(x)\Big|_{H}h = P_{H}V_{s}(x)\delta_{0} \cdot \mathbf{1} \otimes h$$

$$= P_{H}\hat{V}_{s}(\delta_{s} \cdot x \otimes h)$$

$$= P_{H}P_{\mathcal{H}}\hat{V}_{s}\Big|_{\mathcal{H}}(\delta_{s} \cdot x \otimes h)$$

$$= P_{H}\hat{T}_{s}(\delta_{s} \cdot x \otimes h)$$

$$= P_{H}(\delta_{0} \cdot \mathbf{1} \otimes T_{s}(x)h) = T_{s}(x)h.$$

Step 3: Putting the pieces together

Given: two strongly commuting CP₀-semigroups $\Phi = {\Phi_t}_{t\geq 0}, \Psi = {\Psi_t}_{t\geq 0}$ on B(H).

• Step 1: construct a product system X of correspondences, a representation T:

$$\Phi_s(\Psi_t(a)) = \tilde{T}_{(s,t)}(I_{X(s)} \otimes a)\tilde{T}^*_{(s,t)}.$$

- Step 2: construct isometric dilation V of T on $K \supseteq H$.
- Step 3: put the pieces together:

$$\alpha_{(s,t)}(b) = \tilde{V}_{(s,t)}(I_{X(s)} \otimes b)\tilde{V}_{(s,t)}^*,$$

for all $b \in B(K)$. α is a dilation of Φ, Ψ !

Strong commutativity 1

- Given a CP map P on $\mathcal{M} \subseteq B(H)$, one may form $\mathcal{M} \otimes_P H$, the Hausdorff completion w.r.t. to $\langle a \otimes h, b \otimes g \rangle = \langle h, P(a^*b)g \rangle.$
- Similarly, given P_1, \ldots, P_n CP maps on \mathcal{M} , $\mathcal{M} \otimes_{P_1} \ldots \otimes_{P_{n-1}} \mathcal{M} \otimes_{P_n} H$ is the Hausdorff completion w.r.t.

 $\langle a_1 \otimes \cdots \otimes a_n \otimes h, b_1 \otimes \cdots \otimes b_n \otimes g \rangle =$ = $\langle h, P_n(a_n^* P_{n-1}(\cdots P_1(a^* b_1) \cdots) b_n *)g \rangle.$

• The product system $E = \{E(t)\}_{t\geq 0}$ that M-S associate with a CP-semigroup Φ is constructed from the spaces $\mathcal{M} \otimes_{\Phi_{t_1}} \mathcal{M} \otimes_{\Phi_{t_2-t_1}} \cdots \mathcal{M} \otimes_{\Phi_{t_n-t_{n-1}}} H.$

Strong commutativity 2

Two CP maps P and Q on \mathcal{M} are said to **commute strongly** if there is a unitary

 $u: \mathcal{M} \otimes_P \mathcal{M} \otimes_Q H \to \mathcal{M} \otimes_Q \mathcal{M} \otimes_P H$

- 1. $u(a \otimes_P I \otimes_Q h) = a \otimes_Q I \otimes_P h$, for all $a \in \mathcal{M}, h \in H$.
- 2. $u(ca \otimes_P b \otimes_Q h) = (c \otimes I \otimes I)u(a \otimes_P b \otimes_Q h)$ for all $a, b, c \in \mathcal{M}, h \in H$.
- 3. $u(a \otimes_P b \otimes_Q dh) = (I \otimes I \otimes d)u(a \otimes_P b \otimes_Q h)$ for all $a, b \in \mathcal{M}, h \in H$ and $d \in \mathcal{M}'$.

Two semigroups $\Phi = {\Phi_t}_{t\geq 0}$, $\Psi = {\Psi_t}_{t\geq 0}$ are said to **commute strongly** if for all s, tthe maps Φ_s and Ψ_t commute strongly. @

Strong commutativity in B(H)

Theorem 5. (Solel) Let (T_1, \ldots, T_n) and (S_1, \ldots, S_m) $(m, n \in \mathbb{N} \cup \{\infty\})$ be two ℓ^2 -independent row contractions. The CP maps

$$\Theta(a) = \sum_{i} T_i a T_i^*,$$

and

$$\Phi(a) = \sum_{j} S_{j} a S_{j}^{*},$$

commute strongly if and only if there is an $mn \times mn$ unitary matrix

$$U = \left(U_{(i,j)}^{(k,l)}\right)_{(i,j),(k,l)}$$

such that for all i, j,

$$T_i S_j = \sum_{(k,l)} U_{(i,j)}^{(k,l)} S_l T_k.$$

So this works at least for the toy example!

Strong commutativity - example

 $\mathcal{M} = \mathbb{C}^n$ acting as diagonal matrices on $H = \mathbb{C}^n$ (works for ℓ^{∞} on ℓ^2 as well).

A unital, CP map is just a stochastic matrix, that is, a matrix P such that $p_{ij} \ge 0$ for all i, j and such that for all i,

$$\sum_{j} p_{ij} = 1.$$

Two matrices P and Q strongly commute \Leftrightarrow for all i, k,

 $|\{j: q_{kj}p_{ji} \neq 0\}| = |\{j: p_{kj}q_{ji} \neq 0\}|.$ All commuting positive matrices do so strongly.

Example for non-strong commutation:

$$P = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, Q = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 1/4 & 1/2 & 1/4 \\ 1/4 & 1/2 & 1/4 \end{bmatrix}$$

20

Strong continuity - examples

- 1. If Θ and Φ are endomorphisms that commute then they commute strongly.
- If Θ and Φ commute and either one of them is an automorphism then they commute strongly.
- 3. If α is a normal automorphism that commutes with Θ , and $\Phi = \Theta \circ \alpha$, then Θ and Φ commute strongly.