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The Problem

• A separable Hilbert space H.

• A von Neumann algebra M⊆ B(H).

• Two commuting CP-semigroups Φ = {Φt}t≥0,

Ψ = {Ψt}t≥0 on M, i.e., for all s, t ≥ 0,

Φs ◦Ψt = Ψt ◦Φs.

• Question: Is it possible to dilate Φ and Ψ

to a pair of commuting E-semigroups on

some larger von Neumann algebra?

The expected answer is yes. We have shown

that the answer is yes under some additional

assumptions.
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Definitions

• CP-semigroup - A semigroup Θ = {Θt}t≥0

(Θs ◦ Θt = Θs+t) of normal, contractive,

completely positive maps on M ⊆ B(H) ,

continuous in the following sense: for all

h, g ∈ H, and all a ∈M,

lim
t→t0

〈Θt(a)h, g〉 =
〈
Θt0(a)h, g

〉

• E-semigroup a CP-semigroup with every

element a ∗-endomorphism.

• CP0-semigroup - a CP-semigroup with uni-

tal elements.

• E0-semigroup - an E-semigroup with uni-

tal elements.
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E-dilation of a CP-semigroup

Given a semigroup Θ = {Θs}s∈S of CP maps

acting on M⊆ B(H), an E-dilation is a triple

(α,R, K), where

• K ⊇ H is a Hilbert space,

• R ⊆ B(K) is a vN algebra such that

M = PHRPH,

• α = {αs}s∈S is an E-semigroup such that

for all T ∈ R, s ∈ S

Θs(PHTPH) = PHαs(T )PH .

• α is to have the same kind of continuity

as Θ.
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E-dilation of CP-semigroups (Bhat-Skeide,

SeLegue, Muhly-Solel, Arveson)

Theorem 1.Let Θ = {Θt}t≥0 be a CP-semigroup

acting on M ⊆ B(H). Then Θ has an E-

dilation.

That is, There exists a Hilbert space K ⊇ H, a

vN algebra R ⊆ B(K) such that M = PHRPH,

and an E-semigroup {αt}t≥0 on R such that

for all T ∈ R, t ≥ 0

Θt(PHTPH) = PHαt(T )PH .

Remarks:

• Unitality.

• Minimality + uniqueness.
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E-dilation of a commuting pair of CP
maps (Bhat, Solel)

Theorem 2. Let Φ and Ψ be two commuting
CP maps acting on M ⊆ B(H). Then the
semigroup Θ (over N2) of CP-maps given by

Θ(m,n) = Φm ◦Ψn

has an E-dilation.

That is, there exists a Hilbert space K ⊇ H, a
vN algebra R ⊆ B(K) such that M = PHRPH,
and there exists two commuting normal ∗-endomorphims
α and β on R such that for all T ∈ R, m, n ∈ N

Φm ◦Ψn(PHTPH) = PHαm ◦ βn(T )PH .

Remarks:

• Unitality?

• Minimality + uniqueness?

@
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Our main result

Theorem 3. Let Φ = {Φt}t≥0, Ψ = {Ψt}t≥0

be two strongly commuting CP0-semigroups

on M ⊆ B(H). Then the semigroup Θ (over

R2
+) of CP-maps given by

Θ(s,t) = Φs ◦Ψt

has an E0-dilation.

That is, there exists a Hilbert space K ⊇ H, a

vN algebra R ⊆ B(K) such that M = PHRPH,

and there exists two commuting E0-semigroups

α and β on R such that for all T ∈ R, s, t ∈ R2
+

Φs ◦Ψt(PHTPH) = PHαs ◦ βt(T )PH .

Proof. This theorem is proved using Muhly and

Solel’s approach to dilation. We will give the

idea for the case M = B(H).
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Toy example

Assume that {Tt}t≥0, {St}t≥0 are two
commuting contractive semigroups, and
assume that Φ and Ψ are given by

Φt(a) = TtaT ∗t , Ψt(a) = StaS∗t ,

for a ∈ B(H).

Φ and Ψ are E-semigroups ⇔ {Tt}t≥0, {St}t≥0
are isometry semigroups.

Let {Vt}t≥0, {Ut}t≥0 be the (S lociński)
isometric dilation on K ⊇ H. Define for all
a ∈ B(K)

αt(a) = VtaV ∗
t , βt(a) = UtaU∗t .

Then α and β are an E-dilation of Φ and Ψ.

In general, CP-semigroups are not given by
such simple formulas. However, this example
captures the essence of the Muhly-Solel
approach.

7



The Muhly-Solel strategy for dilation

Given: a semigroup S, and CP-semigroup

Θ = {Θs}s∈S on B(H).

1. Construct product system (of Hilbert

spaces), X = {X(s)}s∈S. Construct

product system representation T of X on

H such that

Θs(a) = T̃s

(
IX(s) ⊗ a

)
T̃ ∗s .

2. Dilate T to an isometric representation V

on K ⊇ H.

3. Check that

αs(a) := Ṽs

(
IX(s) ⊗ a

)
Ṽ ∗

s

defined on the algebra B(K) is the sought

after dilation of Θ.
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Step 1: Product system representations

E - a Hilbert space.

C.C. Representation: (of E on a Hilbert
space H) A linear, completely contractive
map T : E → B(H)

E ⊗H is the usual tensor product of the
spaces.

T̃ : E ⊗H → H is defined: T̃ (ξ ⊗ h) = T (ξ)h.

Product system: X = {X(s)}s∈S, X(0) = C,

X(s)⊗X(t) ∼= X(s + t).

Product system representation: A family
T = {Ts}s∈S, Ts is a c.c. representation of
X(s) on H,

Ts+t(xs ⊗ xt) = Ts(xs)Tt(xt).
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Step 1 (cont.): Representing the

CP-semigroup

• M-S constructed E = {E(t)}t≥0, F = {F (t)}t≥0

with representation TE : E → B(H), TF :
F → B(H) such that

Φt(a) = T̃E
t

(
IE(t) ⊗ a

)
(T̃E

t )∗,

Ψt(a) = T̃F
t

(
IF (t) ⊗ a

)
(T̃F

t )∗.

• Define X = {X(s, t)}(s,t)∈R2
+

by

X(s, t) = E(s)⊗ F (t).

This is rather technical. Here the strong

commutativity assumption plays.

• Define T = {T(s,t)}(s,t)∈R2
+

by

T(s,t)(es ⊗ ft) = TE
s (es)TF

t (ft).
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Step 2: Dilating the product system

representation

The product system X and representation T

constructed in step 1 satisfy

Φs(Ψt(a)) = T̃(s,t)(IX(s) ⊗ a)T̃ ∗(s,t).

T̃ is isometric ⇒ the CP-semigroup is actually

an E-semigroup.

T̃ is coisometric ⇔ the CP-semigroup is a

CP0-semigroup (unitality).

Isometric representation: a representation

T such that T̃s is an isometry for all s ∈ R2
+.

Fully-coisometric representation: a

representation T such that T̃s is a coisometry

for all s ∈ R2
+.
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Step 2 (continued)

Theorem 4. Let X = {X(s)}
s∈Rk

+
be a prod-

uct system, and let T be a fully coisometric

representation of X on H. Then there exists

a Hilbert space K ⊇ H and a fully coisomet-

ric and isometric representation V of X on K,

such that

1. PHVs(x)
∣∣∣
H

= Ts(x) for all s ∈ Rk
+, x ∈ X(s).

2. PHVs(x)
∣∣∣
K	H

= 0 for all s ∈ S, x ∈ X(s).

This is the part where the unitality of the

semigroups is used (fully-coisometric).
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Step 2: Proof

Let

H =
⊕

s∈Rk
+

X(s)⊗H.

We define a family T̂ = {T̂s}s∈Rk
+

on H as

follows:

• T̂0 = I.

• t � s > 0: T̂s(δt · xt ⊗ h) = 0.

• t ≥ s > 0:

T̂s (δt · (xt−s ⊗ xs ⊗ h)) = δt−s·
(
xt−s ⊗ T̃s(xs ⊗ h)

)

T̂ is a semigroup of coisometries on H.
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Step 2: Proof (continued)

By classical dilation theory, T̂ has a minimal

isometric dilation V̂ = {V̂s}s∈Rk
+

on a Hilbert

space K ⊇ H satisfying

PHV̂ ∗
s−V̂s+PH = T̂s+T̂ ∗s− , s ∈ Rk.

Define

K =
∨
{V̂s(δs·(xs⊗h)) : s ∈ S, xs ∈ X(s), h ∈ H}.

We define the representation V of X on K by

Vt(xt)
(
V̂s(δs · (xs ⊗ h))

)
= V̂s+t(δs+t·(xt⊗xs⊗h)).
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Step 2: Proof (continued)

V is a well defined, covariant,

fully-coisometric and isometric product

system representation. For example:

Vs+t(xs ⊗ xt)V̂u(δu · xu ⊗ h) =

= V̂s+t+u(δs+t+u · xs ⊗ xt ⊗ xu ⊗ h)

= Vs(xs)V̂t+u(δt+u · xt ⊗ xu ⊗ h)

= Vs(xs)Vt(xt)V̂u(δu · xu ⊗ h),

the “semigroup property”.

V is a dilation of T :

PHVs(x)
∣∣∣
H

h = PHVs(x)δ0 · 1⊗ h

= PHV̂s(δs · x⊗ h)

= PHPHV̂s

∣∣∣
H

(δs · x⊗ h)

= PHT̂s(δs · x⊗ h)

= PH(δ0 · 1⊗ Ts(x)h) = Ts(x)h.
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Step 3: Putting the pieces together

Given: two strongly commuting

CP0-semigroups Φ = {Φt}t≥0, Ψ = {Ψt}t≥0

on B(H).

• Step 1: construct a product system X of

correspondences, a representation T :

Φs(Ψt(a)) = T̃(s,t)(IX(s) ⊗ a)T̃ ∗(s,t).

• Step 2: construct isometric dilation V of

T on K ⊇ H.

• Step 3: put the pieces together:

α(s,t)(b) = Ṽ(s,t)(IX(s) ⊗ b)Ṽ ∗
(s,t),

for all b ∈ B(K). α is a dilation of Φ, Ψ!
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Strong commutativity 1

• Given a CP map P on M⊆ B(H), one

may form M⊗P H, the Hausdorff

completion w.r.t. to

〈a⊗ h, b⊗ g〉 = 〈h, P (a∗b)g〉.

• Similarly, given P1, . . . , Pn CP maps on M,

M⊗P1
. . .⊗Pn−1

M⊗Pn H is the Hausdorff

completion w.r.t.

〈a1 ⊗ · ⊗ an ⊗ h, b1 ⊗ · · · ⊗ bn ⊗ g〉 =

= 〈h, Pn(a∗nPn−1(· · ·P1(a∗b1) · · · )bn∗)g〉 .

• The product system E = {E(t)}t≥0 that

M-S associate with a CP-semigroup Φ is

constructed from the spaces

M⊗Φt1
M⊗Φt2−t1

· · ·M⊗Φtn−tn−1
H.
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Strong commutativity 2

Two CP maps P and Q on M are said to

commute strongly if there is a unitary

u : M⊗P M⊗Q H →M⊗Q M⊗P H

1. u(a⊗P I ⊗Q h) = a⊗Q I ⊗P h, for all

a ∈M, h ∈ H.

2. u(ca⊗P b⊗Q h) = (c⊗ I ⊗ I)u(a⊗P b⊗Q h)

for all a, b, c ∈M, h ∈ H.

3. u(a⊗P b⊗Q dh) = (I ⊗ I ⊗ d)u(a⊗P b⊗Q h)

for all a, b ∈M, h ∈ H and d ∈M′.

Two semigroups Φ = {Φt}t≥0, Ψ = {Ψt}t≥0

are said to commute strongly if for all s, t

the maps Φs and Ψt commute strongly. @
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Strong commutativity in B(H)

Theorem 5. (Solel) Let (T1, . . . , Tn) and
(S1, . . . , Sm) (m, n ∈ N ∪ {∞}) be two
`2-independent row contractions. The CP
maps

Θ(a) =
∑
i

TiaT ∗i ,

and

Φ(a) =
∑
j

SjaS∗j ,

commute strongly if and only if there is an
mn×mn unitary matrix

U =
(
U

(k,l)
(i,j)

)
(i,j),(k,l)

such that for all i, j,

TiSj =
∑

(k,l)

U
(k,l)
(i,j) SlTk.

So this works at least for the toy example!
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Strong commutativity - example

M = Cn acting as diagonal matrices on
H = Cn (works for `∞ on `2 as well).

A unital, CP map is just a stochastic matrix,
that is, a matrix P such that pij ≥ 0 for all i, j

and such that for all i,∑
j

pij = 1.

Two matrices P and Q strongly commute ⇔
for all i, k,

|{j : qkjpji 6= 0}| = |{j : pkjqji 6= 0}|.

All commuting positive matrices do so
strongly.

Example for non-strong commutation:

P =
1

3

 1 1 1
1 1 1
1 1 1

 , Q =

 1/2 0 1/2
1/4 1/2 1/4
1/4 1/2 1/4

 .
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Strong continuity - examples

1. If Θ and Φ are endomorphisms that

commute then they commute strongly.

2. If Θ and Φ commute and either one of

them is an automorphism then they

commute strongly.

3. If α is a normal automorphism that

commutes with Θ, and Φ = Θ ◦ α, then Θ

and Φ commute strongly.
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