E_{0}-dilation of strongly commuting pairs of

CP ${ }_{0}$-semigroups

Orr Shalit, Technion
(under supervision of Baruch Solel)

Workshop on Noncommutative Dynamics and Applications
Fields Institute, July 17, 2007

The Problem

- A separable Hilbert space H.
- A von Neumann algebra $\mathcal{M} \subseteq B(H)$.
- Two commuting CP-semigroups $\Phi=\left\{\Phi_{t}\right\}_{t \geq 0}$, $\Psi=\left\{\Psi_{t}\right\}_{t \geq 0}$ on \mathcal{M}, i.e., for all $s, t \geq 0$,

$$
\Phi_{s} \circ \Psi_{t}=\Psi_{t} \circ \Phi_{s}
$$

- Question: Is it possible to dilate Φ and Ψ to a pair of commuting E-semigroups on some larger von Neumann algebra?

The expected answer is yes. We have shown that the answer is yes under some additional assumptions.

Definitions

- CP-semigroup - A semigroup $\Theta=\left\{\Theta_{t}\right\}_{t \geq 0}$ $\left(\Theta_{s} \circ \Theta_{t}=\Theta_{s+t}\right)$ of normal, contractive, completely positive maps on $\mathcal{M} \subseteq B(H)$, continuous in the following sense: for all $h, g \in H$, and all $a \in \mathcal{M}$,

$$
\lim _{t \rightarrow t_{0}}\left\langle\Theta_{t}(a) h, g\right\rangle=\left\langle\Theta_{t_{0}}(a) h, g\right\rangle
$$

- E-semigroup a CP-semigroup with every element a *-endomorphism.
- CP ${ }_{0}$-semigroup - a CP-semigroup with unital elements.
- E O-semigroup - an E-semigroup with unital elements.

E-dilation of a CP-semigroup

Given a semigroup $\Theta=\left\{\Theta_{s}\right\}_{s \in \mathcal{S}}$ of CP maps acting on $\mathcal{M} \subseteq B(H)$, an E-dilation is a triple (α, \mathcal{R}, K), where

- $K \supseteq H$ is a Hilbert space,
- $\mathcal{R} \subseteq B(K)$ is a $v N$ algebra such that $\mathcal{M}=P_{H} \mathcal{R} P_{H}$,
- $\alpha=\left\{\alpha_{s}\right\}_{s \in \mathcal{S}}$ is an E-semigroup such that for all $T \in \mathcal{R}, s \in \mathcal{S}$

$$
\Theta_{s}\left(P_{H} T P_{H}\right)=P_{H} \alpha_{s}(T) P_{H}
$$

- α is to have the same kind of continuity as Θ.

E-dilation of CP-semigroups (Bhat-Skeide, SeLegue, Muhly-Solel, Arveson)

Theorem 1. Let $\Theta=\left\{\Theta_{t}\right\}_{t \geq 0}$ be a CP-semigroup acting on $\mathcal{M} \subseteq B(H)$. Then Θ has an $E-$ dilation.

That is, There exists a Hilbert space $K \supseteq H$, a $v N$ algebra $\mathcal{R} \subseteq B(K)$ such that $\mathcal{M}=P_{H} \mathcal{R} P_{H}$, and an E -semigroup $\left\{\alpha_{t}\right\}_{t \geq 0}$ on \mathcal{R} such that for all $T \in \mathcal{R}, t \geq 0$

$$
\Theta_{t}\left(P_{H} T P_{H}\right)=P_{H} \alpha_{t}(T) P_{H} .
$$

Remarks:

- Unitality.
- Minimality + uniqueness.

E-dilation of a commuting pair of $C P$ maps (Bhat, Solel)

Theorem 2. Let Φ and Ψ be two commuting $C P$ maps acting on $\mathcal{M} \subseteq B(H)$. Then the semigroup Θ (over \mathbb{N}^{2}) of CP-maps given by

$$
\Theta_{(m, n)}=\Phi^{m} \circ \Psi^{n}
$$

has an E-dilation.
That is, there exists a Hilbert space $K \supseteq H$, a $v N$ algebra $\mathcal{R} \subseteq B(K)$ such that $\mathcal{M}=P_{H} \mathcal{R} P_{H}$, and there exists two commuting normal *-endomorph α and β on \mathcal{R} such that for all $T \in \mathcal{R}, m, n \in \mathbb{N}$

$$
\Phi^{m} \circ \Psi^{n}\left(P_{H} T P_{H}\right)=P_{H} \alpha^{m} \circ \beta^{n}(T) P_{H} .
$$

Remarks:

- Unitality?
- Minimality + uniqueness?
©

Our main result

Theorem 3. Let $\Phi=\left\{\Phi_{t}\right\}_{t \geq 0}, \Psi=\left\{\Psi_{t}\right\}_{t \geq 0}$ be two strongly commuting CP P_{0}-semigroups on $\mathcal{M} \subseteq B(H)$. Then the semigroup Θ (over \mathbb{R}_{+}^{2}) of CP-maps given by

$$
\Theta_{(s, t)}=\Phi_{s} \circ \Psi_{t}
$$

has an $E_{0-d i l a t i o n . ~}^{\text {on }}$

That is, there exists a Hilbert space $K \supseteq H$, a $v N$ algebra $\mathcal{R} \subseteq B(K)$ such that $\mathcal{M}=P_{H} \mathcal{R} P_{H}$, and there exists two commuting E_{0}-semigroups α and β on \mathcal{R} such that for all $T \in \mathcal{R}, s, t \in \mathbb{R}_{+}^{2}$

$$
\Phi_{s} \circ \Psi_{t}\left(P_{H} T P_{H}\right)=P_{H} \alpha_{s} \circ \beta_{t}(T) P_{H}
$$

Proof. This theorem is proved using Muhly and Solel's approach to dilation. We will give the idea for the case $\mathcal{M}=B(H)$.

Toy example

Assume that $\left\{T_{t}\right\}_{t \geq 0},\left\{S_{t}\right\}_{t \geq 0}$ are two commuting contractive semigroups, and assume that Φ and Ψ are given by

$$
\Phi_{t}(a)=T_{t} a T_{t}^{*}, \Psi_{t}(a)=S_{t} a S_{t}^{*},
$$

for $a \in B(H)$.
Φ and Ψ are E-semigroups $\Leftrightarrow\left\{T_{t}\right\}_{t \geq 0},\left\{S_{t}\right\}_{t \geq 0}$ are isometry semigroups.

Let $\left\{V_{t}\right\}_{t \geq 0},\left\{U_{t}\right\}_{t \geq 0}$ be the (Słociński) isometric dilation on $K \supseteq H$. Define for all $a \in B(K)$

$$
\alpha_{t}(a)=V_{t} a V_{t}^{*}, \beta_{t}(a)=U_{t} a U_{t}^{*} .
$$

Then α and β are an E -dilation of Φ and ψ.
In general, CP-semigroups are not given by such simple formulas. However, this example captures the essence of the Muhly-Solel approach.

The Muhly-Solel strategy for dilation

Given: a semigroup \mathcal{S}, and CP-semigroup $\Theta=\left\{\Theta_{s}\right\}_{s \in \mathcal{S}}$ on $B(H)$.

1. Construct product system (of Hilbert spaces), $X=\{X(s)\}_{s \in \mathcal{S}}$. Construct product system representation T of X on H such that

$$
\Theta_{s}(a)=\tilde{T}_{s}\left(I_{X(s)} \otimes a\right) \tilde{T}_{s}^{*}
$$

2. Dilate T to an isometric representation V on $K \supseteq H$.
3. Check that

$$
\alpha_{s}(a):=\tilde{V}_{s}\left(I_{X(s)} \otimes a\right) \tilde{V}_{s}^{*}
$$

defined on the algebra $B(K)$ is the sought after dilation of Θ.

Step 1: Product system representations

E - a Hilbert space.
C.C. Representation: (of E on a Hilbert space H) A linear, completely contractive $\operatorname{map} T: E \rightarrow B(H)$
$E \otimes H$ is the usual tensor product of the spaces.
$\tilde{T}: E \otimes H \rightarrow H$ is defined: $\tilde{T}(\xi \otimes h)=T(\xi) h$.
Product system: $X=\{X(s)\}_{s \in \mathcal{S}}, X(0)=\mathbb{C}$,

$$
X(s) \otimes X(t) \cong X(s+t)
$$

Product system representation: A family $T=\left\{T_{s}\right\}_{s \in \mathcal{S}}, T_{s}$ is a c.c. representation of $X(s)$ on H,

$$
T_{s+t}\left(x_{s} \otimes x_{t}\right)=T_{s}\left(x_{s}\right) T_{t}\left(x_{t}\right)
$$

Step 1 (cont.): Representing the CP-semigroup

- M-S constructed $E=\{E(t)\}_{t \geq 0}, F=\{F(t)\}_{t \geq 0}$ with representation $T^{E}: E \xrightarrow{B}(H), T^{F}:$ $F \rightarrow B(H)$ such that

$$
\begin{aligned}
& \Phi_{t}(a)=\tilde{T}_{t}^{E}\left(I_{E(t)} \otimes a\right)\left(\tilde{T}_{t}^{E}\right)^{*}, \\
& \Psi_{t}(a)=\tilde{T}_{t}^{F}\left(I_{F(t)} \otimes a\right)\left(\tilde{T}_{t}^{F}\right)^{*} .
\end{aligned}
$$

- Define $X=\{X(s, t)\}_{(s, t) \in \mathbb{R}_{+}^{2}}$ by

$$
X(s, t)=E(s) \otimes F(t) .
$$

This is rather technical. Here the strong commutativity assumption plays.

- Define $T=\left\{T_{(s, t)}\right\}_{(s, t) \in \mathbb{R}_{+}^{2}}$ by

$$
T_{(s, t)}\left(e_{s} \otimes f_{t}\right)=T_{s}^{E}\left(e_{s}\right) T_{t}^{F}\left(f_{t}\right)
$$

Step 2: Dilating the product system representation

The product system X and representation T constructed in step 1 satisfy

$$
\Phi_{s}\left(\Psi_{t}(a)\right)=\widetilde{T}_{(s, t)}\left(I_{X(s)} \otimes a\right) \widetilde{T}_{(s, t)}^{*} .
$$

\tilde{T} is isometric \Rightarrow the CP-semigroup is actually an E-semigroup.
\tilde{T} is coisometric \Leftrightarrow the CP-semigroup is a CP ${ }_{0}$-semigroup (unitality).

Isometric representation: a representation T such that \widetilde{T}_{s} is an isometry for all $s \in \mathbb{R}_{+}^{2}$.

Fully-coisometric representation: a representation T such that \widetilde{T}_{s} is a coisometry for all $s \in \mathbb{R}_{+}^{2}$.

Step 2 (continued)

Theorem 4. Let $X=\{X(s)\}_{s \in \mathbb{R}_{+}^{k}}$ be a product system, and let T be a fully coisometric representation of X on H. Then there exists a Hilbert space $K \supseteq H$ and a fully coisometric and isometric representation V of X on K, such that

$$
\begin{aligned}
& \text { 1. }\left.P_{H} V_{s}(x)\right|_{H}=T_{s}(x) \text { for all } s \in \mathbb{R}_{+}^{k}, x \in X(s) \text {. } \\
& \text { 2. }\left.P_{H} V_{s}(x)\right|_{K \ominus H}=0 \text { for all } s \in \mathcal{S}, x \in X(s) \text {. }
\end{aligned}
$$

This is the part where the unitality of the semigroups is used (fully-coisometric).

Step 2: Proof

Let

$$
\mathcal{H}=\bigoplus_{s \in \mathbb{R}_{+}^{k}} X(s) \otimes H
$$

We define a family $\widehat{T}=\left\{\widehat{T}_{s}\right\}_{s \in \mathbb{R}_{+}^{k}}$ on \mathcal{H} as follows:

- $\hat{T}_{0}=I$.
- $t \nsupseteq s>0: \widehat{T}_{s}\left(\delta_{t} \cdot x_{t} \otimes h\right)=0$.
- $t \geq s>0$:

$$
\widehat{T}_{s}\left(\delta_{t} \cdot\left(x_{t-s} \otimes x_{s} \otimes h\right)\right)=\delta_{t-s} \cdot\left(x_{t-s} \otimes \widetilde{T}_{s}\left(x_{s} \otimes h\right)\right)
$$

\widehat{T} is a semigroup of coisometries on \mathcal{H}.

Step 2: Proof (continued)

By classical dilation theory, \widehat{T} has a minimal isometric dilation $\hat{V}=\left\{\widehat{V}_{s}\right\}_{s \in \mathbb{R}_{+}^{k}}$ on a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ satisfying

$$
P_{\mathcal{H}} \hat{V}_{s_{-}}^{*} \hat{v}_{s_{+}} P_{\mathcal{H}}=\widehat{T}_{s_{+}} \widehat{T}_{s_{-}}^{*}, s \in \mathbb{R}^{k} .
$$

Define

$$
K=\bigvee\left\{\widehat{V}_{s}\left(\delta_{s} \cdot\left(x_{s} \otimes h\right)\right): s \in \mathcal{S}, x_{s} \in X(s), h \in H\right\}
$$

We define the representation V of X on K by $V_{t}\left(x_{t}\right)\left(\hat{V}_{s}\left(\delta_{s} \cdot\left(x_{s} \otimes h\right)\right)\right)=\hat{V}_{s+t}\left(\delta_{s+t} \cdot\left(x_{t} \otimes x_{s} \otimes h\right)\right)$.

Step 2: Proof (continued)

V is a well defined, covariant,
fully-coisometric and isometric product system representation. For example:

$$
\begin{aligned}
V_{s+t}\left(x_{s} \otimes x_{t}\right) \hat{V}_{u} & \left(\delta_{u} \cdot x_{u} \otimes h\right)= \\
& =\widehat{V}_{s+t+u}\left(\delta_{s+t+u} \cdot x_{s} \otimes x_{t} \otimes x_{u} \otimes h\right) \\
& =V_{s}\left(x_{s}\right) \hat{V}_{t+u}\left(\delta_{t+u} \cdot x_{t} \otimes x_{u} \otimes h\right) \\
& =V_{s}\left(x_{s}\right) V_{t}\left(x_{t}\right) \hat{V}_{u}\left(\delta_{u} \cdot x_{u} \otimes h\right),
\end{aligned}
$$

the "semigroup property".
V is a dilation of T :

$$
\begin{aligned}
\left.P_{H} V_{s}(x)\right|_{H} h & =P_{H} V_{s}(x) \delta_{0} \cdot 1 \otimes h \\
& =P_{H} \widehat{V}_{s}\left(\delta_{s} \cdot x \otimes h\right) \\
& =\left.P_{H} P_{\mathcal{H}} \widehat{V}_{s}\right|_{\mathcal{H}}\left(\delta_{s} \cdot x \otimes h\right) \\
& =P_{H} \widehat{T}_{s}\left(\delta_{s} \cdot x \otimes h\right) \\
& =P_{H}\left(\delta_{0} \cdot 1 \otimes T_{s}(x) h\right)=T_{s}(x) h .
\end{aligned}
$$

Step 3: Putting the pieces together

Given: two strongly commuting CP_{0}-semigroups $\Phi=\left\{\Phi_{t}\right\}_{t \geq 0}, \Psi=\left\{\Psi_{t}\right\}_{t \geq 0}$ on $B(H)$.

- Step 1: construct a product system X of correspondences, a representation T :

$$
\Phi_{s}\left(\Psi_{t}(a)\right)=\tilde{T}_{(s, t)}\left(I_{X(s)} \otimes a\right) \tilde{T}_{(s, t)}^{*} .
$$

- Step 2: construct isometric dilation V of T on $K \supseteq H$.
- Step 3: put the pieces together:

$$
\alpha_{(s, t)}(b)=\tilde{V}_{(s, t)}\left(I_{X(s)} \otimes b\right) \tilde{V}_{(s, t)}^{*},
$$

for all $b \in B(K) . \alpha$ is a dilation of Φ, Ψ !

Strong commutativity 1

- Given a CP map P on $\mathcal{M} \subseteq B(H)$, one may form $\mathcal{M} \otimes_{P} H$, the Hausdorff completion w.r.t. to $\langle a \otimes h, b \otimes g\rangle=\left\langle h, P\left(a^{*} b\right) g\right\rangle$.
- Similarly, given P_{1}, \ldots, P_{n} CP maps on \mathcal{M}, $\mathcal{M} \otimes_{P_{1}} \cdots \otimes_{P_{n-1}} \mathcal{M} \otimes_{P_{n}} H$ is the Hausdorff completion w.r.t.

$$
\begin{gathered}
\quad\left\langle a_{1} \otimes \cdot \otimes a_{n} \otimes h, b_{1} \otimes \cdots \otimes b_{n} \otimes g\right\rangle= \\
= \\
\left\langle h, P_{n}\left(a_{n}^{*} P_{n-1}\left(\cdots P_{1}\left(a^{*} b_{1}\right) \cdots\right) b_{n} *\right) g\right\rangle .
\end{gathered}
$$

- The product system $E=\{E(t)\}_{t \geq 0}$ that M -S associate with a CP-semigroup Φ is constructed from the spaces $\mathcal{M} \otimes_{\Phi_{t_{1}}} \mathcal{M} \otimes_{\Phi_{t_{2}-t_{1}}} \cdots \mathcal{M} \otimes_{\Phi_{t_{n}-t_{n-1}}} H$.

Strong commutativity 2

Two CP maps P and Q on \mathcal{M} are said to commute strongly if there is a unitary

$$
u: \mathcal{M} \otimes_{P} \mathcal{M} \otimes_{Q} H \rightarrow \mathcal{M} \otimes_{Q} \mathcal{M} \otimes_{P} H
$$

1. $u\left(a \otimes_{P} I \otimes_{Q} h\right)=a \otimes_{Q} I \otimes_{P} h$, for all $a \in \mathcal{M}, h \in H$.
2. $u\left(c a \otimes_{P} b \otimes_{Q} h\right)=(c \otimes I \otimes I) u\left(a \otimes_{P} b \otimes_{Q} h\right)$ for all $a, b, c \in \mathcal{M}, h \in H$.
3. $u\left(a \otimes_{P} b \otimes_{Q} d h\right)=(I \otimes I \otimes d) u\left(a \otimes_{P} b \otimes_{Q} h\right)$ for all $a, b \in \mathcal{M}, h \in H$ and $d \in \mathcal{M}^{\prime}$.

Two semigroups $\Phi=\left\{\Phi_{t}\right\}_{t \geq 0}, \Psi=\left\{\Psi_{t}\right\}_{t \geq 0}$ are said to commute strongly if for all s, t the maps Φ_{s} and Ψ_{t} commute strongly. ©

Strong commutativity in $B(H)$

Theorem 5. (Solel) Let (T_{1}, \ldots, T_{n}) and $\left(S_{1}, \ldots, S_{m}\right)(m, n \in \mathbb{N} \cup\{\infty\})$ be two ℓ^{2}-independent row contractions. The CP maps

$$
\Theta(a)=\sum_{i} T_{i} a T_{i}^{*},
$$

and

$$
\Phi(a)=\sum_{j} S_{j} a S_{j}^{*},
$$

commute strongly if and only if there is an $m n \times m n$ unitary matrix

$$
U=\left(U_{(i, j)}^{(k, l)}\right)_{(i, j),(k, l)}
$$

such that for all i, j,

$$
T_{i} S_{j}=\sum_{(k, l)} U_{(i, j)}^{(k, l)} S_{l} T_{k} .
$$

So this works at least for the toy example!

Strong commutativity - example

$\mathcal{M}=\mathbb{C}^{n}$ acting as diagonal matrices on $H=\mathbb{C}^{n}$ (works for ℓ^{∞} on ℓ^{2} as well).

A unital, CP map is just a stochastic matrix, that is, a matrix P such that $p_{i j} \geq 0$ for all i, j and such that for all i,

$$
\sum_{j} p_{i j}=1
$$

Two matrices P and Q strongly commute \Leftrightarrow for all i, k,

$$
\left|\left\{j: q_{k j} p_{j i} \neq 0\right\}\right|=\left|\left\{j: p_{k j} q_{j i} \neq 0\right\}\right| .
$$

All commuting positive matrices do so strongly.

Example for non-strong commutation:

$$
P=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], Q=\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 2 & 1 / 4 \\
1 / 4 & 1 / 2 & 1 / 4
\end{array}\right] .
$$

Strong continuity - examples

1. If Θ and Φ are endomorphisms that commute then they commute strongly.
2. If Θ and Φ commute and either one of them is an automorphism then they commute strongly.
3. If α is a normal automorphism that commutes with Θ, and $\Phi=\Theta \circ \alpha$, then Θ and Φ commute strongly.
