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1. PROBLEM

Let 1 € A C B be a pair of C*-algebras with com-
mon unit and E: B — A be a faithful conditional
expectation. We consider the following problem:

Problem 1.1. Let A be a set of unital C*-algebras

with some property "P”. Suppose that A € A.
Then when B € A7

The following problem is my motivation to consider
the above problem.

Problem 1.2. (1988, Blackadar [4]) Let A be an
AF algebra, G a finite group, and « an action of G
on A. Is it true that tsr(A x, G) = 17

This is a still open question.
In this talk we will consider a generalized intersting
problem and show some affirmative data.
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2. PROPERTIES FOR C*-ALGEBRAS

We consider the following four properties which are

important for C*-algebras Theory.

(1) (1986 Rieffel [24]) For a unital C*-algebra A,
the topological stable rank tsr(A) of A is de-
fined to be the least integer n such that the set
Lg,(A) of all n-tuples (ai,,as...,a,) € A"
which generate A as a left ideal is dense in A™.
The topological stable rank of a nonunital C*-
algebra is defined to be that of its smallest uni-
tization. Note that tsr(A) = 1 is equivalent to
density of the set of invertible elements in A.

(2) (1990 Brown and Pedersen [7]) For a unital C*-
algebra A, the real rank RR(A) of A is to be the
least integer n such that for any € > 0 and any
n+1 elements ag, a1, ,as . ..,a, € Ay, there ex-
ist n + 1 elements by, by, ,bo...,b, € Ay, such
that [ja; — b;|| < efor 0 <i <mnand) . b7
is invertible. The real rank of a nonunital C*-
algebra is defined to be that of its smallest uni-
tization. Note that RR(A) = 0 is equivalent to
density of the set of invertible self-adjoint ele-
ments in A.

(3) A C*-algebra has Property (SP) if there exists
a non-zero projection in any non-zero hereditary
subalgebra of A.
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(4) A C*-algebra A is said to have cancellation of
projections if whenever p, g, r € A are projec-
tionswith p L r, ¢ L r, and p+r ~ g+, then
p ~ ¢, where p ~ ¢ means Murray-von Neu-
mann equivalent. If the matrix algebra M,,(A)
over A has cancellation of projections for each
n € N, we simply say that A has cancellation.
Every C*-algebra with cancellation is stably fi-
nite.

Note that for a unital C*-algebra A,

o tsr(A) = 1 implies that A has cancellation

e RR(A) = 0 implies that A has property (SP).

e When A has RR(A) =0, tsr(A) = 1 is equiva-
lent to that A has cancellation (1982 Blackadar
and Handelman [6]).
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3. PROPERTY (SP)

Let 1 € A C B be a pair of C*-algebras with com-
mon unit and E: B — A be a faithful conditional
expectation.

When A is simple and « be an outer action on A.
Kishimoto [15] proved the following statement (as a
special case): For every element x of A and every
nonzero hereditary C*-subalgebra C of A,

inf{[|cxa(c)]|: c € C4,||c|| =1} = 0.

One of applications of this result is that it implies
that the reduced crossed product of a simple C*-
algebra by an outer action of a discrete group is again
simple.

A counterpart of Kishimoto’s theorem for a condi-
tional expectation F is the following statement: for
every element © € A and nonzero hereditary C*-

subalgebra C' of A,
inf{||c( — B(@))e]]: ¢ € O, ||ef = 1} =0.
Then FE is called outer.

Theorem 3.1. (1998 Osaka [18]) Let 1 € A C
B be a pair of C*-algebras with common unit and
E: B — A be a faithful conditional expectation.
Suppose that A has Property (SP). If E is outer,
then B has Property (SP).

Moreover, every nonzero hereditary C*-subalgebra
of B has a projection which is equivalent to some
projection in A.
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In this case any nonzero hereditary C*-subalgebra
of B has nonzero projection which is Murray-von
Neumann equivalent to some projection in A.

Let A be a simple C*-algebra and a be an action
of a finite group G on A such that o, is outer for
g # 1. Then F is outer. Hence the crossed product
algebra B = A X, G has Property (SP) when so does
A. This observation can be extended using C*-index
theory in the sense of Watatani [28] In fact [zumi
proved the following result:

Theorem 3.2. (2002 Izumi [12]) Let 1 € A C B
be of irreducible and finite depth inclusion of simple
C*-algebras, and E: B — A is of index finite type.
Then E is outer.

Here we introduce C*-index Theory briefly.

Definition 3.3. Let 1 € A C B be an inclusion of
unital C*-algebras with a faithful conditional expec-
tation £: B — A.

A quasi-basis for E is a finite family

((ur,ui), (uo,u), ..., (up,u)) of elements of
B x B such that

b= Z ujB(uib) = Z E(bu)u;
j=1 j=1

for all b € B. The expectation E has index-finite
type if E has a quasi-basis, and the index of E is
then defined by Index(E) = > 7, uju?. The index
is a positive invertible central element of B that does
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not depend on the choice of the quasi-basis. In par-
ticular, if 1 € A C B is a pair of simple unital
C*-algebras, then Index(FE) is a positive scalar.

We will say that 1 € A C B has index-finite type if
there is a faithful conditional expectation £: B — A
with index-finite type.

Set By = A, By = B, and E; = E. Recall the
C*-algebra version of the basic construction. (Defi-
nition 2.2.10 of [28], where it is called the C* basic
construction). We inductively define e, = e B,_, and
Bi+1 = C*(By,eyr), the Jones projection and C*-
algebra for the basic construction applied to E}: By —
Bi_1, and take Ej.1: Bry1 — By to be the dual
conditional expectation E'p, of Definition 2.3.3 of |28].
This gives the tower of iterated basic constructions

ByCcBiCBC---CB,C---,

with By = A and By = B. It follows from Proposi-
tion 2.10.11 of [28] that this tower does not depend
on the choice of E.

We then say that the inclusion A C B has finite
depth if there is n € N such that (A"’ N B,)e, (A" N
B,) = A'N B,,41. We call the least such n the depth
of the inclusion.

Example 3.4. Let A be a unital C*-algebra, let
G be a finite group, and let a: G — Aut(A) be
an action of G on A. For g € G, let u, € A X,
(G be the standard unitary in the crossed product,
implementing «,. Then the function £: A x, G —
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A, given by E(deG agug) = aq, IS a conditional
expectation with index-finite type, ((u,, u;))gE oisa
quasi-basis for £, and Index(F) = card(G) - 14x,6-

The following result is a final version of this type.

Theorem 3.5. (1998 Osaka [18]) Let 1 € A C
B be a pair of C*-algebras with common unit and
E: B — A be a faithful conditional expectation of

index finite type. Suppose that A is simple and has
Property (SP). Then B has Property (SP).



INCLUSIONS OF C*-ALGEBRAS 9
4. TOPOLOGICAL STABLE RANK

Theorem 4.1. (2005 O-Teruya [20])

Let B be a unital C*-algebra, let A C B be a
unital subalgebra, let E': B — A be a faithful con-
ditional expectation with index-finite type, and let
(v, v})), .o, be aquasi-basis for E. Then tsr(B) <
n X tsr(A).

Using this estimate we can get the following result.

Theorem 4.2. (2006 O-Teruya [21]) Let 1 € A C
B be an inclusion of unital C*-algebras of index-
finite type and depth 2. Suppose that A is infinite
dimensional simple with tsr(A) = 1 and the property

SP. Then tsr(B) < 2.

The point is the following observation.

Proposition 4.3. (2005 O-Teruya [20]) Let 1 €
A C B be an inclusion of unital C*-algebras of index-
finite type and depth 2. Suppose that tsr(A) = 1.
Then we have

sup tsr(pBp) < o0,
peP(A)

where P(A) denotes the set of all prjections in A.
Indeed, Since A is simple with the property SP,

there is a sequence of mutually orthogonal equivalent
projections {p;}¥, in A such that N > K.



10 HIROYUKI OSAKA

Set p = Ef\il p;. Then pBp has a matrix unite
such that

pBp = My(p1Bp).
Then using Rieffel’s formula [24]
tsr(pBp) = tst(My(p1Bp1))
_ {tsr(pprl) —1
N
K
<1= 1=2
<{yei=2,

}+1

where {a} denotes least integer greater than a. Since
A is simple, pis a full projection in A, and moreover,
in B. Hence from Blackadar’s formula [5] for corner
algebras, we have

tsr(B) < tsr(pBp) < 2.
1

Theorem 4.2 implies that if A is AF C*-algebra,
(G a finite group, and « an action of G on A. Then
tsr(A X, G) < 2. We hope that tsr(A x, G) = 1.
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The following estimate will give a support to this
problem.

Theorem 4.4. (2007 Osaka [19]) Let A be a sim-
ple unital C*-algebra with tsr(A) = 1 and Prop-
erty (SP), {G}.}}_ finite groups, oy, actions from Gy
to Aut((--- ((A Xay G1) Xy G2) -+ ) Xa,_; Gr-1).
(Go ={1}) Then

tSl"((° . ((A Xy Gl) X a9 Gg) < ) X ap, Gn) < 2.

k-1
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5. CANCELLATION PROPERTY

In this section we prove a cancellation theorem
for inclusions of simple C*-algebras with index-finite
type. We need the following modification of Black-
adar’s cancellation theorem, which is itself a modifi-
cation of an argument of Rieffel’s one. It is proved
on an argument of Goodearl [9].

Theorem 5.1 (1983 Blackadar [3]). Let A be a sim-
ple C*-algebra. Let P C My (A) be a set of nonzero
projections with the following two properties:
(1) For every nonzero projection ¢ € M, (A), there
exists p € P such that 2[p] < [q] in K((A).
(2) sup,ep tsr(pMo(A)p) < oo.
Then the projections in M (A) satisfy cancellation.

When 1 € A C B is an inclusion of simple C*-
algebras of index-finite type and depth 2, we could
conclude that B has cancellation under the assump-
tion that A has Cancellation with tsr(A) = 1 and
Property (SP) by Theorems 3.1, 3.2, 5.1 and Propo-
sition 4.3.

Making counterpart of subfactors theory for inclu-
sions of C*-algebras (which may be well known) we
can get the following result.

Theorem 5.2 (2007 Jeong-O-Phillips-Teruya [14]).
Let 1 € A C B be an inclusion of unital C*-algebras
of index-finite type and with finite depth. Suppose
that A is simple, tsr(A) = 1, and A has Prop-
erty (SP). Then B has cancellation.
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Let P be the set of all nonzero projections in A.
Since A is simple, using Izumi’s observation there
exist projections 21, 29, . . ., 25 in the center of B such
that Bz; is simple and

B=Bz®Bzx®---® Bz..

By several observations z;, € z2;A%; C Bz; hasindex-
finite type and finite depth. Hence we may assume
that B is simple.

Using finite depth property, tere exists & € N such
that

(A" N Biy1)ert1(A' N Byyy) = A’ N By,

and B, is stably isomorphic to B and By, is sta-
bly isomorphic to A. Then there are n € N and
Ui, U, ..., u, € A'N Byyq such that for every p €
P, the family {(pu;, u;p)}i<j<n is a quasi-basis for
the conditional expectation Ej.1|pp,, p: PBriip —
pByp. Then we have

tsr(pBrp) < nxtsr(pBpyip)+n’—2n+1 = n*—n+1

by a similar argument in the proof of Theorem 4.1.
Showing that By has Property (SP), we can con-
clude that B;. has cancellation.
Since By, is stably isomorphic to B, B has cancel-
lation. |
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The following result gives an affirmative data to
Problem 1.2.

Corollary 5.3. Let A be an infinite dimensional
simple unital C*-algebra, let G be a finite group,
and let o be an action of G on A. Suppose that
tsr(A) = 1 and A has Property (SP). Then A x, G
has cancellation. Moreover, if A X, GG has real rank
zero, then tsr(A x, G) = 1.

Remark 5.4. Let a: G — Aut(A) be an action of
a discrete group GG on a unital C*-algebra A. Taking
the crossed product A X, G can increase the topo-
logical stable rank if GG is finite and A is not simple
(see Example 8.2.1 of [4]) or if G is infinite and A is
simple (see Example 8.2.2 of [4]). Blackadar asked,
in Question 8.2.3 of [4], whether the crossed product
of an AF algebra by a finite group has topological
stable rank one. This question remains open, even
for simple AF algebras and Z/27Z. We have seen in
Corollary 5.3 that if A is a simple unital C*-algebra
with TR(A) = 0 and G is finite, then A X, G has
cancellation. It often happens that cancellation for
a simple unital C*-algebra B implies tsr(B) = 1, for
example if B has real rank zero. However, a crossed
product of a simple AF algebra by a finite group may
have nonzero real rank (Example 9 of [8]), and can-
cellation for a simple unital C*-algebra A does not

imply tsr(A) =1 ([26]).
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