The Gauge Group of a Strongly Spatial E_0 -semigroup Daniel Markiewicz joint work with Robert T. Powers U. of Toronto, Fields Inst., Ben Gurion U. Fields Institute, July 2007 # CP-semigroups and E₀-semigroups #### Definition A CP-semigroup is a family $\{\alpha_t : t \ge 0\}$ of normal completely positive maps of B(H) such that: - $\alpha_t \circ \alpha_s = \alpha_{t+s}$, for all $t, s \ge 0$ - $\alpha_0(X) = X$, for all $X \in B(H)$; - the map $t \mapsto \langle \alpha_t(X)\xi, \eta \rangle$ is continuous, for all $\xi, \eta \in H$, $X \in B(H)$ We call it an E-semigroup if α_t is a *-endomorphism for all t. If $\alpha_t(I) = I$ it is called an E₀-semigroup . ### Definition A unit for an E_0 -semigroup α on B(H) is a strongly continuous one-parameter semigroup of operators T_t such that $T_0 = I$ and $$\alpha_t(X)T_t = T_tX, \quad \forall t \geq 0, \forall X \in B(H).$$ # Cocycles and the Gauge group #### Definition An cocycle is a strongly continuous family of operators $(C_t)_{t\geq 0}$ in B(H) such that $$C_{t+s} = C_t \alpha_t(C_s)$$ for $t, s \ge 0$. We say that the cocycle C_t is local if $C_t \in \alpha_t(B(H))'$ for all t > 0. ### Definition The gauge group of an E_0 -semigroup α is given by $$G(\alpha) = \{ \text{ unitary local cocycles of } \alpha \}$$ # Cocycle Conjugacy #### Definition Two E_0 -semigroups α , β are cocycle equivalent if there exists a unitary α -cocycle $(U_t)_{t\geq 0}$ such that $$\beta_t(X) = U_t \alpha_t(X) U_t^*.$$ They are cocycle conjugate ($\alpha \sim \beta$) if there exists a conjugacy θ such that α and $\theta^{-1} \circ \beta \circ \theta$ are cocycle equivalent. ### Remark If *E* is the product system of an E₀-semigroup α , then $G(\alpha) \simeq Aut(E)$. # Action of the Gauge group on the Units #### Remark If U_t is a local unitary cocycle and T_t is a unit, then U_tT_t is a unit. ### Theorem (Arveson, Memoirs AMS 1989) If α is an E_0 -semigroup of type I_n , then for every $(a, \psi) \in \mathbb{C} \times \mathbb{C}^n$ there exists a unique unit $T_t(a, \psi)$. Furthermore, if U_t is a unitary local cocycle, there exists a unique triple $(\lambda, \xi, W) \in \mathbb{R} \times \mathbb{C}^n \times U(n)$ such that $$U_t T_t(a, \psi) = T_t(a + i\lambda - \|\xi\|^2 / 2 - \langle W\psi, \xi \rangle, \xi + W\psi), \quad \forall a, \psi.$$ ### Corollary Let α be an E_0 -semigroup of type I. The action of $G(\alpha)$ on the set of normalized units is transitive. ### Full tuples of units #### Definition Given two CP-semigroups α and β , we say that β is a subordinate of α , denoted $\beta \leq \alpha$, if $\alpha_t - \beta_t$ is completely positive for all $t \geq 0$. ### Definition Let α be an E₀-semigroup of index n. We will say that a k-tuple of units ($k \ge n + 1$) is full if together its elements generate the subordinate E-semigroup of type I_n . ### Definition Two full n-tuples of units $(U_t^{(0)}, U_t^{(1)}, \dots, U_t^{(n)})$ and $(V_t^{(0)}, V_t^{(1)}, \dots, U_t^{(n)})$ share the same covariances if $$(U_t^{(j)})^* U_t^{(k)} = (V_t^{(j)})^* V_t^{(k)}, \quad \forall j, k, t \ge 0$$ ### N-fold transitivity ### Definition Let α be an E₀-semigroup of index n. We will say that $G(\alpha)$ is (n+1)-fold transitive if given any two full n+1-tuples $((U_t^{(0)}, U_t^{(1)}, \ldots, U_t^{(n)})$ and $(V_t^{(0)}, V_t^{(1)}, \ldots, U_t^{(n)})$ sharing the same covariances, there exists a local unitary cocycle θ_t such that $\theta_t U_t^{(k)} = V_t^{(k)}$, for all $k, t \geq 0$ #### Remark If an E_0 -semigroup is of type I_n , then its gauge group is (n+1)-fold transitive. # Lack of N-fold transitivity ### Theorem (M.-Powers) There exists an E_0 -semigroup of type II_1 whose gauge group is not 2-fold transitive. #### Theorem (Tsirelson) There exists an E_0 -semigroup whose gauge group is not transitive. ### Corollary $(II_1 \neq II_0 \otimes I_1)$ There exists a type II_1 E_0 -semigroup which is not the tensor product of an E_0 -semigroup of type II_0 and another of type I_1 . # Powers Approach (New York Journal of Math. 2003) #### Definition Let K be a separable Hilbert space, and let $H = K \otimes L^2(0, \infty)$. Let U_t denote the right translation of H by $t \geq 0$. We will say that a CP semigroup α of B(H) is a CP-flow if U_t is a unit of α . #### Basic definitions - δ = generator of CP-flow α - -d = generator of U_t - π_0 = boundary representation of $\mathcal{D}(\delta)$ on $K \simeq \mathcal{D}(d^*)/\mathcal{D}(d)$ - $\Lambda: B(K) \to B(H)$ given by $(\Lambda(A)f)(x) = e^{-x}Af(x)$ - $\bullet \ \Lambda = \Lambda(I)$ - Boundary weight map $\rho \mapsto \omega(\rho)$ from $B(H)_*$ to boundary weights on $[(I \Lambda^{1/2})B(H)(I \Lambda^{1/2})]_*$. # Strongly Spatial CP-flows #### Definition A CP-semigroup α is strongly spatial if there exists β cocycle conjugate to α whose boundary representation is σ -weakly continuous and unital. ### Theorem (Powers) Suppose $\pi: B(H) \to B(K)$ is a σ -weakly continuous CP contraction. Then the map $$\omega(\rho) = \hat{\pi}(\rho) + \hat{\pi}(\hat{\Lambda}(\hat{\pi}(\rho))) + \hat{\pi}(\hat{\Lambda}(\hat{\pi}(\hat{\Lambda}(\hat{\pi}(\rho))))) + \dots$$ converges as a weight and it is the boundary weight of the minimal CP flow which is derived from π . Furthermore it is the unique such CP-flow if $(\pi \circ \Lambda)^n(I) \to 0$ weakly. # Framework for the examples • $K = \bigotimes_{j=1}^{\infty} L^2(0, \infty)$ with reference vector $v_1 \otimes v_2 \otimes \cdots$ where $$v_j(x) = \lambda_j e^{-\frac{1}{2}\lambda_j^2 x}$$ where $\lambda_i > 0$ for all j and $$\sum_{j=1}^{\infty} \frac{|\lambda_j - \lambda_{j+1}|^2}{\lambda_j^2 + \lambda_{j+1}^2} < \infty, \qquad \sum_{j=1}^{\infty} \lambda_j^{-2} < \infty$$ (example $\lambda_i = j$ but not 2^j). - $H = K \otimes L^2(0, \infty)$ - $\pi : B(H) \to B(K)$ given by $\pi(X) = SXS^*$ where $$S(f_1 \otimes f_2 \otimes \cdots \otimes h) = h \otimes f_1 \otimes f_2 \otimes \cdots$$ • $\Delta := \lim_{n \to \infty} (\pi \circ \Lambda)^n(I) \neq 0.$ ### Existence ### Theorem (M.-Powers) Suppose α is a CP-flow derived from π as given above, with boundary weight ω . The ω is of the form $$\omega(\rho) = \omega^1(\rho) + \rho(\Delta)\xi$$ where ω^1 is the boundary weight of the minimal CP-flow derived from π and ξ is a positive boundary weight with $\xi(I-\Lambda) \leq 1$. The CP flow α is unital if and only if $\xi(I-\Lambda) = 1$. Furthermore, there exist unital CP-flows derived from π which are strongly spatial but with $\xi \neq 0$. ### Theorem (M.-Powers) If α is the Bhat dilation of a strongly spatial CP-flow as above with $\xi \neq 0$, then it has index one but its gauge group is not 2-fold transitive. ### Corners ### Definition (Powers) Suppose that α and β are E₀-semigroups. We say that γ is a corner from α to β if θ_t given by $$\theta_t \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) = \left(\begin{array}{cc} \alpha_t(A) & \gamma_t(B) \\ \gamma_t^*(C) & \beta_t(D) \end{array} \right)$$ is a CP semigroup. We say γ is hypermaximal if for every CP semigroup θ'_t subordinate to θ_t of the form $$\theta'_t \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) = \left(\begin{array}{cc} \alpha'_t(A) & \gamma_t(B) \\ \gamma^*_t(C) & \beta'_t(D) \end{array} \right),$$ we have that $\alpha'_t = \alpha_t$ and $\beta'_t = \beta_t$. ### Some main ideas of the proof ### Remark Unitary Local Cocycles for $\alpha \Leftrightarrow$ Hypermaximal corners from α to α ### Outline - In our case, look for local unitary cocycles leaving right shift invariant (=flow corners) - Observe that if γ is a flow corner corresponding to a rotation, then $\theta_t = \begin{pmatrix} \alpha_t' & \gamma_t \\ \gamma_t^* & \beta_t' \end{pmatrix}$ has to be derived from $\begin{pmatrix} \pi & z\pi \\ \overline{z}\pi & \pi \end{pmatrix}$ for some $|z| \leq 1$. - Describe possible boundary weight maps of possible θ_t ; in this case a dychotomy appears: z = 1 versus $z \neq 1$. - Only z = 1 possible in the hypermaximal case.