Real Hilbert spaces, $SL(2,\mathbb{R})$ modular theory and CFT

Roberto Longo

Toronto, July, 2007

Standard real Hilbert subspaces

 \mathcal{H} complex Hilbert space and $H \subset \mathcal{H}$ a real linear subspace.

Symplectic complement:

 $H' \equiv \{\xi \in \mathcal{H} : \Im(\xi, \eta) = 0 \quad \forall \eta \in H\}.$

 $H' = (iH)^{\perp}$ (real orthogonal complement)

$$H_1 \subset H_2 \Rightarrow H'_1 \supset H'_2$$
.

A standard subspace H of \mathcal{H} is a closed, real linear subspace of \mathcal{H} which is both cyclic ($\overline{H + iH} = \mathcal{H}$) and separating ($H \cap iH = \{0\}$). H is standard iff H' is standard.

H standard subspace \rightarrow anti-linear operator $S \equiv S_H : D(S) \subset \mathcal{H} \rightarrow \mathcal{H}$, where $D(S) \equiv H + iH$,

 $S:\xi+i\eta\mapsto\xi-i\eta\ ,\quad \xi,\eta\in H\ .$ $S^2=1{\upharpoonright}_{D(S)}.\ S$ is closed and densely defined.

Conversely, S densely defined, closed, anti-linear involution on ${\mathcal H}$ gives

 $H = \{\xi : S\xi = \xi\}$ is a standard subspace

 $H \longleftrightarrow S$ bijection

Modular theory. Set

$$S_H = J_H \Delta_H^{1/2}$$

polar decomposition of $S = S_H$. Then J_H is an anti-unitary involution $\Delta \equiv S^*S > 0$

$$\Delta_H^{-it}H = H, \quad J_HH = H'$$

Borchers theorem (real subspace version) H standard subspace, U a one-parameter group with positive generator

$$U(s)H \subset H \quad s \geqslant 0.$$

Then:

$$\begin{cases} \Delta_{H}^{it}U(s)\Delta_{H}^{-it} = U(e^{-2\pi t}s), \\ J_{H}U(s)J_{H} = U(-s), \quad t, s \in \mathbb{R}. \end{cases}$$

Note: Setting $K \equiv U(1)H$ we have

$$\Delta_H^{-it} K = \Delta_H^{-it} U(1) H = U(e^{2\pi t}) \Delta_H^{-it} H$$

= $U(e^{2\pi t}) H \subset K, \quad t \ge 0.$

 $K \subset H$ is a half-sided modular inclusion.

About the proof (adapted from Florig). With $\xi \in H, \xi' \in H'$

$$f_U(z) = (\Delta^{i\bar{z}}\xi', U(e^{2\pi z}s)\Delta^{-iz}\xi).$$

is analytic in $\mathbb{S}_{1/2} = \{z \in \mathbb{C} : 0 < \Im \ z < \frac{1}{2}\}$ (the generator of U(t) is positive and $\Im e^{2\pi z} s \ge 0$ for $z \in \mathbb{S}_{1/2}$).

V(t) = JU(-t)J satisfies the same assumptions then U because of JH = H'

$$f_U\left(t + \frac{i}{2}\right) = (\Delta^{-1/2} \Delta^{-it} \xi', U(e^{2\pi t + i\pi} s) \Delta^{-it} \Delta^{1/2} \xi)$$

= $(\Delta^{-1/2} \Delta^{-it} \xi', JV(e^{2\pi t} s) \Delta^{-it} \xi)$
= $(\Delta^{-it} \xi', (J \Delta^{1/2}) V(e^{2\pi t} s) \Delta^{-it} \xi)$
= $(\Delta^{-it} \xi', V(e^{2\pi t} s) \Delta^{-it} \xi) = f_V(t)$

(KMS and positivity of energy) analogously V(t) = JU(-t)J satisfies the same assumptions then U because of JH = H'

$$f_V\left(t+\frac{i}{2}\right) = f_U(t)$$

 f_{U} and f_{V} glue to an entire bounded function, thus constant.

Converse: Wiesbrock, Borchers, Araki-Zsido theorem (real subspace version)

Let H, K be standard subspaces. Assume halfsided modular inclusion:

$$\Delta_H^{-it} K \subset K, \qquad t \ge 0$$

Then $\{\Delta_K^{it}, \Delta_H^{is}\}$ generates a unitary representation of the "ax+b" group with positive energy

dilation group =
$$\Delta_H^{-is/2\pi}$$

gen. of translations $P = \frac{1}{2\pi} (\log \Delta_K - \log \Delta_H)$

Conclusion:

therefore, if U has no non-zero fixed vector, (U, H) is *unique* up to multiplicity.

von Neumann algebras and real Hilbert subspaces

M von Neumann algebra on \mathcal{H} , $\Omega \in \mathcal{H}$ a cyclic separating vector,

$$H_M \equiv \overline{M_{sa}\Omega}$$

is a standard subspace of ${\cal H}$

$$\Delta_M = \Delta_{H_M}, \quad J_M = J_{H_M}$$

In particular

$$H'_M = H_{M'}$$

Borchers theorem (original for vN algebras)

M von Neumann algebra, Ω cyclic serating vector, U a one-parameter group with positive generator with $U(s)\Omega = \Omega$ and

$$U(s)MU(-s) \subset M \quad s \ge 0.$$

Then:

$$\begin{cases} \Delta_M^{it} U(s) \Delta_M^{-it} = U(e^{-2\pi t}s), \\ J_M U(s) J_M = U(-s), \quad t, s \in \mathbb{R}. \end{cases}$$

Note: If Ω is the unique *U*-fixed vector then *M* is a type III_1 factor.

Wiesbrock, Borchers, Araki-Zsido theorem (original for vN algebras)

Let M, N be vN algebras, Ω jointly cyclic and separating vector. Assume half-sided modular inclusion:

$$\Delta_M^{-it} N \Delta_M^{it} \subset N \,, \qquad t \ge 0 \,.$$

Then $\{\Delta_N^{it}, \Delta_M^{is}\}$ generates a unitary representation of the "ax+b" group with positive energy

dilations =
$$\Delta_M^{-is/2\pi}$$

gen. of translations $P = \frac{1}{2\pi} (\log \Delta_N - \log \Delta_M)$

Therefore Borchers triple \Leftrightarrow Wiesbrock triple.

How many Borchers triples there are?

Is is possible that $U(s)MU(-s)' \cap M = \mathbb{C}$ for s > 0?

Möbius covariant nets of real Hilbert subspaces

A *local Möbius covariant net* of standard subspaces \mathcal{A} of real Hilbert subspaces on the intervals of S^1 is a map

$$I \to H(I)$$

with

1. Isotony : If I_1 , I_2 are intervals and $I_1 \subset I_2$, then

$$H(I_1) \subset H(I_2) \ .$$

2. Möbius invariance: There is a unitary representation U of Mob on \mathcal{H} such that

U(g)H(I) = H(gI), $g \in Mob$, $I \in \mathcal{I}$.

Here Mob $\simeq PSL(2,\mathbb{R})$ acts on S^1 as usual.

- 3. Positivity of the energy : $L_0 \ge 0$
- 4. Cyclicity : the complex linear span of all spaces H(I) is dense in \mathcal{H} .
- 5. Locality : If I_1 and I_2 are disjoint intervals then

$$H(I_1) \subset H(I_2)'$$

First consequences

Irreducibility: real lin.span $_{I \in \mathcal{I}} \mathcal{H}(I) = H$.

Reeh-Schlieder theorem: H(I) is a standard subspace for every I.

Bisognano-Wichmann property: Tomita-Takesaki modular operator Δ_I and conjugation J_I of

$$\begin{split} H(I), \text{ are} \\ U(\Lambda_I(2\pi t)) &= \Delta_I^{-it}, \ t \in \mathbb{R}, \quad \text{dilations} \\ U(r_I) &= J_I \quad \text{reflection} \\ (\Lambda_{I_1}(t)x &= e^t x, x \in \mathbb{R}, \ I_1 \simeq \mathbb{R}^+ \text{ upper semi-circle}) \end{split}$$

Haag duality: H(I)' = H(I') $(I' \equiv S^1 \setminus I)$.

Factoriality: $H(I) \cap H(I)' = 0$

Additivity: $I \subset \cup_i I_i \implies H(I) \subset \overline{\text{real lin.span}}_i H(I_i)$.

Modular theory and representations of $SL(2,\mathbb{R})$ (Brunetti, Guido, L.)

U a unitary, positive energy representation of Mob on \mathcal{H} and J anti-unitary involution on \mathcal{H} s.t.

$$JU(g)J = U(rgr), \quad g \in \mathbf{Mob}$$

where $r : z \mapsto \overline{z}$ reflection on S^1 w.r.t. the upper semicircle I_1 . Then define

$$J_I \equiv U(g)JU(g)^*$$

where $g \in Mob$ maps I_1 onto I.

$$\Delta_I^{it} \equiv U(\Lambda_I(-2\pi t)), \quad t \in \mathbb{R}$$

namely $-\frac{1}{2\pi}\log \Delta_I$ generator of dilations of I,

$$S_I \equiv J_I \Delta_I^{1/2}$$

is a densely defined, antilinear, closed involution on $\ensuremath{\mathcal{H}}.$

H(I) standard subspace associated with S_I

Möbius covariant local net of real Hilbert spaces

A $\pm hsm$ factorization of real subspaces is a triple K_0, K_1, K_2 , where $\{K_i, i \in \mathbb{Z}_3\}$ is a set of

standard subspaces s.t. $K_i \subset K'_{i+1}$ is a \pm hsm inclusion.

Note: Irr. positive energy rep. of $SL(2,\mathbb{R})/\{1,-1\}$ are parametrized by \mathbb{N}

Möbius covariant nets of vN algebras. A (local) Möbius covariant net \mathcal{A} on S^1 is a map

 $I \in \mathcal{I} \to \mathcal{A}(I) \subset B(\mathcal{H})$

 $\mathcal{I} \equiv$ family of proper intervals of S^1 , that satisfies:

A. Isotony. $I_1 \subset I_2 \implies \mathcal{A}(I_1) \subset \mathcal{A}(I_2)$

B. Locality. $I_1 \cap I_2 = \emptyset \implies [\mathcal{A}(I_1), \mathcal{A}(I_2)] = \{0\}$

C. *Möbius covariance*. \exists unitary rep. *U* of the Möbius group Mob on \mathcal{H} such that

 $U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI), \quad g \in \mathrm{Mob}, \ I \in \mathcal{I}.$

D. Positivity of the energy. Generator L_0 of rotation subgroup of U (conformal Hamiltonian) is positive.

E. Existence of the vacuum. $\exists ! U$ -invariant vector $\Omega \in \mathcal{H}$ (vacuum vector), and Ω is cyclic

for the von Neumann algebra $\bigvee_{I \in \mathcal{I}} \mathcal{A}(I)$ and unique U-invariant.

First consequences

Irreducibility: $\bigvee_{I \in \mathcal{I}} \mathcal{A}(I) = B(\mathcal{H}).$

Reeh-Schlieder theorem: Ω is cyclic and separating for each $\mathcal{A}(I)$.

Bisognano-Wichmann property: Tomita-Takesaki modular operator Δ_I and conjugation J_I of $(\mathcal{A}(I), \Omega)$, are

$U(\Lambda_I(2\pi t)) = \Delta_I^{it}, \ t \in \mathbb{R},$	dilations
$U(r_I) = J_I$	reflection

(Guido-L., Frölich-Gabbiani)

Haag duality: $\mathcal{A}(I)' = \mathcal{A}(I')$

Factoriality: $\mathcal{A}(I)$ is III₁-factor (or $\mathcal{A}(I) = \mathbb{C}$).

Additivity: $I \subset \bigcup_i I_i \implies \mathcal{A}(I) \subset \bigvee_i \mathcal{A}(I_i)$ (Fredenhagen, Jorss).

- Net of factors on $\mathcal{H} \to$ Net of standard subspaces (not one-to-one) on \mathcal{H}

- Net of standard subspaces on $\mathcal{H} \to \text{Net}$ of factors on on $e^{\mathcal{H}}$ (second quantization)

$$\mathcal{A}(I) \equiv \{W(h) : h \in H(I)\}''$$

Further selection properties.

• Split property. \mathcal{A} is split if the von Neumann algebra

$$\mathcal{A}(I_1) \lor \mathcal{A}(I_2) \simeq \mathcal{A}(I_1) \otimes \mathcal{A}(I_2)$$

(natural isomorphism) if $\overline{I}_1 \cap \overline{I}_2 = \varnothing$.

- Split is a property of the net (not of U).

- Split is crucial, e.g. for local charges, complete rationality, hypefinetness, classification...

• Trace class condition.

$$\operatorname{Tr}(e^{-tL_0}) < \infty, \ \forall t > 0$$

- Trace class condition is standard in CFT

- Trace class condition \implies split

- Trace class condition can be refined to *log- ellipticity*

 $\log \operatorname{Tr}(e^{-tL_0}) \sim \frac{1}{t^{\alpha}}(a_0 + a_1t + \cdots) \quad \text{as } t \to 0^+$ $\alpha = 1 \text{ (Kawahigashi,L.)}$

- Trace class is a property of U (not of the net).

• Buchholz-Wichmann nuclearity:

$$\Phi_I^{\mathsf{BW}}(\beta) : x \in \mathcal{A}(I) \to e^{-\beta P} x \Omega \in \mathcal{H}$$

is nuclear, I interval of \mathbb{R} , $\beta > 0$. P translation generator (Hamiltonian).

Recall: $A : X \to Y$ is nuclear if \exists sequences $f_k \in X^*$ and $y_k \in Y$ s.t. $\sum_k ||f_k|| ||y_k|| < \infty$ and

$$Ax = \sum_{k} f_k(x) y_k \; .$$

 $||A||_1 \equiv \inf \sum_k ||f_k|| \, ||y_k||.$

- BW-nuclearity is a physical property (Haag-Swieca): essentially finately many localized states in a finite volume.

- BW-nuclearity is a property of the full Möbius covariant net.

- Can be refined with $||\Phi_I^{\mathsf{BW}}(\beta)||_1 \leq e^{cr^m/\beta^n}$ as $\beta \to 0^+$ and $\to KMS$ states for translations (Buchholz-Junglas).

Derive BW-nuclearity from the trace class condition (Buchholz, D'Antoni, L.)

• Modular nuclearity

M von Neumann algebra, Ω cyclic separating unit vector. Set

 $L^{\infty}(M) = M, \qquad L^2(M) = \mathcal{H}, \qquad L^1(M) = M_*.$

Then we have the embeddings

Now let $N \subset M$ be an inclusion of vN algebras with cyclic and separating unit vector Ω .

 $L^{p,q}$ -nuclearity if $\Phi_{p,q}^M|_N$ is a nuclear operator.

 $L^{\infty,2}$ -nuclearity was called *modular nuclearity*, i.e.

$$\Phi^{M}_{\infty,2}|_{N} : x \in N \to \Delta^{1/4}_{M} x \Omega$$

is nuclear.

As $\Phi_{\infty,1}^M = \Phi_{2,1}^M \Phi_{\infty,2}^M$, we have $||\Phi_{\infty,1}^M|_N||_1 \le ||\Phi_{2,1}^M|| \cdot ||\Phi_{\infty,2}^M|_N||_1 \le ||\Phi_{\infty,2}^M|_N||_1$,

Thus

Modular nuclearity $\Rightarrow L^{\infty,1}$ – nuclearity. indeed $\Phi_{\infty,1}^M|_N = \Phi_{2,1}^N \cdot \Phi_{\infty,2}^M|_N$ and $||\Phi_{2,1}^N|| \leq 1$ so $||\Phi_{\infty,1}^M|_N||_1 \leq ||\Phi_{\infty,2}^M|_N||_1$. (A certain converse holds).

- If N or M is a factor and $\Phi_{\infty,1}^M|_N$ is nuclear then $N \subset M$ is a split inclusion $(N \lor M' \simeq N \otimes M')$.

Short proof. By definition $\Phi_{\infty,1}^M|_N$ nuclear means: \exists sequences of elements $\varphi_k \in N^*$ and $\psi_k \in M'_*$ ($\simeq L^1(M)$) such that $\sum_k ||\varphi_k|| ||\psi_k|| < \infty$ and

$$\omega(nm') = \sum_k \varphi_k(n) \psi_k(m') , \quad n \in N, \, m' \in M' .$$

where $\omega \equiv (\cdot \Omega, \Omega)$. As $\Phi_{\infty,1}^M|_N$ is normal the φ_k can be chosen normal (take the normal part). Thus the state ω on $N \odot M'$ extends to $N \otimes M'$ and this gives the split property.

Consider now the commutative diagram

 $T_{M,N}\equiv \Phi^M_{2,2}|_N.$ $L^2\text{-}nuclearity$ condition (or $L^{2,2}\text{-}nuclearity$) means that

$ T_{M,N} _1 < \infty$

- L^2 -nuclearity \Rightarrow modular nuclearity,

indeed $||\Phi_{\infty,2}^M|_N||_1 \leq ||T_{M,N}||_1$ because $\Phi_{\infty,2}^M|_N = T_{M,N} \cdot \Phi_{\infty,2}^N$ and $||\Phi_{\infty,2}^N|| \leq 1$.

 L^2 -Nuclearity. Let $H \subset \tilde{H}$ be an inclusion of standard subspaces. Set

$$T_{\tilde{H},H} \equiv \Delta_{\tilde{H}}^{1/4} \Delta_{H}^{-1/4}$$

then $||T_{\tilde{H},H}|| \leq 1$. The inclusion is *nuclear* if $T_{\tilde{H},H}$ is a nuclear (i.e. trace class) operator.

U unitary, positive energy representation of Mob, H(I) the associated net of standard subspaces. U satisfies L^2 nuclearity if $H(I) \subset H(\tilde{I})$ is nuclear if $I \subset \tilde{I}$.

 $SL(2,\mathbb{R})$ identities.

Formula 0 (Schroer-Wiesbrock)

U positive energy unitary Mob rep., $\forall s \geq 0$:

$$\Delta_1^{1/4} \Delta_2^{-is} \Delta_1^{-1/4} = e^{-2\pi s L_0}$$

 $\Delta_1 = \Delta_{I_1}$, $\Delta_2 = \Delta_{I_2}$, with I_1, I_2 upper and right semicircles.

About the proof. Use of double interpretation of Δ_1 , Δ_2 : modular (analyticity) and $SL(2,\mathbb{R})$ (Lie algebra relations)

Formula 1 *U* positive energy unitary representation:

$$T_{\tilde{I},I} = e^{-sL_0} \Delta_2^{is/2\pi}$$

 $s = \ell(\tilde{I}, I)$ is the inner distance (if I = (-1, 1)and $\tilde{I} = (-e^s, e^s)$ on the real line, then $\ell(\tilde{I}, I) = s$) thus

$$||T_{\tilde{I},I}||_1 = ||e^{-sL_0}||_1$$

About the proof.

$$e^{-2\pi sL_0} = \Delta_1^{1/4} \Delta_2^{-is} \Delta_1^{-1/4} = \Delta_1^{1/4} \Delta_2^{-is} \left(\Delta_1^{-1/4} \Delta_2^{is}\right) \Delta_2^{-is} = T_{I_1, I_{1,s}} \Delta_2^{-is}$$

Formula 2

$$T_{I,I_{a',a}} = e^{-a'P'_{I}}e^{-aP_{I}}e^{-iaP_{I}}e^{ia'P'_{I}} .$$

$$I_{a',a} \equiv \tau'_{-a'}\tau_{a}I \text{ with } a, a' > 0.$$

$$e^{-2sL_{0}} = e^{-\tanh(\frac{s}{2})P}e^{-\sinh(s)P'}e^{-\tanh(\frac{s}{2})P}$$

therefore

$$e^{-2sL_0} \le e^{-2\tanh(\frac{s}{2})P}$$

in particular $e^{-i\pi L_0} = e^{iP}e^{iP'}e^{iP}$.

About the proof. Consider $\tilde{I} = (0,\infty)$, $I = (t,\infty)$, then

$$T_{\tilde{I},I} = \Delta_{\tilde{I}}^{1/4} \Delta_{I}^{-1/4}$$

= $\left(\Delta_{\tilde{I}}^{1/4} U(t) \Delta_{\tilde{I}}^{-1/4}\right) U(-t)$
= $e^{-tP} e^{itP}$

where we have used the Borchers commutation relation $\Delta_{\tilde{I}}^{is}e^{itP}\Delta_{\tilde{I}}^{-is} = e^{i(e^{-2\pi s})tP}$. Any $I \subset \tilde{I}$ is obtain by iteration the above, get a formula and compare with formula 1.

Formula 3

$$||e^{-\tan(2\pi\lambda)d_IP}\Delta_I^{-\lambda}|| \le 1$$
, $0 < \lambda < 1/4$

with d_I the usual lenght. Thus

$$e^{-2\tan(2\pi\lambda)d_IP} \leq \Delta_I^{2\lambda}$$
.

so we have

$$e^{-2d_IP} \leq \Delta_I^{1/4} \leq e^{\frac{2}{d_I}P'} \ .$$

Modular nuclearity and L^2 -nuclearity

 L^2 -nuclearity implies modular nuclearity and $||\Delta_{\tilde{H}}^{1/4}E_H||_1 \leq ||T_{\tilde{H},H}||_1.$

Comparison of nuclearity conditions

Let H be a Möbius covariant net of real Hilbert subspaces of a Hilbert space \mathcal{H} . Consider the following nuclearity conditions for H.

Trace class condition: $Tr(e^{-sL_0}) < \infty$, s > 0;

 L^2 -nuclearity: $||T_{\tilde{I},I}||_1 < \infty$, $\forall I \subset \subset \tilde{I}$;

Modular nuclearity: $\Xi_{\tilde{I},I} : \xi \in H(I) \to \Delta_{\tilde{I}}^{1/4} \xi \in \mathcal{H}$ is nuclear $\forall I \subset \subset \tilde{I}$;

Buchholz-Wichmann nuclearity: $\Phi_I^{\mathsf{BW}}(s) : \xi \in$ $H(I) \to e^{-sP}\xi \in \mathcal{H}$ is nuclear, I interval of \mathbb{R} , s > 0 (P the generator of translations);

Conformal nuclearity: $\Psi_I(s) : \xi \in H(I) \rightarrow e^{-sL_0}\xi \in \mathcal{H}$ is nuclear, I interval of S^1 , s > 0.

We shall show the following chain of implications:

Where all the conditions can be understood for a specific value of the parameter, that will be determined, or for all values in the parameter range.

We have already discussed the implications "Trace class condition $\Leftrightarrow L^2$ -nuclearity \Rightarrow Modular nuclearity".

Modular nuclearity \Rightarrow BW-nuclearity

We have

$$|\Phi_{I_0}^{\mathsf{BW}}(d_I)||_1 \le ||\Xi_{I,I_0}||_1$$

where d_I is the length of I on \mathbb{R} .

BW-nuclearity \Rightarrow *Conformal nuclearity*

By formula 2 there exists a bounded operator B with norm $||B|| \leq 1$ such that $e^{-sL_0} = Be^{-\tanh(\frac{s}{2})H}$, therefore

$$\Psi_{I}(s) = B\Phi_{I}^{\mathsf{BW}}(\tanh(s/2))$$
$$||\Psi_{I}(s)||_{1} \leq ||\Phi_{I}^{\mathsf{BW}}(\tanh(s/2))||_{1}.$$

Consequences

• Distal split property. If $\operatorname{Tr}(e^{-sL_0}) < \infty$ for a fixes s > 0, then $\mathcal{A}(I) \subset \mathcal{A}(\tilde{I})$ is split if $I \subset \tilde{I}$ and $\ell(\tilde{I}, I) > s$ e.g free probability nets (D'Antoni, Radulescu, L.).

• Constructing KMS states. $\mathcal{A}|_{\mathbb{R}}$ restriction of \mathcal{A} to $\mathbb{R} \simeq S^1 \smallsetminus \{-1\}$, \mathcal{A}_0 the quasi-local C*algebra. i.e. the norm closure of $\cup_I \mathcal{A}(I)$ as I varies in the bounded intervals of \mathbb{R} . Let $\mathfrak{A} \subset \mathcal{A}_0$ the C*-algebras of elements with norm continuous orbit, namely

$$\mathfrak{A} = \{ X \in \mathcal{A}_0 : \lim_{t \to 0} ||\tau_t(X) - X|| = 0 \}$$

au translation automorphism group.

Thm. If the trace class condition holds for \mathcal{A} with the asymptotic bound

$$\operatorname{Tr}(e^{-sL_0}) \le e^{\operatorname{const.}\frac{1}{s^{\alpha}}}, \quad s \to 0^+$$

for some $\alpha > 0$, then the BW-nuclearity holds with $m = n = \alpha$.

If the trace class condition holds with log-ellipticity (above asymptotics) then for every $\beta > 0$ there exists a translation β -KMS state on \mathfrak{A} .

• L^2 -Nuclearity and KMS states in higher dimensions.

 \mathcal{O} a double cone in the Minkowski spacetime \mathbb{R}^{d+1} , $\mathcal{A}(\mathcal{O})$ the local von Neumann algebra associated with \mathcal{O} by the d+1-dimensional scalar, massless, free field.

With I an interval of the time-axis $\{x = \langle x_0, \mathbf{x} \rangle : \mathbf{x} = 0\}$ we set

$$\mathcal{A}_0(I) \equiv \mathcal{A}(\mathcal{O}_I)$$

where \mathcal{O}_I is the double cone $I'' \subset \mathbb{R}^{d+1}$, the causal envelope of I. Then \mathcal{A}_0 is a translation-dilation covariant net on \mathbb{R} . \mathcal{A}_0 is local if d is

odd and twisted local if d is even. Moreover \mathcal{A}_0 extends to a Möbius covariant net on S^1 (d odd) as one has a natural factorization.

We have:

$$\mathcal{A}_0 = \bigotimes_{k=0}^{\infty} N_d(k) \mathcal{A}^{(k)}$$

where $\mathcal{A}^{(k)}$ is the Möbius covariant net on S^1 associated with the k^{th} -derivative of the U(1)current algebra and $N_d(k)$ is a multiplicity factor (see below).

This follows because the one-particle ${f Mob}$ representation U_0 decomposes

$$U_0 = \bigoplus_{k=1}^{\infty} N_d(k) U^{(k)}$$

where $U^{(k)}$ is the positive energy irreducible representation of $PSL(2,\mathbb{R})$ with lowest weight k.

A spherical harmonics computations determines the multiplicity factor $N_d(k)$. As $k \to \infty$:

$$N_d(k+1) = \dim(\mathcal{P}_k \ominus \mathcal{P}_{k-2})$$

= $m_{d-1}(k-1) + m_{d-1}(k) \sim \frac{2}{(d-2)!} k^{d-2},$

with $\mathcal{P}_k \ominus \mathcal{P}_{k-2}$ the *k*-spherical harmonics and $m_d(k) \sim \frac{1}{(d-1)!} k^{d-1}$. Thus

$$\log \operatorname{Tr}(e^{-sL_0}) \sim \frac{2}{s^d} \qquad s \to 0^+ \;,$$

where L_0 is the conformal Hamiltonian of \mathcal{A}_0 .

Problems.

- $Tr(e^{-sL_0}) < \infty \Leftrightarrow split property?$
- e^{-sL_0} compact \Leftrightarrow split property?
- $\operatorname{Tr}(e^{-sL_0}) < \infty \Rightarrow \operatorname{Tr}(e^{-sL_{0,\rho}}) < \infty$ in every irreducible representation ρ of \mathcal{A} ?