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Motivation and Terminology
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Motivation

Though many probabilistic symmetries are conceivable [...], four of
them - stationarity, contractability, exchangeablity and
rotatability - stand out as especially interesting and important in
several ways: Their study leads to some deep structural theorems
of great beauty and significance [...].

Olav Kallenberg (2005)

Question:
Can one transfer the related concepts to noncommutative
probability theory and do they turn out to be fruitful in the study
of the structure of operator algebras?
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Hierarchy of distributional symmetries

invariant objects transformations

stationary shifts
contractable sub-sequences
exchangeable permutations

rotatable isometries

Topic of this talk:

I invariant objects are generated by an infinite sequence of
random variables

I only the first three symmetries are considered

I contractable = spreadable
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Motivating Example for De Finetti theorem

”Any exchangeable process is an average of i.i.d. processes.”

(De Finetti 1931)

X1,X2, . . . infinite sequence of {0, 1}-valued random variables s.t.

P(X1 = e1, . . . ,Xn = en) = P(Xπ(1) = e1, . . . ,Xπ(n) = en)

holds for all n ∈ N and permutations π : [n] → [n] and for every
e1, . . . , en ∈ {0, 1}.
Then there exists a unique probability measure µ on [0, 1] such that

P(X1 = e1, . . . ,Xn = en) =

∫
ps(1− p)n−sdµ(p),

where s = e1 + e2 + . . . + en.
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Terminology of noncommutative probability

I (noncommutative) probability space:
(A, ϕ) sep. von Neumann algebra A with f.n. state ϕ

where A is represented on GNS Hilbert space

I (noncommutative) random variable:

ι : (A0, ϕ0) → (A, ϕ)

injective *-homomorphism from A0 to A such that

ι(1lA0) = 1lA (unitality)

ϕ ◦ ι = ϕ0 (state-preserving)

σϕ
t ι = ι σϕ0

t (intertwining)

I Automorphisms of a probability space:
Aut(A, ϕ) ϕ-preserving *-automorphisms of A
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Noncommutative independence and commuting squares

Definition
Given the probability space (A, ϕ), let A0,A1,A2 be three von
Neumann subalgebras of A such that the ϕ-preserving conditional
expectations Ei : A → Ai exist (i = 1, 2, 3). Then A1 and A2 are
said to be A0-independent or conditionally independent if

E1 ◦ E2 = E0

Equivalent formulation

A1 and A2 are A0-independent if and only if the diagram

A1 ⊂ A,
∪ ∪
A0 ⊂ A2,

is a commuting square.
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Order independence and conditionally i.i.d.

Let I , J ⊂ N0 (ordered set!). A family of random variables

ι = (ιi )i∈N0 : (A0, ϕ0) → (A, ϕ)

is said to be

I order B-independent if
∨
{ιi (A0) | i ∈ I} and∨

{ιj(A0) | j ∈ J} are B-independent whenever I < J

I conditionally i.i.d. over B if
∨
{ιi (A0) | i ∈ I} and∨

{ιj(A0) | j ∈ J} are B-independent whenever I ∩ J = ∅ and
ϕ(ι1(x)k) = ϕ(ιi (x)k) for all k ∈ N, i ∈ I and x ∈ A0

Remark:
What about Boolean algebra as index set? −→ ‘factorizations’
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Distributional Symmetries I

Definition
Two n-tuples i, j : [n] → N0 are

1. translation equivalent (i ∼θ j), if there exists k ∈ N0 such
that

i = θk ◦ j or θk ◦ i = j.

2. order equivalent (i ∼o j), if there exists π ∈ S∞ with

i = π ◦ j and π|j([n]) is order preserving.

3. symmetric equivalent (i ∼π j), if there exists π ∈ S∞ such
that

i = π ◦ j

Note: (i ∼θ j) ⇒ (i ∼o j) ⇒ (i ∼π j)
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Distributional symmetries II

Speicher’s notation of multilinear maps

Let ι ≡ (ιi )i∈N0 : (A0, ϕ0) → (A, ϕ) be given. We put, for
i : [n] → N0, a = (a1, . . . , an) ∈ An

0 and n ∈ N,

a 7→ ι[i; a] := ιi(1)(a1)ιi(2)(a2) · · · ιi(n)(an)

a 7→ ϕι[i; a] := ϕ
(
ι[i; a]

)
Definition (Distributional Symmetries)

A random sequence ι ≡ (ιi )i∈N0 : (A0, ϕ0) → (A, ϕ) is

(i) exchangeable if, ∀n ∈ N, ϕι[i; · ] = ϕι[j; · ] whenever i ∼π j

(ii) spreadable if, ∀n ∈ N, ϕι[i; · ] = ϕι[j; · ] whenever i ∼o j

(iii) stationary if, ∀n ∈ N, ϕι[i; · ] = ϕι[j; · ] whenever i ∼θ j

Note: (i) ⇒ (ii) ⇒ (iii).
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Noncommutative De Finetti Theorem
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Classical dual version of extended De Finetti theorem

Let ι ≡ (ιi )i∈N0 : (A0, ϕ0) → (A, ϕ) be a random sequence with
tail algebra

Atail :=
⋂
n≥0

∨
k≥n

ιk(A0)

and consider the following conditions:

(a) ι is exchangeable

(b) ι is spreadable

(c) ι is stationary and order Atail-independent

(d) ι is conditionally i.i.d. over Atail

Theorem (De Finetti (1931), Ryll-Nardzewski (1957))

A ' L∞(Ω,Σ, µ) =⇒ (a) to (d) are equivalent.
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Noncommutative dual version of extended De Finetti
theorem

Theorem (K.)

Let ι ≡ (ιi )i∈N0 : (A0, ϕ0) → (A, ϕ) be a random sequence with
tail algebra

Atail :=
⋂
n≥0

∨
k≥n

ιk(A0)

and consider the following conditions:

(a) ι is exchangeable

(b) ι is spreadable

(c) ι is stationary and order Atail-independent

(d) ι is conditionally i.i.d. over Atail

Then we have

(a) ⇒ (b) ⇒ (c) ⇒ (d).
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Discussion of the noncommutative De Finetti theorem

Exchangeability (a), spreadability (b), stationarity and order
independence (c) and conditionally i.i.d. (d) are no longer
equivalent in presented noncommutative setting !

Theorem (K. 2007)

Speicher’s University rules on noncommutative independence
imply tensor product independence or free independence. As a
consequence, conditions (a) to (d) are equivalent under the
presence of universality rules.
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Noncommutative versions of De Finetti theorem in
literature

I involving tensor product constructions or other
commutativity conditions: E. Stoermer (1969),
R.L. Hudson (1981), R.L. Hudson & G.R. Moody(1976),
D. Petz (1990), L. Accardi & Y.G. Lu (1993), among others

I Free version with cumulants: Lehner (2004)

I Extended versions with spreadability: ????

Are this ‘good news’ or ‘bad news’?!

Indeed there is no hope to obtain a general De Finetti’s theorem
without imposing additional conditions.

Franz Lehner, 2004
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Braid Group Representations
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Artin’s Braid groups

Algebraic Definition (Artin 1925)

The braid group Bn is presented by n − 1 generators σ1, . . . , σn−1

satisfying

σiσjσi = σjσiσj if | i − j |= 1 (B1)

σiσj = σjσi if | i − j |> 1 (B2)

Notation

I B1 = 〈σ0〉, where σ0 denotes identity.

I B1 ⊂ B2 ⊂ B3 ⊂ . . . ⊂ B∞ (inductive limit)
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Fixed point algebras of braid group representation

Suppose the representation ρ : B∞ → Aut(A, ϕ) is given.

An−2 := Aρ(Bn,∞) :=
⋂
k≥n

Aρ(σk )

Tower of von Neumann algebras:

Aρ(B∞) = A−1 ⊂ A0 ⊂ A1 ⊂ · · · ⊂ An−2 ⊂ · · · ⊂ A∞.
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Main results

Theorem (Gohm & K. 2007)

Let the (not necessarily faithful) representation

ρ : B∞ → Aut(A, ϕ)

be given. Furthermore, suppose C0 is a von Neumann subalgebra
of A such that the ϕ-preserving conditional expectation from A
onto C0 exists.
If C0 satisfies the localization property C0 ⊂ Aρ(B2,∞), then

ιn : C0 → A;

x 7→ ρ(σnσn−1 · · ·σ2σ1σ0)(x)

defines a spreadable random sequence (ιn)n∈N0 .
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Braided counterpart of Hewitt-Savage 0-1 law

Theorem (Gohm &K. 2007)

Under the assumptions of the previous theorem, it holds

Atail = Aρ(B∞)

In particular, these two algebras are trivial if the random sequence
is conditionally i.i.d. over C.
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Endomorphisms from braid group representations

Proposition

Suppose (A, ϕ) admits a (not necessarily faithful) representation

ρ : B∞ → Aut(A, ϕ)

and let An−1 := Aρ(Bn+1,∞). Then

α(x) = sot- lim
n→∞

ρ(σ1σ2 · · ·σn)(x) (BPR-0)

defines an endomorphism α on A∞ := (
⋃

nAn)
′′ and

ρ(σk)(An) = An (BPR-1)

ρ(σn+1)|An−1 = id |An−1 (BPR-2)

for all 0 ≤ k ≤ n < ∞.
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Tower of commuting squares

Theorem (Gohm & K. 2007)

Under the assumptions of the previous proposition, one obtains a
triangular tower of inclusions such that each cell forms a
commuting square:

A−1 ⊂ A0 ⊂ A1 ⊂ A2 ⊂ A3 ⊂ · · · ⊂ A∞
∪ ∪ ∪ ∪ ∪
A−1 ⊂ α(A0) ⊂ α(A1) ⊂ α(A2) ⊂ · · · ⊂ α(A∞)

∪ ∪ ∪ ∪
A−1 ⊂ α2(A0) ⊂ α2(A1) ⊂ · · · ⊂ α2(A∞)

∪ ∪ ∪
...

...
...

Here A−1 equals the fixed point algebra of α.

Remark
(A∞, ϕ∞, α,A0;A−1) is a ‘discrete-time’ version of continuous
Bernoulli shifts as defined in Hellmich -K.- Kümmerer (2004).
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Applications and Examples
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Unitary braid group representations

Given (A, ϕ), suppose the sequence (un)n∈N of unitary operators
un ∈ Aϕ satisfies the braid relations:

uiuj = ujui for |i − j | > 1;

uiujui = ujuiuj for |i − j | = 1.

Let u0 = 1 and

Jn :=
∨

0≤k≤n

{uk} (0 ≤ n ≤ ∞)

Then ρ(σn)(x) := Ad un(x) = unxu
∗
n, with x ∈ J∞, defines the

representation
ρ : B∞ → Aut(J∞, trJ∞).
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Unitary braid group representations II

An application of the main result gives

Z(J∞) ⊂ J ρ(B2,∞)
∞ ⊂ J ρ(B3,∞)

∞ ⊂ · · · ⊂ J∞
∪ ∪ ∪

Z(J∞) ⊂ α(J ρ(B2,∞)
∞ ) ⊂ · · · ⊂ α(J∞)
∪ ∪
...

...

Some elementary properties

1. α(un) = un+1

2. un ∈ J
ρ(Bn+2,∞)
∞ ⇒ Jn ⊂ J ρ(Bn+2,∞)

∞

3. J∞ ∩
(
α(J∞)

)′ ⊂ Z(J∞) ⇐⇒ J ρ(B2,∞)
∞ ⊂ Z(J∞)
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Group von Neumann algebra L(B∞)

Theorem (Gohm & K. 2007)

L(B∞) is a nonhyperfinite factor of type II1 and the inclusion
L(B2,∞) ⊂ L(B∞) is irreducible,i.e.

L(B∞) ∩
(
L(B2,∞)

)′ ' C.

Putting J∞ = L(B∞) we have the following commuting squares:

Z(J∞) ⊂ J ρ(B2,∞)
∞ ⊂ J ρ(B3,∞)

∞ ⊂ J ρ(B4,∞)
∞ ⊂ · · · ⊂ J∞

‖ ‖ ∪ ∪ ‖
C ⊂ C ⊂ J1 ⊂ J2 ⊂ · · · ⊂ J∞

∪ ∪ ∪ ∪
C ⊂ C ⊂ α(J1) ⊂ · · · ⊂ α(J∞)

∪ ∪
...

...
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Another presentation by square roots of free generators

Set of generators

γi := (σ0σ1σ2 · · ·σi−1)σi (σ
−1
i−1 · · ·σ

−1
2 σ−1

1 σ−1
0 )

Proposition (Gohm & K. 2007)

Bn is presented by {γk |1 ≤ k ≤ n − 1} subject to

γk (γk−1γk−2 · · · γj+1γj) γk = (γk−1γk−2 · · · γj+1γj) γkγk−1

for 1 ≤ j < k ≤ n − 1.

Corollary

The free group Fn admits the presentation 〈γ2
1 , . . . , γ2

n〉.
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Is there a braided extension of free probability?

Let
β := lim

n→∞
Ad(u∗2u

∗
3u
∗
4 · · · u∗n)

Then, in the left regular representation σ → `(σ), with vn := `(γn)

β(vn) = β(vn+1)

Theorem (Gohm & K. 2007)

The square root of free generator presentation gives the
triangular tower of commuting squares:

C ⊂ 〈v1〉 ⊂ 〈v1, v2〉 ⊂ 〈v1, v2, v3〉 ⊂ · · · ⊂ J∞
∪ ∪ ∪ ‖
C ⊂ 〈v2〉 ⊂ 〈v2, v3〉 ⊂ · · · ⊂ β(J∞)

∪ ∪ ∪
C ⊂ 〈v3〉 ⊂ · · · ⊂ β2(J∞)
∪ ∪
...

...
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Subfactor theory
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Subfactor theory

Definition (Jones Index)

Let M0 ⊂M1 be an inclusion of separable type II1 factors on H.

[M1 : M0] :=
dimM0 H
dimM1 H

Theorem (Jones)

Let M0 ⊂M1 be a type II1 subfactor. Then

[M1 : M0] ∈ {4 cos(2π/n) | n ∈ N, n ≥ 3} ∪ [4,∞]

Each value in this index set is realized by subfactors.
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Fundamental construction of Jones towers

I M0 ⊂M1 subfactor of type II1 with finite index λ

I GNS representation of (M1, τM1) gives Hilbert space H1

I Let e1 be the orthogonal projection in the B(H1) which
implements the trace-preserving conditional expectation from
M1 onto M0

I M2 := vN{M1, e1} is a type II1 factor (on H1) and
M1 ⊂M2 is again a subfactor of type II1 with finite index λ

I Iterate this construction to obtain the towers of inclusions

M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ M∞
∪ ∪ ∪ ∪
J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ J∞

with Jones algebras Jn := vN{1, e1, e2, . . . en−1}
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Definition
Let gk := tek − (1− ek) with (1− t)(1− t−1) = 1

[M1 : M0]
> 0

Proposition

The gk ’s are unitaries and Jn = vN{1, g1, g2, . . . , gn−1}

Theorem (Jones)

The mapping σk 7→ gk defines a representation of B∞ in the
unitary operators of M∞ such that

gigj = gjgi if |i − j | ≥ 2 (H1)

gigi+1gi = gi+1gigi+1 (H2)

g2
i = (t − 1)gi + t (H3)

1 + gi + gi+1 + gigi+1 + gi+1gi + gigi+1gi = 0
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Commuting squares in subfactor theory

Definition
Let (A, τ) be a separable von Neumann algebra with faithful
normal tracial state τ on A. The four von Neumann algebras
A0 ⊆ Ai ⊂ A (i = 0, 1, 2) form a commuting square if there exist
conditional expectations Ei : A → Ai such that E1E2 = E0.

Proposition

gkMkg∗k ⊂ Mk+1

∪ ∪
Mk−1 ⊂ Mk

is a commuting square for all k ∈ N.
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Conclusion for Jones fundamental tower with finite index
The braid group B∞ defines via

α(x) := sot- lim
n

Ad(g1g2 · · · gn)(x)
an endomorphism on M∞ and one obtains a triangular tower of
inclusions such that each cell forms a commuting square:

M0 ⊂ M1 ⊂ M2 ⊂ M3 ⊂ · · · ⊂ M∞
∪ ∪ ∪ ∪

α(M0) ⊂ α(M1) ⊂ α(M2) ⊂ · · · ⊂ α(M∞)
∪ ∪ ∪

α2(M0) ⊂ α2(M1) ⊂ · · · ⊂ α2(M∞)
...

...

Remark
Let M0,M1 be two hyperfinite factors. TFAE:

(a) M0 ⊂M1

(b) There exists an endomorphism β of M1 with β(M1) = M0
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Beyond random sequences
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Braid groups have a linear order

Theorem (Dehornoy ’92, ’94, ’00)

There exists a linear order <L on B∞ and an order isomorphism

J : (B∞, <L) → (Q, <).

Question (Dehornoy ’00)

Does some ‘convenient’ binary operation on Bn correspond to
multiplication of integers? Does there exist some (necessarily
noncommutative) arithmetic of braids?

Remark
Q is a quotient of Z× Z∗ —> ‘arrays with equivalence relation’
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Is there are a distributional symmetry ‘braidability’?!

Definition (K)

Let i, j : [n] → Q be two ‘arrays’.

I i and j are >L-invariant, in symbols: i ∼L j, if there exists
σ ∈ B∞ such that

i = J ◦ σ ◦ J−1 ◦ j.

I An ‘array’ of random variables (ιq)q∈Q : (A0, ϕ0) → (A, ϕ) is
braidable if, for any n ∈ N,

ϕι[i; ·] = ϕι[j; ·] whenever i ∼L j.
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Braidability and braid group representations

Theorem (K)

Assume that the random ‘array’ (ιq)q∈Q is braidable and minimal.
Then there exists a representation

ρ : B∞ → Aut(A, ϕ)

such that, for any n ∈ N,

ρ(σi )(ι[i; a]) = ι[J ◦ σi ◦ J−1 ◦ i; a]

for all i ∈ N, i : [n] → Q and a ∈ An
0.
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Existence of braidable random ‘arrays’

Noncommutative case – Answer
There are many examples!

Commutative case – Question
Does there exist a standard probability space (Ω,A , µ) and a
family of random variables

(Xq)q∈Q : (Ω,A , µ) → R

such that, for all σ ∈ B∞,

(Xq1 ,Xq2 , . . . Xqm)
d
= (XJ◦σ◦J−1(q1),XJ◦σ◦J−1(q2), . . . XJ◦σ◦J−1(qm))

for any collection q1, . . . , qm of distinct elements in Q?
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Summary

I Braid group representations lead to spreadable random
sequences

I Representations of B∞ lead to factorizations of states

I Subfactor theory and free probability can be treated under one
ambrella

I Inclusions of subfactors with infinite index or infinite depth or
non-hyperfinite von Neumann algebras are captured and
probabilistic approach offers alternative invariants

Conjecture 1

Every unitary representation of B∞ in a separable II1-factor leads
to a link invariant.

Conjecture 2

There is a braided extension of free probability.
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