On endomorphisms of von Neumann algebras from braid group representations

Claus Köstler

Carleton University / University of Illinois at Urbana-Champaign

(joint with Rolf Gohm)

Fields Institute Workshop on Noncommutative Dynamics and Applications Toronto, July 20, 2007

・ 同 ト ・ ヨ ト ・ ヨ ト

To be posted on $\operatorname{arXiv:}$

- C. Köstler, A noncommutative dual version of the extended De Finetti theorem
- R. Gohm, C. Köstler, Spreadable noncommutative random sequences from braid group representations

向下 イヨト イヨト

3

- 1. Motivation and Terminology
- 2. Noncommutative De Finetti Theorem
- 3. Braid Group Representations
- 4. Applications and Examples

・ 同 ト ・ ヨ ト ・ ヨ ト

-2

Motivation and Terminology

・ロン ・回 と ・ヨン ・ヨン

-2

Though many probabilistic symmetries are conceivable [...], four of them - stationarity, contractability, exchangeablity and rotatability - stand out as especially interesting and important in several ways: Their study leads to some deep structural theorems of great beauty and significance [...].

Olav Kallenberg (2005)

・ 同 ト ・ ヨ ト ・ ヨ ト

Question:

Can one transfer the related concepts to **noncommutative probability theory** and do they turn out to be fruitful in the study of the structure of **operator algebras**?

invariant objects	transformations
stationary	shifts
contractable	sub-sequences
exchangeable	permutations
rotatable	isometries

Topic of this talk:

- invariant objects are generated by an infinite sequence of random variables
- only the first three symmetries are considered
- contractable = spreadable

向下 イヨト イヨト

"Any exchangeable process is an average of i.i.d. processes." (De Finetti 1931)

 X_1, X_2, \ldots infinite sequence of $\{0, 1\}$ -valued random variables s.t.

$$P(X_1 = e_1, \ldots, X_n = e_n) = P(X_{\pi(1)} = e_1, \ldots, X_{\pi(n)} = e_n)$$

holds for all $n \in \mathbb{N}$ and permutations $\pi : [n] \to [n]$ and for every $e_1, \ldots, e_n \in \{0, 1\}$. Then there exists a unique probability measure μ on [0, 1] such that

$$P(X_1=e_1,\ldots,X_n=e_n)=\int p^s(1-p)^{n-s}d\mu(p),$$

where $s = e_1 + e_2 + ... + e_n$.

向下 イヨト イヨト

Terminology of noncommutative probability

- $\begin{array}{ll} \bullet & \mbox{(noncommutative) probability space:} \\ (\mathcal{A}, \varphi) & \mbox{sep. von Neumann algebra } \mathcal{A} \mbox{ with f.n. state } \varphi \\ & \mbox{where } \mathcal{A} \mbox{ is represented on GNS Hilbert space} \end{array}$
- (noncommutative) random variable:

$$\iota\colon (\mathcal{A}_0,\varphi_0)\to (\mathcal{A},\varphi)$$

injective *-homomorphism from \mathcal{A}_0 to \mathcal{A} such that

- $$\begin{split} \iota(\mathbb{1}_{\mathcal{A}_0}) &= \mathbb{1}_{\mathcal{A}} \quad \text{(unitality)} \\ \varphi \circ \iota &= \varphi_0 \quad \text{(state-preserving)} \\ \sigma_t^{\varphi} \iota &= \iota \, \sigma_t^{\varphi_0} \quad \text{(intertwining)} \end{split}$$
- Automorphisms of a probability space:
 Aut(A, φ) φ-preserving *-automorphisms of A

- ◆ □ ▶ ◆ 三 ▶ ◆ □ ● ● ○ ○ ○ ○

Definition

Given the probability space (\mathcal{A}, φ) , let $\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2$ be three von Neumann subalgebras of \mathcal{A} such that the φ -preserving conditional expectations $E_i: \mathcal{A} \to \mathcal{A}_i$ exist (i = 1, 2, 3). Then \mathcal{A}_1 and \mathcal{A}_2 are said to be \mathcal{A}_0 -independent or conditionally independent if

$$E_1 \circ E_2 = E_0$$

Equivalent formulation

 \mathcal{A}_1 and \mathcal{A}_2 are $\mathcal{A}_0\text{-independent}$ if and only if the diagram

$$\begin{array}{rrrr} \mathcal{A}_1 & \subset & \mathcal{A}, \\ \cup & & \cup \\ \mathcal{A}_0 & \subset & \mathcal{A}_2, \end{array}$$

is a commuting square.

Let $I, J \subset \mathbb{N}_0$ (ordered set!). A family of random variables

$$\iota = (\iota_i)_{i \in \mathbb{N}_0} \colon (\mathcal{A}_0, \varphi_0) \to (\mathcal{A}, \varphi)$$

is said to be

- ▶ order *B*-independent if $\bigvee \{\iota_i(A_0) | i \in I\}$ and $\bigvee \{\iota_j(A_0) | j \in J\}$ are *B*-independent whenever I < J
- ▶ conditionally i.i.d. over \mathcal{B} if $\bigvee \{\iota_i(\mathcal{A}_0) \mid i \in I\}$ and $\bigvee \{\iota_j(\mathcal{A}_0) \mid j \in J\}$ are \mathcal{B} -independent whenever $I \cap J = \emptyset$ and $\varphi(\iota_1(x)^k) = \varphi(\iota_i(x)^k)$ for all $k \in \mathbb{N}$, $i \in \mathcal{I}$ and $x \in \mathcal{A}_0$

Remark:

What about Boolean algebra as index set? \longrightarrow 'factorizations'

・ 同 ト ・ ヨ ト ・ ヨ ト

Distributional Symmetries I

Definition

Two *n*-tuples $\mathbf{i}, \mathbf{j} \colon [n] \to \mathbb{N}_0$ are

1. translation equivalent $(\mathbf{i} \sim_{\theta} \mathbf{j})$, if there exists $k \in \mathbb{N}_0$ such that

$$\mathbf{i} = \theta^k \circ \mathbf{j} \qquad \text{or} \qquad \theta^k \circ \mathbf{i} = \mathbf{j}.$$

2. order equivalent (i \sim_o j), if there exists $\pi \in \mathbb{S}_{\infty}$ with

$$\mathbf{i} = \pi \circ \mathbf{j}$$
 and $\pi|_{\mathbf{j}([n])}$ is order preserving.

3. symmetric equivalent (i $\sim_{\pi} j$), if there exists $\pi \in \mathbb{S}_{\infty}$ such that

$$\mathbf{i} = \pi \circ \mathbf{j}$$

Note:
$$(\mathbf{i} \sim_{\theta} \mathbf{j}) \Rightarrow (\mathbf{i} \sim_{o} \mathbf{j}) \Rightarrow (\mathbf{i} \sim_{\pi} \mathbf{j})$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Speicher's notation of multilinear maps Let $\iota \equiv (\iota_i)_{i \in \mathbb{N}_0} \colon (\mathcal{A}_0, \varphi_0) \to (\mathcal{A}, \varphi)$ be given. We put, for $\mathbf{i} \colon [n] \to \mathbb{N}_0$, $\mathbf{a} = (a_1, \dots, a_n) \in \mathcal{A}_0^n$ and $n \in \mathbb{N}$,

$$\mathbf{a} \mapsto \iota[\mathbf{i}; \mathbf{a}] := \iota_{\mathbf{i}(1)}(a_1)\iota_{\mathbf{i}(2)}(a_2)\cdots\iota_{\mathbf{i}(n)}(a_n)$$
$$\mathbf{a} \mapsto \varphi_{\iota}[\mathbf{i}; \mathbf{a}] := \varphi(\iota[\mathbf{i}; \mathbf{a}])$$

Definition (Distributional Symmetries)

A random sequence $\iota \equiv (\iota_i)_{i \in \mathbb{N}_0} \colon (\mathcal{A}_0, \varphi_0) \to (\mathcal{A}, \varphi)$ is

(i) exchangeable if, $\forall n \in \mathbb{N}$, $\varphi_{\iota}[\mathbf{i}; \cdot] = \varphi_{\iota}[\mathbf{j}; \cdot]$ whenever $\mathbf{i} \sim_{\pi} \mathbf{j}$ (ii) spreadable if, $\forall n \in \mathbb{N}$, $\varphi_{\iota}[\mathbf{i}; \cdot] = \varphi_{\iota}[\mathbf{j}; \cdot]$ whenever $\mathbf{i} \sim_{\alpha} \mathbf{j}$

(iii) stationary if, $\forall n \in \mathbb{N}$, $\varphi_{\iota}[\mathbf{i}; \cdot] = \varphi_{\iota}[\mathbf{j}; \cdot]$ whenever $\mathbf{i} \sim_{\theta} \mathbf{j}$

Note: (i) \Rightarrow (ii) \Rightarrow (iii).

(4 同) (4 回) (4 回)

Noncommutative De Finetti Theorem

◆□ > ◆□ > ◆目 > ◆目 > ● □ = ● の < ⊙

Let $\iota \equiv (\iota_i)_{i \in \mathbb{N}_0} \colon (\mathcal{A}_0, \varphi_0) \to (\mathcal{A}, \varphi)$ be a random sequence with tail algebra

$$\mathcal{A}^{\mathsf{tail}} := igcap_{n \geq 0} igvee_{k \geq n} \iota_k(\mathcal{A}_0)$$

and consider the following conditions:

- (a) ι is exchangeable
- (b) ι is spreadable
- (c) ι is stationary and order $\mathcal{A}^{\text{tail}}$ -independent
- (d) ι is conditionally i.i.d. over $\mathcal{A}^{\mathsf{tail}}$

Theorem (De Finetti (1931), Ryll-Nardzewski (1957)) $\mathcal{A} \simeq L^{\infty}(\Omega, \Sigma, \mu) \implies$ (a) to (d) are equivalent.

伺 とう ほう く きょう

Noncommutative dual version of extended De Finetti theorem

Theorem (K.) Let $\iota \equiv (\iota_i)_{i \in \mathbb{N}_0} \colon (\mathcal{A}_0, \varphi_0) \to (\mathcal{A}, \varphi)$ be a random sequence with tail algebra

$$\mathcal{A}^{\mathsf{tail}} := igcap_{n \geq 0} igvee_{k \geq n} \iota_k(\mathcal{A}_0)$$

and consider the following conditions:

- (a) ι is exchangeable
- (b) ι is spreadable
- (c) ι is stationary and order $\mathcal{A}^{\text{tail}}$ -independent
- (d) ι is conditionally i.i.d. over $\mathcal{A}^{\text{tail}}$

Then we have

$$\mathsf{(a)}\Rightarrow\mathsf{(b)}\Rightarrow\mathsf{(c)}\Rightarrow\mathsf{(d)}.$$

Exchangeability (a), spreadability (b), stationarity and order independence (c) and conditionally i.i.d. (d) are **no longer** equivalent in presented noncommutative setting !

Theorem (K. 2007)

Speicher's **University rules** on noncommutative independence imply **tensor product independence** or **free independence**. As a consequence, **conditions (a) to (d) are equivalent under the presence of universality rules**.

・ 同 ト ・ ヨ ト ・ ヨ ト

Noncommutative versions of De Finetti theorem in literature

- involving tensor product constructions or other commutativity conditions: E. Stoermer (1969),
 R.L. Hudson (1981), R.L. Hudson & G.R. Moody(1976),
 D. Petz (1990), L. Accardi & Y.G. Lu (1993), among others
- Free version with cumulants: Lehner (2004)
- Extended versions with spreadability: ????

Are this 'good news' or 'bad news'?!

Indeed there is no hope to obtain a general De Finetti's theorem without imposing additional conditions.

Franz Lehner, 2004

・ 同 ト ・ ヨ ト ・ ヨ ト

Braid Group Representations

-21

Algebraic Definition (Artin 1925)

The braid group \mathbb{B}_n is presented by n-1 generators $\sigma_1, \ldots, \sigma_{n-1}$ satisfying

$$\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \qquad \text{if } |i - j| = 1 \tag{B1}$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i \qquad \text{if } |i - j| > 1 \tag{B2}$$

Notation

- $\blacktriangleright \mathbb{B}_1 = \langle \sigma_0 \rangle, \text{ where } \sigma_0 \text{ denotes identity.}$
- $\mathbb{B}_1 \subset \mathbb{B}_2 \subset \mathbb{B}_3 \subset \ldots \subset \mathbb{B}_\infty$ (inductive limit)

・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose the representation $\rho \colon \mathbb{B}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$ is given.

$$\mathcal{A}_{n-2} := \mathcal{A}^{
ho(\mathbb{B}_{n,\infty})} := igcap_{k \ge n} \mathcal{A}^{
ho(\sigma_k)}$$

Tower of von Neumann algebras:

$$\mathcal{A}^{\rho(\mathbb{B}_{\infty})} = \mathcal{A}_{-1} \subset \mathcal{A}_0 \subset \mathcal{A}_1 \subset \cdots \subset \mathcal{A}_{n-2} \subset \cdots \subset \mathcal{A}_{\infty}.$$

向下 イヨト イヨト

3

Theorem (Gohm & K. 2007)

Let the (not necessarily faithful) representation

$$\rho \colon \mathbb{B}_{\infty} \to \mathsf{Aut}(\mathcal{A}, \varphi)$$

be given. Furthermore, suppose C_0 is a von Neumann subalgebra of A such that the φ -preserving conditional expectation from A onto C_0 exists.

If \mathcal{C}_0 satisfies the **localization property** $\mathcal{C}_0 \subset \mathcal{A}^{\rho(\mathbb{B}_{2,\infty})}$, then

$$\iota_n \colon \mathcal{C}_0 \to \mathcal{A};$$

 $x \mapsto \rho(\sigma_n \sigma_{n-1} \cdots \sigma_2 \sigma_1 \sigma_0)(x)$

defines a spreadable random sequence $(\iota_n)_{n \in \mathbb{N}_0}$.

向下 イヨト イヨト

Theorem (Gohm &K. 2007)

Under the assumptions of the previous theorem, it holds

$$\mathcal{A}^{\mathsf{tail}} = \mathcal{A}^{
ho(\mathbb{B}_{\infty})}$$

In particular, these two algebras are trivial if the random sequence is conditionally i.i.d. over $\mathbb{C}.$

通 とう きょう うちょう

Proposition

Suppose (\mathcal{A},φ) admits a (not necessarily faithful) representation

$$\rho \colon \mathbb{B}_{\infty} \to \mathsf{Aut}(\mathcal{A}, \varphi)$$

and let $\mathcal{A}_{n-1} := \mathcal{A}^{\rho(\mathbb{B}_{n+1,\infty})}$. Then

$$\alpha(x) = \text{SOT-} \lim_{n \to \infty} \rho(\sigma_1 \sigma_2 \cdots \sigma_n)(x)$$
 (BPR-0)

defines an endomorphism α on $\mathcal{A}_{\infty} := (\bigcup_n \mathcal{A}_n)''$ and

$$\rho(\sigma_k)(\mathcal{A}_n) = \mathcal{A}_n \tag{BPR-1}$$

$$\rho(\sigma_{n+1})|_{\mathcal{A}_{n-1}} = \operatorname{id}|_{\mathcal{A}_{n-1}} \tag{BPR-2}$$

for all $0 \le k \le n < \infty$.

Theorem (Gohm & K. 2007)

Under the assumptions of the previous proposition, one obtains a triangular tower of inclusions such that each cell forms a commuting square:

Here \mathcal{A}_{-1} equals the fixed point algebra of α .

Remark

 $(\mathcal{A}_{\infty}, \varphi_{\infty}, \alpha, \mathcal{A}_{0}; \mathcal{A}_{-1})$ is a 'discrete-time' version of continuous Bernoulli shifts as defined in Hellmich -K.- Kümmerer (2004).

Applications and Examples

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Given (\mathcal{A}, φ) , suppose the sequence $(u_n)_{n \in \mathbb{N}}$ of unitary operators $u_n \in \mathcal{A}^{\varphi}$ satisfies the braid relations:

$$u_i u_j = u_j u_i \qquad \text{for } |i - j| > 1;$$

$$u_i u_j u_i = u_j u_i u_j \qquad \text{for } |i - j| = 1.$$

Let $u_0 = 1$ and

$$\mathcal{J}_n := \bigvee_{0 \le k \le n} \{u_k\} \quad (0 \le n \le \infty)$$

Then $\rho(\sigma_n)(x) := \operatorname{Ad} u_n(x) = u_n x u_n^*$, with $x \in \mathcal{J}_{\infty}$, defines the representation

$$\rho \colon \mathbb{B}_{\infty} \to \mathsf{Aut}(\mathcal{J}_{\infty}, \mathsf{tr}_{\mathcal{J}_{\infty}}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

An application of the main result gives

Some elementary properties

1.
$$\alpha(u_n) = u_{n+1}$$

2. $u_n \in \mathcal{J}_{\infty}^{\rho(\mathbb{B}_{n+2,\infty})} \Rightarrow \mathcal{J}_n \subset \mathcal{J}_{\infty}^{\rho(\mathbb{B}_{n+2,\infty})}$
3. $\mathcal{J}_{\infty} \cap (\alpha(\mathcal{J}_{\infty}))' \subset \mathcal{Z}(\mathcal{J}_{\infty}) \iff \mathcal{J}_{\infty}^{\rho(\mathbb{B}_{2,\infty})} \subset \mathcal{Z}(\mathcal{J}_{\infty})$

:

伺 とう きょう とう とう

-2

Theorem (Gohm & K. 2007)

 $L(\mathbb{B}_{\infty})$ is a nonhyperfinite factor of type II_1 and the inclusion $L(\mathbb{B}_{2,\infty}) \subset L(\mathbb{B}_{\infty})$ is irreducible, *i.e.*

$$L(\mathbb{B}_{\infty}) \cap (L(\mathbb{B}_{2,\infty}))' \simeq \mathbb{C}.$$

Putting $\mathcal{J}_{\infty} = L(\mathbb{B}_{\infty})$ we have the following commuting squares:

(4月) (4日) (4日) 日

Set of generators

$$\gamma_i := (\sigma_0 \sigma_1 \sigma_2 \cdots \sigma_{i-1}) \sigma_i (\sigma_{i-1}^{-1} \cdots \sigma_2^{-1} \sigma_1^{-1} \sigma_0^{-1})$$

Proposition (Gohm & K. 2007) \mathbb{B}_n is presented by $\{\gamma_k | 1 \le k \le n-1\}$ subject to

$$\gamma_{k} \left(\gamma_{k-1} \gamma_{k-2} \cdots \gamma_{j+1} \gamma_{j} \right) \gamma_{k} = \left(\gamma_{k-1} \gamma_{k-2} \cdots \gamma_{j+1} \gamma_{j} \right) \gamma_{k} \gamma_{k-1}$$

for $1 \le j < k \le n - 1$.

Corollary

The free group \mathbb{F}_n admits the presentation $\langle \gamma_1^2, \ldots, \gamma_n^2 \rangle$.

周 いっぽい うほ

Is there a braided extension of free probability?

Let

$$\beta := \lim_{n \to \infty} \operatorname{Ad}(u_2^* u_3^* u_4^* \cdots u_n^*)$$

Then, in the left regular representation $\sigma \to \ell(\sigma)$, with $v_n := \ell(\gamma_n)$

$$\beta(\mathbf{v}_n) = \beta(\mathbf{v}_{n+1})$$

Theorem (Gohm & K. 2007)

The square root of free generator presentation gives the triangular tower of commuting squares:

Subfactor theory

< □ > < □ > < □ > < Ξ > < Ξ > ...

æ

Definition (Jones Index)

Let $\mathcal{M}_0 \subset \mathcal{M}_1$ be an inclusion of separable type II_1 factors on \mathcal{H} .

$$[\mathcal{M}_1:\mathcal{M}_0]:=\frac{\dim_{\mathcal{M}_0}\mathcal{H}}{\dim_{\mathcal{M}_1}\mathcal{H}}$$

Theorem (Jones) Let $\mathcal{M}_0 \subset \mathcal{M}_1$ be a type II_1 subfactor. Then

 $[\mathcal{M}_1 \colon \mathcal{M}_0] \in \{4\cos(2\pi/n) \mid n \in \mathbb{N}, n \geq 3\} \cup [4,\infty]$

Each value in this index set is realized by subfactors.

向下 イヨト イヨト

Fundamental construction of Jones towers

- $\mathcal{M}_0 \subset \mathcal{M}_1$ subfactor of type II_1 with **finite index** λ
- GNS representation of $(\mathcal{M}_1, \tau_{\mathcal{M}_1})$ gives Hilbert space \mathcal{H}_1
- ▶ Let e₁ be the orthogonal projection in the B(H₁) which implements the trace-preserving conditional expectation from M₁ onto M₀
- $\mathcal{M}_2 := \mathsf{vN}\{\mathcal{M}_1, e_1\}$ is a type II_1 factor (on \mathcal{H}_1) and $\mathcal{M}_1 \subset \mathcal{M}_2$ is again a subfactor of type II_1 with **finite index** λ

Iterate this construction to obtain the towers of inclusions

with Jones algebras $\mathcal{J}_n := \mathsf{vN}\{1, e_1, e_2, \dots e_{n-1}\}$

Definition Let $g_k := te_k - (1 - e_k)$ with $(1 - t)(1 - t^{-1}) = \frac{1}{[\mathcal{M}_1 : \mathcal{M}_0]} > 0$

Proposition

The g_k 's are unitaries and $\mathcal{J}_n = vN\{1, g_1, g_2, \dots, g_{n-1}\}$

Theorem (Jones)

The mapping $\sigma_k \mapsto g_k$ defines a representation of \mathbb{B}_{∞} in the unitary operators of \mathcal{M}_{∞} such that

$$g_i g_j = g_j g_i \quad \text{if } |i - j| \ge 2 \tag{H1}$$

$$g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1} \tag{H2}$$

$$g_i^2 = (t-1)g_i + t$$
 (H3)

 $1 + g_i + g_{i+1} + g_i g_{i+1} + g_{i+1} g_i + g_i g_{i+1} g_i = 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let (\mathcal{A}, τ) be a separable von Neumann algebra with faithful normal tracial state τ on \mathcal{A} . The four von Neumann algebras $\mathcal{A}_0 \subseteq \mathcal{A}_i \subset \mathcal{A} \ (i = 0, 1, 2)$ form a commuting square if there exist conditional expectations $E_i \colon \mathcal{A} \to \mathcal{A}_i$ such that $E_1 E_2 = E_0$.

Proposition

向下 イヨト イヨト

Conclusion for Jones fundamental tower with finite index The braid group \mathbb{B}_∞ defines via

 $\alpha(x) := \operatorname{SOT-lim} \operatorname{Ad}(g_1g_2\cdots g_n)(x)$

an endomorphism on \mathcal{M}_{∞} and one obtains a triangular tower of inclusions such that each cell forms a commuting square:

Remark

Let $\mathcal{M}_0, \mathcal{M}_1$ be two hyperfinite factors. TFAE: (a) $\mathcal{M}_0 \subset \mathcal{M}_1$ (b) There exists an endomorphism β of \mathcal{M}_1 with $\beta(\mathcal{M}_1) = \mathcal{M}_0$

通 とう きょう うんしょう しょう

Beyond random sequences

æ

Theorem (Dehornoy '92, '94, '00)

There exists a linear order $<_L$ on \mathbb{B}_{∞} and an order isomorphism

$$J\colon (\mathbb{B}_{\infty},<_{L})\to (\mathbb{Q},<).$$

Question (Dehornoy '00)

Does some 'convenient' binary operation on \mathbb{B}_n correspond to multiplication of integers? Does there exist some (necessarily noncommutative) arithmetic of braids?

Remark

 $\mathbb Q$ is a quotient of $\mathbb Z\times\mathbb Z^*$ —> 'arrays with equivalence relation'

向下 イヨト イヨト

Definition (K)

Let $\mathbf{i}, \mathbf{j} \colon [n] \to \mathbb{Q}$ be two 'arrays'.

▶ i and j are >_L-invariant, in symbols: i ~_L j, if there exists $\sigma \in \mathbb{B}_{\infty}$ such that

$$\mathbf{i} = J \circ \sigma \circ J^{-1} \circ \mathbf{j}.$$

An 'array' of random variables (ι_q)_{q∈Q}: (A₀, φ₀) → (A, φ) is braidable if, for any n ∈ N,

$$\varphi_{\iota}[\mathbf{i}; \cdot] = \varphi_{\iota}[\mathbf{j}; \cdot]$$
 whenever $\mathbf{i} \sim_{L} \mathbf{j}$.

向下 イヨト イヨト

Theorem (K)

Assume that the random 'array' $(\iota_q)_{q \in \mathbb{Q}}$ is braidable and minimal. Then there exists a representation

$$\rho \colon \mathbb{B}_{\infty} \to \mathsf{Aut}(\mathcal{A}, \varphi)$$

such that, for any $n \in \mathbb{N}$,

$$\rho(\sigma_i)(\iota[\mathbf{i};\mathbf{a}]) = \iota[J \circ \sigma_i \circ J^{-1} \circ \mathbf{i};\mathbf{a}]$$

for all $i \in \mathbb{N}$, $\mathbf{i} \colon [n] \to \mathbb{Q}$ and $\mathbf{a} \in \mathcal{A}_0^n$.

Noncommutative case - Answer

There are many examples!

Commutative case - Question

Does there exist a standard probability space (Ω,\mathscr{A},μ) and a family of random variables

$$(X_q)_{q\in\mathbb{Q}}\colon (\Omega,\mathscr{A},\mu)\to\mathbb{R}$$

such that, for all $\sigma \in \mathbb{B}_{\infty}$,

$$(X_{q_1}, X_{q_2}, \ldots, X_{q_m}) \stackrel{d}{=} (X_{J \circ \sigma \circ J^{-1}(q_1)}, X_{J \circ \sigma \circ J^{-1}(q_2)}, \ldots, X_{J \circ \sigma \circ J^{-1}(q_m)})$$

for any collection q_1, \ldots, q_m of distinct elements in \mathbb{Q} ?

通 とう きょう うちょう

- Braid group representations lead to spreadable random sequences
- \blacktriangleright Representations of \mathbb{B}_∞ lead to factorizations of states
- Subfactor theory and free probability can be treated under one ambrella
- Inclusions of subfactors with infinite index or infinite depth or non-hyperfinite von Neumann algebras are captured and probabilistic approach offers alternative invariants

Conjecture 1

Every unitary representation of \mathbb{B}_∞ in a separable $\mathit{II}_1\text{-}\mathsf{factor}$ leads to a link invariant.

Conjecture 2

There is a braided extension of free probability.

▲ □ ► ▲ □ ►