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Motivation and Terminology
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Though many probabilistic symmetries are conceivable [...], four of
them - stationarity, contractability, exchangeablity and
rotatability - stand out as especially interesting and important in
several ways: Their study leads to some deep structural theorems

of great beauty and significance [...].
Olav Kallenberg (2005)

Question:

Can one transfer the related concepts to noncommutative
probability theory and do they turn out to be fruitful in the study
of the structure of operator algebras?
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Hierarchy of distributional symmetries

invariant objects ‘ transformations

stationary shifts
contractable sub-sequences
exchangeable permutations

rotatable isometries

Topic of this talk:

» invariant objects are generated by an infinite sequence of
random variables

» only the first three symmetries are considered

» contractable = spreadable
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Motivating Example for De Finetti theorem

7 - .. 7
Any exchangeable process is an average of i.i.d. processes.

(De Finetti 1931)

Xi, Xa, ... infinite sequence of {0, 1}-valued random variables s.t.
P(Xi=e1,...,.Xn=1¢€n) = P(Xw(1) =e1,..., Xe(n) = €n)
holds for all n € N and permutations 7: [n] — [n] and for every

er,...,ep € {0,1}.
Then there exists a unique probability measure 1 on [0, 1] such that

P(Xi=e1,....Xp=en) = /ps(l —p)"*du(p),

where s=e; + e + ...+ €.
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Terminology of noncommutative probability

» (noncommutative) probability space:
(A, ) sep. von Neumann algebra A with f.n. state ¢
where A is represented on GNS Hilbert space

» (noncommutative) random variable:

v (Ao, po) — (A, p)

injective *-homomorphism from Ag to A such that

(l1g,) = 14 (unitality)
oL = (state-preserving)
oft = 1of° (intertwining)

» Automorphisms of a probability space:
Aut(A, ) -preserving *-automorphisms of A
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Noncommutative independence and commuting squares

Definition

Given the probability space (A, ¢), let Ag, A1, Az be three von
Neumann subalgebras of A such that the ¢-preserving conditional
expectations E;: A — A; exist (i =1,2,3). Then A; and A; are
said to be 4p-independent or conditionally independent if

E10E2:E0

Equivalent formulation
Ai and A, are Ap-independent if and only if the diagram

A1 C A,
U U
Ag C A,

is a commuting square.
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Order independence and conditionally i.i.d.

Let /,J C Ny (ordered set!). A family of random variables

v = (ti)ieng : (Ao, o) — (A, )

is said to be
» order B-independent if \/{:;(Ap) |/ € /} and
V{tj(Ao)|j € J} are B-independent whenever | < J
» conditionally i.i.d. over B if \/{¢;(Ao)|i € I} and
V{tj(Ao)|j € J} are B-independent whenever / N J = () and
o(t1(x)%) = @(1i(x)¥) for all k €N, i € T and x € A

Remark:
What about Boolean algebra as index set? — ‘factorizations’
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Distributional Symmetries |

Definition
Two n-tuples i,j: [n] — Ny are

1.

translation equivalent (i ~y j), if there exists k € Ny such
that
i=0“0j or OFoi=]j

order equivalent (i ~, j), if there exists m € Sy, with
i=moj and 7r|j([,,]) is order preserving.

symmetric equivalent (i ~ j), if there exists m € S, such
that
i=moj

Note: (ir~pj) = (i~oj)= (i ~r])

Claus Kaostler Endomorphisms from braid group representations



Distributional symmetries |l

Speicher’s notation of multilinear maps
Let ¢ = (¢i)ieny : (Ao, w0) — (A, ¢) be given. We put, for
i: [n] = Ng,a=(a1,...,an) € Aj and n €N,

a—(fi;a] = Li(1)(31)bi(2)(32)‘"Li(n)(an)
ar pli;al = o(i;a])

Definition (Distributional Symmetries)
A random sequence ¢ = (t;)jen, : (Ao, v0) — (A, p) is

(i) exchangeable if, Vn € N, ¢,[i;-] = ¢.[j; -] whenever i ~ j
(ii) spreadable if, Vn € N, ¢,[i; -] = @.[i; - | whenever i ~, j
(iii) stationary if, Vn € N, ¢,[i;-] = @,[j; -] whenever i ~ j

Note: (i) = (ii) = (iii).
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Noncommutative De Finetti Theorem
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Classical dual version of extended De Finetti theorem

Let ¢ = (¢i)ien, : (Ao, p0) — (A, ) be a random sequence with

tail algebra .
Atal| — m \/ Lk(AO)

n>0 k>n
and consider the following conditions:

(a) ¢ is exchangeable

(b) ¢ is spreadable
(c) ¢ is stationary and order A%!-independent
(d) ¢ is conditionally i.i.d. over A%

Theorem (De Finetti (1931), Ryll-Nardzewski (1957))
A~ [°(Q,X,n) = (a) to (d) are equivalent.
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Noncommutative dual version of extended De Finetti

theorem

Theorem (K.)
Let ¢ = (4i)ien, : (Ao, po) — (A, ¢) be a random sequence with

tail algebra .
Atal| — ﬂ \/ Lk(AO)

n>0k>n
and consider the following conditions:
(a) ¢ is exchangeable
(b) ¢ is spreadable
(c) ¢ is stationary and order A%-independent
(d) ¢ is conditionally i.i.d. over A%l

Then we have
(@) = (b) = (c) = (d).
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Discussion of the noncommutative De Finetti theorem

Exchangeability (a), spreadability (b), stationarity and order
independence (c) and conditionally i.i.d. (d) are no longer
equivalent in presented noncommutative setting !

Theorem (K. 2007)

Speicher's University rules on noncommutative independence
imply tensor product independence or free independence. As a
consequence, conditions (a) to (d) are equivalent under the
presence of universality rules.
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Noncommutative versions of De Finetti theorem in

literature

» involving tensor product constructions or other
commutativity conditions: E. Stoermer (1969),
R.L. Hudson (1981), R.L. Hudson & G.R. Moody(1976),
D. Petz (1990), L. Accardi & Y.G. Lu (1993), among others

» Free version with cumulants: Lehner (2004)
» Extended versions with spreadability: 7777

Are this ‘good news’ or ‘bad news’?!

Indeed there is no hope to obtain a general De Finetti's theorem
without imposing additional conditions.

Franz Lehner, 2004
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Braid Group Representations
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Artin's Braid groups

Algebraic Definition (Artin 1925)

The braid group B, is presented by n — 1 generators o1,...,05-1
satisfying
oi0j0; = 0j0i0; if [i—j|=1 (B1)
0i0j = 00| if |I'*j|>1 (82)
Notation

» B; = (00), where og denotes identity.
» B; C By C B3 C...C By (inductive limit)
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Fixed point algebras of braid group representation

Suppose the representation p: B, — Aut(A, ¢) is given.

App 1= APEnee) = () AP(7)

k>n

Tower of von Neumann algebras:

APB=) — A 1 C Ay C A C  C A2 C oo C Ao.
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Main results

Theorem (Gohm & K. 2007)

Let the (not necessarily faithful) representation
p: Boo — Aut(A, »)

be given. Furthermore, suppose Cy is a von Neumann subalgebra
of A such that the ¢-preserving conditional expectation from A
onto Cy exists.

If Co satisfies the localization property Co C AP(B2.¢) then

tn:Co — A;

x — p(opon_1---020100)(x)

defines a spreadable random sequence (ip)nen, -
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Braided counterpart of Hewitt-Savage 0-1 law

Theorem (Gohm &K. 2007)

Under the assumptions of the previous theorem, it holds
Atail — Ap(Boo)

In particular, these two algebras are trivial if the random sequence
is conditionally i.i.d. over C.
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Endomorphisms from braid group representations

Proposition
Suppose (A, ¢) admits a (not necessarily faithful) representation

p: Boo — Aut(A, ¢)
and let A,_; := APBnri10) Then
a(x) = soT- nll—mo plorog -+ 0p)(x) (BPR-0)
defines an endomorphism « on Ay := (lJ,,An)” and

p(Uk)(.A,,) =A, (BPR']-)
p(0n+1)|An71 =id |~An71 (BPR'Q)

forall 0 < k < n < 0.

Claus Kaostler Endomorphisms from braid group representations



Tower of commuting squares

Theorem (Gohm & K. 2007)

Under the assumptions of the previous proposition, one obtains a
triangular tower of inclusions such that each cell forms a
commuting square:

A1 C A C A C Ay - As c .- C Ao
U U U U U

A1 C a(d) C alA)) C a(A) C -0 C o(Ax)
U u U u

A_ C a2(Ao) C ():2(./41) c - C 012(./400)
U U U

Here A_; equals the fixed point algebra of a.

Remark
(Aso, Y00, @, Ag; A_1) is a ‘discrete-time’ version of continuous
Bernoulli shifts as defined in Hellmich -K.- Kiimmerer (2004).
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Applications and Examples
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Unitary braid group representations

Given (A, ), suppose the sequence (u,)nen Of unitary operators
u, € A¥ satisfies the braid relations:

ujuj = uju; for |i —j| > 1;
ujujuj = ujuju; for |i —_/| =1.
Let up =1 and
TIn = \/ {uk} (0<n< o)
0<k<n

Then p(o,)(x) := Ad up(x) = upxu};, with x € Ju, defines the
representation
p: Boo — Aut(Jeo, trz..)-
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Unitary braid group representations Il

An application of the main result gives

2(Tx) c B o gilBse) oo g
U U U

Z(T) C a(T8EN o o o)

U U

Some elementary properties

1. a(up) = upy1
2. up e Pl o g, gl
3. T N (a(T)) C2(Tx) = {5 € 2(7.)
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Group von Neumann algebra L(B..)

Theorem (Gohm & K. 2007)

L(B) is a nonhyperfinite factor of type /I; and the inclusion
L(B,o0) C L(Boo) is irreducible,i.e.

L(Boo) N (L(Baoo)) =~ C.
Putting Joo = L(Bs) we have the following commuting squares:

Z(J) C© JhBe) o giBu) o gplac) oo g
| [ U U

|
C C C C J1 C T C--C I
U U U U
C C C C o) C--C a(Ix)
U U
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Another presentation by square roots of free generators

Set of generators

vi := (opo102 - - - 0,-_1)0,-(01-:11 e 02_101_100_1)
Proposition (Gohm & K. 2007)
B, is presented by {vk|1 < k < n— 1} subject to
Vi (Vr—1Vk=2 - = Vj17)) Yk = (Vk—1Vk—2 = Vj+17)) Tk Vk—1

forl1<j< k<n-1.

Corollary
The free group F,, admits the presentation (72, ...,~2).
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Is there a braided extension of free probability?

Let

k ok ok *

g = lim Ad(uzusug - up)
Then, in the left regular representation o — ¢(o), with v, := £(y,)
B(vn) = B(vat1)
Theorem (Gohm & K. 2007)

The square root of free generator presentation gives the
triangular tower of commuting squares:

C c <V1> C <V1,V2> - <V1,v2,v3> cC---C Too

U U U |

C c (v C (wv) C-C B(Jx)
U U U
C cC (vs) C--C B(Ix)

U U
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Subfactor theory

Definition (Jones Index)
Let Mg C Mj be an inclusion of separable type /1 factors on H.

dima, H

[Ml . MO] = W

Theorem (Jones)
Let My C M1 be a type Il subfactor. Then

[Mi1: Mo] € {4cos(2r/n) | n € N,n >3} U[4, 0]

Each value in this index set is realized by subfactors.
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Fundamental construction of Jones towers

» My C M; subfactor of type I/} with finite index A
» GNS representation of (Mji, 7, ) gives Hilbert space H;

> Let e; be the orthogonal projection in the B(H1) which
implements the trace-preserving conditional expectation from

M1 onto Mg

» My :=vN{My, e} is a type Il factor (on H;) and
My C Maj is again a subfactor of type /l; with finite index A

» lterate this construction to obtain the towers of inclusions

Mg € My C M, C -+ C Mgy
U U U U
J C J1 C J C - C Ix

with Jones algebras 7, :== vN{1, e1,€,...€,-1}
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Definition

Let gy := tex — (1 — ex) with (1 —¢t)(1 —t71) = m >0

Proposition

The gk 's are unitaries and J, = vN{1, 81,82, ...,8n-1}

Theorem (Jones)

The mapping oy — g defines a representation of B, in the
unitary operators of M, such that

gigi=gig Ifli—jl>2 (H1)
8igi+18i = 8i+18i8i+1 (H2)
g =(t—1)gi+t (H3)

1+ gi + 8i+1 + 8i8i+1 + 8i+18 + &igi+18 =0
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Commuting squares in subfactor theory

Definition

Let (A, 7) be a separable von Neumann algebra with faithful
normal tracial state 7 on A. The four von Neumann algebras

Ao C A; C A (i =0,1,2) form a commuting square if there exist
conditional expectations E;: A — A; such that E1E;, = Ep.

Proposition

gkMrgy C Miq
U U is a commuting square for all k € N,

M1 C My
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Conclusion for Jones fundamental tower with finite index
The braid group B, defines via

a(x) :=soT-lim Ad(gig - - - gn)(x)
an endomorphism on M, and one obtains a triangular tower of
inclusions such that each cell forms a commuting square:

My C My C Mo C M3 c - C Moo
U U u U
a(My) C aMi) C aMz) C -+ C a(M)
U U U
042(./\/10) C 012(./\/(1) c -+ C 042(./\/100)
Remark
Let My, M1 be two hyperfinite factors. TFAE:
(a) Mo C My

(b) There exists an endomorphism (3 of My with 3(Mi) = M
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Beyond random sequences
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Braid groups have a linear order

Theorem (Dehornoy '92, '94, '00)

There exists a linear order <; on B, and an order isomorphism

J: (B, <1) — (Q, <).

Question (Dehornoy '00)

Does some ‘convenient’ binary operation on B,, correspond to
multiplication of integers? Does there exist some (necessarily
noncommutative) arithmetic of braids?

Remark
Q is a quotient of Z x Z* —> ‘arrays with equivalence relation’
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Is there are a distributional symmetry ‘braidability’ 7!

Definition (K)
Let i,j: [n] — Q be two ‘arrays’.
» iand j are >;-invariant, in symbols: i ~/ j, if there exists
o € By such that

i=JoooJloj.

» An ‘array’ of random variables (t4)qeq: (Ao, po) — (A, p) is
braidable if, for any n € N,

@ufi; ] = @ulii -] whenever i~ j.
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Braidability and braid group representations

Theorem (K)

Assume that the random ‘array’ (1q)qecq is braidable and minimal.
Then there exists a representation

p: Boo — Aut(A, »)
such that, for any n € N,
ploi)(liza]) = [Jogio St oi;al

forall i € N, i: [n] — Q and a € AJ.
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Existence of braidable random ‘arrays’

Noncommutative case — Answer
There are many examples!

Commutative case — Question
Does there exist a standard probability space (2,.27, 1) and a
family of random variables

(Xq)qEQ: (Qa ”va /J) —-R
such that, for all o0 € B,

d
(quanza s qu) = (XJOUOJ*I(ql)a XJoooJ*I(q2)a s XJocroJfl(qm))

for any collection g1, ..., qn of distinct elements in Q7
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» Braid group representations lead to spreadable random
sequences

» Representations of B, lead to factorizations of states

» Subfactor theory and free probability can be treated under one
ambrella

» Inclusions of subfactors with infinite index or infinite depth or
non-hyperfinite von Neumann algebras are captured and
probabilistic approach offers alternative invariants

Conjecture 1

Every unitary representation of B, in a separable //i-factor leads
to a link invariant.

Conjecture 2

There is a braided extension of free probability.
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