On endomorphisms of von Neumann algebras from braid group representations

Claus Köstler

Carleton University /
University of Illinois at Urbana-Champaign
(joint with Rolf Gohm)

Fields Institute Workshop on
Noncommutative Dynamics and Applications
Toronto, July 20, 2007

References

To be posted on arXiv:

- C. Köstler, A noncommutative dual version of the extended De Finetti theorem
- R. Gohm, C. Köstler, Spreadable noncommutative random sequences from braid group representations

Outline

1. Motivation and Terminology
2. Noncommutative De Finetti Theorem
3. Braid Group Representations
4. Applications and Examples

Motivation and Terminology

Motivation

Though many probabilistic symmetries are conceivable [...], four of them - stationarity, contractability, exchangeablity and rotatability - stand out as especially interesting and important in several ways: Their study leads to some deep structural theorems of great beauty and significance [...].

> Olav Kallenberg (2005)

Question:

Can one transfer the related concepts to noncommutative probability theory and do they turn out to be fruitful in the study of the structure of operator algebras?

Hierarchy of distributional symmetries

invariant objects	transformations
stationary	shifts
contractable	sub-sequences
exchangeable	permutations
rotatable	isometries

Topic of this talk:

- invariant objects are generated by an infinite sequence of random variables
- only the first three symmetries are considered
- contractable $=$ spreadable

Motivating Example for De Finetti theorem

"Any exchangeable process is an average of i.i.d. processes."
(De Finetti 1931)
X_{1}, X_{2}, \ldots infinite sequence of $\{0,1\}$-valued random variables s.t.

$$
P\left(X_{1}=e_{1}, \ldots, X_{n}=e_{n}\right)=P\left(X_{\pi(1)}=e_{1}, \ldots, X_{\pi(n)}=e_{n}\right)
$$

holds for all $n \in \mathbb{N}$ and permutations $\pi:[n] \rightarrow[n]$ and for every $e_{1}, \ldots, e_{n} \in\{0,1\}$.
Then there exists a unique probability measure μ on $[0,1]$ such that

$$
P\left(X_{1}=e_{1}, \ldots, X_{n}=e_{n}\right)=\int p^{s}(1-p)^{n-s} d \mu(p)
$$

where $s=e_{1}+e_{2}+\ldots+e_{n}$.

Terminology of noncommutative probability

- (noncommutative) probability space:
$(\mathcal{A}, \varphi) \quad$ sep. von Neumann algebra \mathcal{A} with f.n. state φ where \mathcal{A} is represented on GNS Hilbert space
- (noncommutative) random variable:

$$
\iota:\left(\mathcal{A}_{0}, \varphi_{0}\right) \rightarrow(\mathcal{A}, \varphi)
$$

injective ${ }^{*}$-homomorphism from \mathcal{A}_{0} to \mathcal{A} such that

$$
\begin{array}{rlr}
\iota\left(\mathbb{1}_{\mathcal{A}_{0}}\right) & =\mathbb{1}_{\mathcal{A}} \quad & \text { (unitality) } \\
\varphi \circ \iota & =\varphi_{0} & \text { (state-preserving) } \\
\sigma_{t}^{\varphi} \iota & =\iota \sigma_{t}^{\varphi_{0}} & \text { (intertwining) }
\end{array}
$$

- Automorphisms of a probability space:

Aut $(\mathcal{A}, \varphi) \quad \varphi$-preserving *-automorphisms of \mathcal{A}

Noncommutative independence and commuting squares

Definition

Given the probability space (\mathcal{A}, φ), let $\mathcal{A}_{0}, \mathcal{A}_{1}, \mathcal{A}_{2}$ be three von Neumann subalgebras of \mathcal{A} such that the φ-preserving conditional expectations $E_{i}: \mathcal{A} \rightarrow \mathcal{A}_{i}$ exist $(i=1,2,3)$. Then \mathcal{A}_{1} and \mathcal{A}_{2} are said to be \mathcal{A}_{0}-independent or conditionally independent if

$$
E_{1} \circ E_{2}=E_{0}
$$

Equivalent formulation

\mathcal{A}_{1} and \mathcal{A}_{2} are \mathcal{A}_{0}-independent if and only if the diagram

$$
\begin{array}{cccc}
\mathcal{A}_{1} & \subset & \mathcal{A}, \\
\cup & & \cup \\
\mathcal{A}_{0} & \subset & \mathcal{A}_{2},
\end{array}
$$

is a commuting square.

Order independence and conditionally i.i.d.

Let $I, J \subset \mathbb{N}_{0}$ (ordered set!). A family of random variables

$$
\iota=\left(\iota_{i}\right)_{i \in \mathbb{N}_{0}}:\left(\mathcal{A}_{0}, \varphi_{0}\right) \rightarrow(\mathcal{A}, \varphi)
$$

is said to be

- order \mathcal{B}-independent if $\bigvee\left\{\iota_{i}\left(\mathcal{A}_{0}\right) \mid i \in I\right\}$ and $\bigvee\left\{\iota_{j}\left(\mathcal{A}_{0}\right) \mid j \in J\right\}$ are \mathcal{B}-independent whenever $I<J$
- conditionally i.i.d. over \mathcal{B} if $\bigvee\left\{\iota_{i}\left(\mathcal{A}_{0}\right) \mid i \in I\right\}$ and $\bigvee\left\{\iota_{j}\left(\mathcal{A}_{0}\right) \mid j \in J\right\}$ are \mathcal{B}-independent whenever $I \cap J=\emptyset$ and $\varphi\left(\iota_{1}(x)^{k}\right)=\varphi\left(\iota_{i}(x)^{k}\right)$ for all $k \in \mathbb{N}, i \in \mathcal{I}$ and $x \in \mathcal{A}_{0}$

Remark:
What about Boolean algebra as index set? \longrightarrow 'factorizations'

Distributional Symmetries I

Definition

Two n-tuples $\mathbf{i}, \mathbf{j}:[n] \rightarrow \mathbb{N}_{0}$ are

1. translation equivalent $\left(\mathbf{i} \sim_{\theta} \mathbf{j}\right)$, if there exists $k \in \mathbb{N}_{0}$ such that

$$
\mathbf{i}=\theta^{k} \circ \mathbf{j} \quad \text { or } \quad \theta^{k} \circ \mathbf{i}=\mathbf{j} .
$$

2. order equivalent $\left(\mathbf{i} \sim_{o} \mathbf{j}\right)$, if there exists $\pi \in \mathbb{S}_{\infty}$ with

$$
\mathbf{i}=\pi \circ \mathbf{j} \quad \text { and }\left.\quad \pi\right|_{\mathbf{j}([n])} \text { is order preserving. }
$$

3. symmetric equivalent $\left(\mathbf{i} \sim_{\pi} \mathbf{j}\right.$), if there exists $\pi \in \mathbb{S}_{\infty}$ such that

$$
\mathbf{i}=\pi \circ \mathbf{j}
$$

Note:

$$
\left(\mathbf{i} \sim_{\theta} \mathbf{j}\right) \Rightarrow\left(\mathbf{i} \sim_{o} \mathbf{j}\right) \Rightarrow\left(\mathbf{i} \sim_{\pi} \mathbf{j}\right)
$$

Distributional symmetries II

Speicher's notation of multilinear maps
Let $\iota \equiv\left(\iota_{i}\right)_{i \in \mathbb{N}_{0}}:\left(\mathcal{A}_{0}, \varphi_{0}\right) \rightarrow(\mathcal{A}, \varphi)$ be given. We put, for
$\mathbf{i}:[n] \rightarrow \mathbb{N}_{0}, \mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{A}_{0}^{n}$ and $n \in \mathbb{N}$,

$$
\begin{aligned}
\mathbf{a} \mapsto \iota[\mathbf{i} ; \mathbf{a}] & :=\iota_{\mathbf{i}(1)}\left(a_{1}\right) \iota_{\mathbf{i}(2)}\left(a_{2}\right) \cdots \iota_{\mathbf{i}(n)}\left(a_{n}\right) \\
\mathbf{a} \mapsto \varphi_{l}[\mathbf{i} ; \mathbf{a}] & :=\varphi(\iota[\mathbf{i} ; \mathbf{a}])
\end{aligned}
$$

Definition (Distributional Symmetries)

A random sequence $\iota \equiv\left(\iota_{i}\right)_{i \in \mathbb{N}_{0}}:\left(\mathcal{A}_{0}, \varphi_{0}\right) \rightarrow(\mathcal{A}, \varphi)$ is
(i) exchangeable if, $\forall n \in \mathbb{N}, \varphi_{l}[\mathbf{i} ; \cdot]=\varphi_{l}[\mathbf{j} ; \cdot]$ whenever $\mathbf{i} \sim_{\pi} \mathbf{j}$
(ii) spreadable if, $\forall n \in \mathbb{N}, \varphi_{l}[\mathbf{i} ; \cdot]=\varphi_{l}[\mathbf{j} ; \cdot]$ whenever $\mathbf{i} \sim_{o} \mathbf{j}$
(iii) stationary if, $\forall n \in \mathbb{N}, \varphi_{l}[\mathbf{i} ; \cdot]=\varphi_{l}[\mathbf{j} ; \cdot]$ whenever $\mathbf{i} \sim_{\theta} \mathbf{j}$

Note: $(\mathrm{i}) \Rightarrow$ (ii) \Rightarrow (iii).

Noncommutative De Finetti Theorem

Classical dual version of extended De Finetti theorem

Let $\iota \equiv\left(\iota_{i}\right)_{i \in \mathbb{N}_{0}}:\left(\mathcal{A}_{0}, \varphi_{0}\right) \rightarrow(\mathcal{A}, \varphi)$ be a random sequence with tail algebra

$$
\mathcal{A}^{\text {tail }}:=\bigcap_{n \geq 0} \bigvee_{k \geq n} \iota_{k}\left(\mathcal{A}_{0}\right)
$$

and consider the following conditions:
(a) ι is exchangeable
(b) ι is spreadable
(c) ι is stationary and order $\mathcal{A}^{\text {tail_independent }}$
(d) ι is conditionally i.i.d. over $\mathcal{A}^{\text {tail }}$

Theorem (De Finetti (1931), Ryll-Nardzewski (1957))
$\mathcal{A} \simeq L^{\infty}(\Omega, \Sigma, \mu) \quad \Longrightarrow \quad$ (a) to (d) are equivalent.

Noncommutative dual version of extended De Finetti theorem

Theorem (K.)
Let $\iota \equiv\left(\iota_{i}\right)_{i \in \mathbb{N}_{0}}:\left(\mathcal{A}_{0}, \varphi_{0}\right) \rightarrow(\mathcal{A}, \varphi)$ be a random sequence with tail algebra

$$
\mathcal{A}^{\text {tail }}:=\bigcap_{n \geq 0} \bigvee_{k \geq n} \iota_{k}\left(\mathcal{A}_{0}\right)
$$

and consider the following conditions:
(a) ι is exchangeable
(b) ι is spreadable
(c) ι is stationary and order $\mathcal{A}^{\text {tail_independent }}$
(d) ι is conditionally i.i.d. over $\mathcal{A}^{\text {tail }}$

Then we have

$$
(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{d})
$$

Discussion of the noncommutative De Finetti theorem

Exchangeability (a), spreadability (b), stationarity and order independence (c) and conditionally i.i.d. (d) are no longer equivalent in presented noncommutative setting !

Theorem (K. 2007)
Speicher's University rules on noncommutative independence imply tensor product independence or free independence. As a consequence, conditions (a) to (d) are equivalent under the presence of universality rules.

Noncommutative versions of De Finetti theorem in

literature

- involving tensor product constructions or other commutativity conditions: E. Stoermer (1969), R.L. Hudson (1981), R.L. Hudson \& G.R. Moody(1976),
D. Petz (1990), L. Accardi \& Y.G. Lu (1993), among others
- Free version with cumulants: Lehner (2004)
- Extended versions with spreadability: ????

Are this 'good news' or 'bad news'?!
Indeed there is no hope to obtain a general De Finetti's theorem without imposing additional conditions.

$$
\text { Franz Lehner, } 2004
$$

Braid Group Representations

Artin's Braid groups

Algebraic Definition (Artin 1925)
The braid group \mathbb{B}_{n} is presented by $n-1$ generators $\sigma_{1}, \ldots, \sigma_{n-1}$ satisfying

$$
\begin{align*}
\sigma_{i} \sigma_{j} \sigma_{i} & =\sigma_{j} \sigma_{i} \sigma_{j} & & \text { if }|i-j|=1 \tag{B1}\\
\sigma_{i} \sigma_{j} & =\sigma_{j} \sigma_{i} & & \text { if }|i-j|>1 \tag{B2}
\end{align*}
$$

Notation

- $\mathbb{B}_{1}=\left\langle\sigma_{0}\right\rangle$, where σ_{0} denotes identity.
- $\mathbb{B}_{1} \subset \mathbb{B}_{2} \subset \mathbb{B}_{3} \subset \ldots \subset \mathbb{B}_{\infty}$ (inductive limit)

Fixed point algebras of braid group representation

Suppose the representation $\rho: \mathbb{B}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)$ is given.

$$
\mathcal{A}_{n-2}:=\mathcal{A}^{\rho\left(\mathbb{B}_{n, \infty}\right)}:=\bigcap_{k \geq n} \mathcal{A}^{\rho\left(\sigma_{k}\right)}
$$

Tower of von Neumann algebras:

$$
\mathcal{A}^{\rho\left(\mathbb{B}_{\infty}\right)}=\mathcal{A}_{-1} \subset \mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \cdots \subset \mathcal{A}_{n-2} \subset \cdots \subset \mathcal{A}_{\infty} .
$$

Main results

Theorem (Gohm \& K. 2007)
Let the (not necessarily faithful) representation

$$
\rho: \mathbb{B}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)
$$

be given. Furthermore, suppose \mathcal{C}_{0} is a von Neumann subalgebra of \mathcal{A} such that the φ-preserving conditional expectation from \mathcal{A} onto \mathcal{C}_{0} exists.
If \mathcal{C}_{0} satisfies the localization property $\mathcal{C}_{0} \subset \mathcal{A}^{\rho\left(\mathbb{B}_{2, \infty}\right)}$, then

$$
\begin{aligned}
\iota_{n}: \mathcal{C}_{0} & \rightarrow \mathcal{A} \\
x & \mapsto \rho\left(\sigma_{n} \sigma_{n-1} \cdots \sigma_{2} \sigma_{1} \sigma_{0}\right)(x)
\end{aligned}
$$

defines a spreadable random sequence $\left(\iota_{n}\right)_{n \in \mathbb{N}_{0}}$.

Braided counterpart of Hewitt-Savage 0-1 law

Theorem (Gohm \&K. 2007)
Under the assumptions of the previous theorem, it holds

$$
\mathcal{A}^{\text {tail }}=\mathcal{A}^{\rho\left(\mathbb{B}_{\infty}\right)}
$$

In particular, these two algebras are trivial if the random sequence is conditionally i.i.d. over \mathbb{C}.

Endomorphisms from braid group representations

Proposition

Suppose (\mathcal{A}, φ) admits a (not necessarily faithful) representation

$$
\rho: \mathbb{B}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)
$$

and let $\mathcal{A}_{n-1}:=\mathcal{A}^{\rho\left(\mathbb{B}_{n+1, \infty}\right)}$. Then

$$
\alpha(x)=\text { sot- } \lim _{n \rightarrow \infty} \rho\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n}\right)(x)
$$

(BPR-0)
defines an endomorphism α on $\mathcal{A}_{\infty}:=\left(\bigcup_{n} \mathcal{A}_{n}\right)^{\prime \prime}$ and

$$
\begin{align*}
\rho\left(\sigma_{k}\right)\left(\mathcal{A}_{n}\right) & =\mathcal{A}_{n} \tag{BPR-1}\\
\left.\rho\left(\sigma_{n+1}\right)\right|_{\mathcal{A}_{n-1}} & =\left.\mathrm{id}\right|_{\mathcal{A}_{n-1}}
\end{align*}
$$

(BPR-2)
for all $0 \leq k \leq n<\infty$.

Tower of commuting squares

Theorem (Gohm \& K. 2007)

Under the assumptions of the previous proposition, one obtains a triangular tower of inclusions such that each cell forms a commuting square:

Here \mathcal{A}_{-1} equals the fixed point algebra of α.

Remark

$\left(\mathcal{A}_{\infty}, \varphi_{\infty}, \alpha, \mathcal{A}_{0} ; \mathcal{A}_{-1}\right)$ is a 'discrete-time' version of continuous Bernoulli shifts as defined in Hellmich -K.- Kümmerer (2004).

Applications and Examples

Unitary braid group representations

Given (\mathcal{A}, φ), suppose the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ of unitary operators $u_{n} \in \mathcal{A}^{\varphi}$ satisfies the braid relations:

$$
\begin{aligned}
u_{i} u_{j} & =u_{j} u_{i} & & \text { for }|i-j|>1 ; \\
u_{i} u_{j} u_{i} & =u_{j} u_{i} u_{j} & & \text { for }|i-j|=1 .
\end{aligned}
$$

Let $u_{0}=1$ and

$$
\mathcal{J}_{n}:=\bigvee\left\{u_{k}\right\} \quad(0 \leq n \leq \infty)
$$

Then $\rho\left(\sigma_{n}\right)(x):=\operatorname{Ad} u_{n}(x)=u_{n} x u_{n}^{*}$, with $x \in \mathcal{J}_{\infty}$, defines the representation

$$
\rho: \mathbb{B}_{\infty} \rightarrow \operatorname{Aut}\left(\mathcal{J}_{\infty}, \operatorname{tr}_{\mathcal{J}_{\infty}}\right) .
$$

Unitary braid group representations II

An application of the main result gives

$$
\begin{array}{ccccccc}
\mathcal{Z}\left(\mathcal{J}_{\infty}\right) & \subset \mathcal{J}_{\infty}^{\rho\left(\mathbb{B}_{2, \infty}\right)} & \subset & \mathcal{J}_{\infty}^{\rho\left(\mathbb{B}_{3, \infty}\right)} & \subset & \cdots & \subset \\
\cup & & \cup & \mathcal{J}_{\infty} \\
& \mathcal{Z}\left(\mathcal{J}_{\infty}\right) & \subset & \alpha\left(\mathcal{J}_{\infty}^{\rho\left(\mathbb{B}_{2, \infty}\right)}\right) & & & \\
\cup & & \cdots & & \subset & \alpha\left(\mathcal{J}_{\infty}\right) \\
& & & & & & \cup
\end{array}
$$

Some elementary properties

1. $\alpha\left(u_{n}\right)=u_{n+1}$
2. $u_{n} \in \mathcal{J}_{\infty}^{\rho\left(\mathbb{B}_{n+2, \infty}\right)} \Rightarrow \mathcal{J}_{n} \subset \mathcal{J}_{\infty}^{\rho\left(\mathbb{B}_{n+2, \infty}\right)}$
3. $\mathcal{J}_{\infty} \cap\left(\alpha\left(\mathcal{J}_{\infty}\right)\right)^{\prime} \subset \mathcal{Z}\left(\mathcal{J}_{\infty}\right) \quad \Longleftrightarrow \quad \mathcal{J}_{\infty}^{\rho\left(\mathbb{B}_{2, \infty}\right)} \subset \mathcal{Z}\left(\mathcal{J}_{\infty}\right)$

Group von Neumann algebra $L\left(\mathbb{B}_{\infty}\right)$
Theorem (Gohm \& K. 2007)
$L\left(\mathbb{B}_{\infty}\right)$ is a nonhyperfinite factor of type I_{1} and the inclusion $L\left(\mathbb{B}_{2, \infty}\right) \subset L\left(\mathbb{B}_{\infty}\right)$ is irreducible, i.e.

$$
L\left(\mathbb{B}_{\infty}\right) \cap\left(L\left(\mathbb{B}_{2, \infty}\right)\right)^{\prime} \simeq \mathbb{C} .
$$

Putting $\mathcal{J}_{\infty}=L\left(\mathbb{B}_{\infty}\right)$ we have the following commuting squares:

Another presentation by square roots of free generators

Set of generators

$$
\gamma_{i}:=\left(\sigma_{0} \sigma_{1} \sigma_{2} \cdots \sigma_{i-1}\right) \sigma_{i}\left(\sigma_{i-1}^{-1} \cdots \sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{0}^{-1}\right)
$$

Proposition (Gohm \& K. 2007)
\mathbb{B}_{n} is presented by $\left\{\gamma_{k} \mid 1 \leq k \leq n-1\right\}$ subject to

$$
\gamma_{k}\left(\gamma_{k-1} \gamma_{k-2} \cdots \gamma_{j+1} \gamma_{j}\right) \gamma_{k}=\left(\gamma_{k-1} \gamma_{k-2} \cdots \gamma_{j+1} \gamma_{j}\right) \gamma_{k} \gamma_{k-1}
$$

for $1 \leq j<k \leq n-1$.
Corollary
The free group \mathbb{F}_{n} admits the presentation $\left\langle\gamma_{1}^{2}, \ldots, \gamma_{n}^{2}\right\rangle$.

Is there a braided extension of free probability?

Let

$$
\beta:=\lim _{n \rightarrow \infty} \operatorname{Ad}\left(u_{2}^{*} u_{3}^{*} u_{4}^{*} \cdots u_{n}^{*}\right)
$$

Then, in the left regular representation $\sigma \rightarrow \ell(\sigma)$, with $v_{n}:=\ell\left(\gamma_{n}\right)$

$$
\beta\left(v_{n}\right)=\beta\left(v_{n+1}\right)
$$

Theorem (Gohm \& K. 2007)
The square root of free generator presentation gives the triangular tower of commuting squares:

$$
\begin{array}{cccccccc}
\mathbb{C} \subset & \left\langle v_{1}\right\rangle & \subset & \left\langle v_{1}, v_{2}\right\rangle & \subset & \left\langle v_{1}, v_{2}, v_{3}\right\rangle & \subset \cdots \subset & \mathcal{J}_{\infty} \\
& \cup & & \cup & & \cup & & \| \\
& \mathbb{C} & \subset & \left\langle v_{2}\right\rangle & \subset & \left\langle v_{2}, v_{3}\right\rangle & \subset \cdots \subset & \beta\left(\mathcal{J}_{\infty}\right) \\
& & \cup & & \cup & & & \cup \\
& & \mathbb{C} & \subset & \left\langle v_{3}\right\rangle & \subset \cdots & \cdots & \beta^{2}\left(\mathcal{J}_{\infty}\right) \\
& & \cup & & \cup & & &
\end{array}
$$

Subfactor theory

Subfactor theory

Definition (Jones Index)
Let $\mathcal{M}_{0} \subset \mathcal{M}_{1}$ be an inclusion of separable type I_{1} factors on \mathcal{H}.

$$
\left[\mathcal{M}_{1}: \mathcal{M}_{0}\right]:=\frac{\operatorname{dim}_{\mathcal{M}_{0}} \mathcal{H}}{\operatorname{dim}_{\mathcal{M}_{1}} \mathcal{H}}
$$

Theorem (Jones)
Let $\mathcal{M}_{0} \subset \mathcal{M}_{1}$ be a type I_{1} subfactor. Then

$$
\left[\mathcal{M}_{1}: \mathcal{M}_{0}\right] \in\{4 \cos (2 \pi / n) \mid n \in \mathbb{N}, n \geq 3\} \cup[4, \infty]
$$

Each value in this index set is realized by subfactors.

Fundamental construction of Jones towers

- $\mathcal{M}_{0} \subset \mathcal{M}_{1}$ subfactor of type I_{1} with finite index λ
- GNS representation of $\left(\mathcal{M}_{1}, \tau_{\mathcal{M}_{1}}\right)$ gives Hilbert space \mathcal{H}_{1}
- Let e_{1} be the orthogonal projection in the $B\left(\mathcal{H}_{1}\right)$ which implements the trace-preserving conditional expectation from \mathcal{M}_{1} onto \mathcal{M}_{0}
- $\mathcal{M}_{2}:=\mathrm{vN}\left\{\mathcal{M}_{1}, e_{1}\right\}$ is a type I_{1} factor (on \mathcal{H}_{1}) and $\mathcal{M}_{1} \subset \mathcal{M}_{2}$ is again a subfactor of type I_{1} with finite index λ
- Iterate this construction to obtain the towers of inclusions

with Jones algebras $\mathcal{J}_{n}:=\mathrm{vN}\left\{1, e_{1}, e_{2}, \ldots e_{n-1}\right\}$

Definition

Let $g_{k}:=t e_{k}-\left(1-e_{k}\right)$ with $(1-t)\left(1-t^{-1}\right)=\frac{1}{\left[\mathcal{M}_{1}: \mathcal{M}_{0}\right]}>0$

Proposition

The g_{k} 's are unitaries and $\mathcal{J}_{n}=\mathrm{vN}\left\{1, g_{1}, g_{2}, \ldots, g_{n-1}\right\}$
Theorem (Jones)
The mapping $\sigma_{k} \mapsto g_{k}$ defines a representation of \mathbb{B}_{∞} in the unitary operators of \mathcal{M}_{∞} such that

$$
\begin{align*}
g_{i} g_{j} & =g_{j} g_{i} \quad \text { if }|i-j| \geq 2 \tag{H1}\\
g_{i} g_{i+1} g_{i} & =g_{i+1} g_{i} g_{i+1} \tag{H2}\\
g_{i}^{2} & =(t-1) g_{i}+t \tag{H3}\\
1+g_{i}+g_{i+1} & +g_{i} g_{i+1}+g_{i+1} g_{i}+g_{i} g_{i+1} g_{i}=0
\end{align*}
$$

Commuting squares in subfactor theory

Definition

Let (\mathcal{A}, τ) be a separable von Neumann algebra with faithful normal tracial state τ on \mathcal{A}. The four von Neumann algebras $\mathcal{A}_{0} \subseteq \mathcal{A}_{i} \subset \mathcal{A}(i=0,1,2)$ form a commuting square if there exist conditional expectations $E_{i}: \mathcal{A} \rightarrow \mathcal{A}_{i}$ such that $E_{1} E_{2}=E_{0}$.

Proposition

$$
\begin{array}{lll}
g_{k} \mathcal{M}_{k} g_{k}^{*} & \subset \mathcal{M}_{k+1} \\
\cup & \cup^{\cup}
\end{array} \text { is a commuting square for all } k \in \mathbb{N} \text {. }
$$

Conclusion for Jones fundamental tower with finite index The braid group \mathbb{B}_{∞} defines via

$$
\alpha(x):=\text { sot- } \lim _{n} \operatorname{Ad}\left(g_{1} g_{2} \cdots g_{n}\right)(x)
$$

an endomorphism on \mathcal{M}_{∞} and ${ }^{n}$ one obtains a triangular tower of inclusions such that each cell forms a commuting square:

Remark

Let $\mathcal{M}_{0}, \mathcal{M}_{1}$ be two hyperfinite factors. TFAE:
(a) $\mathcal{M}_{0} \subset \mathcal{M}_{1}$
(b) There exists an endomorphism β of \mathcal{M}_{1} with $\beta\left(\mathcal{M}_{1}\right)=\mathcal{M}_{0}$

Beyond random sequences

Braid groups have a linear order

Theorem (Dehornoy '92, '94, '00)
There exists a linear order $<_{L}$ on \mathbb{B}_{∞} and an order isomorphism

$$
J:\left(\mathbb{B}_{\infty},<L\right) \rightarrow(\mathbb{Q},<) .
$$

Question (Dehornoy '00)
Does some 'convenient' binary operation on \mathbb{B}_{n} correspond to multiplication of integers? Does there exist some (necessarily noncommutative) arithmetic of braids?

Remark
\mathbb{Q} is a quotient of $\mathbb{Z} \times \mathbb{Z}^{*} \longrightarrow$ 'arrays with equivalence relation'

Is there are a distributional symmetry 'braidability' ?!

Definition (K)
Let $\mathbf{i}, \mathbf{j}:[n] \rightarrow \mathbb{Q}$ be two 'arrays'.

- \mathbf{i} and \mathbf{j} are $>_{L}$-invariant, in symbols: $\mathbf{i} \sim_{L} \mathbf{j}$, if there exists $\sigma \in \mathbb{B}_{\infty}$ such that

$$
\mathbf{i}=J \circ \sigma \circ J^{-1} \circ \mathbf{j} .
$$

- An 'array' of random variables $\left(\iota_{q}\right)_{q \in \mathbb{Q}}:\left(\mathcal{A}_{0}, \varphi_{0}\right) \rightarrow(\mathcal{A}, \varphi)$ is braidable if, for any $n \in \mathbb{N}$,

$$
\varphi_{l}[\mathbf{i} ; \cdot]=\varphi_{l}[\mathbf{j} ; \cdot] \text { whenever } \mathbf{i} \sim_{L} \mathbf{j} .
$$

Braidability and braid group representations

Theorem (K)
Assume that the random 'array' $\left(\iota_{q}\right)_{q \in \mathbb{Q}}$ is braidable and minimal.
Then there exists a representation

$$
\rho: \mathbb{B}_{\infty} \rightarrow \operatorname{Aut}(\mathcal{A}, \varphi)
$$

such that, for any $n \in \mathbb{N}$,

$$
\rho\left(\sigma_{i}\right)(\iota[\mathbf{i} ; \mathbf{a}])=\iota\left[J \circ \sigma_{i} \circ J^{-1} \circ \mathbf{i} ; \mathbf{a}\right]
$$

for all $i \in \mathbb{N}, \mathbf{i}:[n] \rightarrow \mathbb{Q}$ and $\mathbf{a} \in \mathcal{A}_{0}^{n}$.

Existence of braidable random 'arrays'

Noncommutative case - Answer
There are many examples!

Commutative case - Question

Does there exist a standard probability space $(\Omega, \mathscr{A}, \mu)$ and a family of random variables

$$
\left(X_{q}\right)_{q \in \mathbb{Q}}:(\Omega, \mathscr{A}, \mu) \rightarrow \mathbb{R}
$$

such that, for all $\sigma \in \mathbb{B}_{\infty}$,

$$
\left(X_{q_{1}}, X_{q_{2}}, \ldots X_{q_{m}}\right) \stackrel{d}{=}\left(X_{J \circ \sigma \circ J^{-1}\left(q_{1}\right)}, X_{J \circ \sigma \circ J^{-1}\left(q_{2}\right)}, \ldots X_{J \circ \sigma \circ J^{-1}\left(q_{m}\right)}\right)
$$

for any collection q_{1}, \ldots, q_{m} of distinct elements in \mathbb{Q} ?

Summary

- Braid group representations lead to spreadable random sequences
- Representations of \mathbb{B}_{∞} lead to factorizations of states
- Subfactor theory and free probability can be treated under one ambrella
- Inclusions of subfactors with infinite index or infinite depth or non-hyperfinite von Neumann algebras are captured and probabilistic approach offers alternative invariants

Conjecture 1

Every unitary representation of \mathbb{B}_{∞} in a separable I_{1}-factor leads to a link invariant.

Conjecture 2
There is a braided extension of free probability.

