Type III factors distinguish type III E_0 -semigroups

by

Masaki Izumi

Department of Mathematics Graduate School of Science Kyoto University Japan

July 17, 2007, at Toronto Partly joint work with R. Srinivasan

Definitions & Notation

H :=Separable infinite dim. Hilbert space.

A semigroup $\alpha = \{\alpha_t\}_{t>0}$ of unital *-endomorphisms of $\mathbb{B}(H)$ s.t. $t \mapsto \alpha_t(x)$ is continuous in the strong operator topology for $\forall x \in \mathbb{B}(H)$ is said to be an E_0 -semigroup.

A continuous family of unitaries $\{U_t\}_{t>0}$ in $\mathbb{B}(H)$ is an α -cocycle

$$\stackrel{\text{def}}{\Leftrightarrow} U_{s+t} = U_s \alpha_s(U_t), \ \forall s, t > 0.$$

 α acting on $\mathbb{B}(H)$ and β acting on $\mathbb{B}(K)$ are cocycle conjugate

$$\overset{\mathsf{def}}{\Leftrightarrow} \exists V : H \to K \text{ unitary, } \exists \{U_t\} \ \alpha\text{-cocycle s.t.}$$

$$Ad(V^*) \cdot \beta_t \cdot Ad(V) = Ad(U_t) \cdot \alpha_t.$$

<u>Goal</u>

Classification up to cocycle conjugacy.

For an E_0 -semigroup α , set

$$\mathcal{E}_{\alpha}(t) := \{ V \in \mathbb{B}(H); \ Vx = \alpha_t(x)V, \ \forall x \in \mathbb{B}(H) \}.$$

 $\mathcal{E}_{lpha}(t)$ has a Hilbert space structure

$$\langle V, W \rangle 1_{\mathbb{B}(H)} := W^*V.$$

 $\mathcal{E}_{\alpha}(s+t)$ is identified with $\mathcal{E}_{\alpha}(\alpha)\otimes\mathcal{E}_{\alpha}(\beta)$ by $\mathcal{E}_{\alpha}(s+t)\ni VW\leftrightarrow V\otimes W\in\mathcal{E}_{\alpha}(s)\otimes\mathcal{E}_{\alpha}(t).$

 $\{\mathcal{E}_{\alpha}(t)\}_{t>0}$ is (continuous tensor) product system (of Hilbert spaces).

 $\{\mathcal{E}_{\alpha}(t)\}_{t>0}$ is a complete invariant for cocycle conjugacy (Arveson).

A C_0 -semigroup $V = \{V_t\}_{t>0}$ of isometries acting on H is said to be a <u>unit</u> if $V_t \in \mathcal{E}_{\alpha}(t)$ for $\forall t > 0$.

Let \mathcal{U}_{α} denote the set of units.

- α is of type I $\stackrel{\text{def}}{\Leftrightarrow} \alpha$ has enough units, i.e. $\operatorname{span}\{V_{t_1}^1V_{t_2}^2\cdots V_{t_n}^n;\ t_1+\cdots t_n=t,\ V^i\in\mathcal{U}_\alpha\}$ is dense in $\mathcal{E}_\alpha(t)$ for all t>0.
- α is of type II $\stackrel{\text{def}}{\Leftrightarrow} \mathcal{U}_{\alpha} \neq \emptyset$ but not of type I.
- α is of type III $\stackrel{\text{def}}{\Leftrightarrow} \mathcal{U}_{\alpha} = \emptyset$.

Example

CCR(=CAR) flows.

 $G = L^2((0, \infty), K),$ $H = e^G$: Symmetric Fock space of G

$$H = \bigoplus_{n=0}^{\infty} G^{\otimes_s n}.$$

W(f): The Weyl operator for $f \in G$,

 $S = \{S_t\}_{t>0}$: Shift of $L^2((0,\infty),K)$,

$$(S_t f)(x) = \begin{cases} 0 & (x < t) \\ f(x - t) & (t \le x) \end{cases}$$

CCR flow of index $n = \dim K$ is defined by

$$\alpha_t(W(f)) = W(S_t f).$$

Every type I E_0 -semigroup of index n is cocycle conjugate to the CCR flows of index n.

Examples of type III

- Powers (87): Quasi-free representation of CAR
- Tsirelson (2003): Off white noise (uncountably many).

X(t): Gaussian generalized process E(X(t)X(s)) = C(s-t),

C: Positive definite distribution $\widehat{C}=e^{
ho(\lambda)}d\lambda$: Fourier transformation $e^{
ho(\lambda)}$: Spectral density function

$$\int_{\mathbb{R}^2} \frac{|\rho(x) - \rho(y)|^2}{|x - y|^2} dx dy < \infty$$

 $e^{\rho(\lambda)} \sim \log^{\beta} |\lambda|$ for large λ , $\beta < 0$.

Main result (M.I.-Srinivasan)

There exist uncountably many mutually non-cocycle conjugate E_0 -semigroups of type III satisfying:

 They have the same Tsirelson invariant as the CCR flows

$$e^{\rho(\lambda)} \sim 1, \quad (|\lambda| \to \infty)$$

• They are distinguished by the type of "local observable algebras".

Invariant

For E_0 -semigroup α and finite interval $I=(s,t)\subset (0,\infty)$,

$$\mathcal{A}^{\alpha}(I) := \alpha_s(\mathbb{B}(H)) \cap \alpha_t(\mathbb{B}(H))'$$

For a bounded open set $U \subset (0, \infty)$,

$$\mathcal{A}^{\alpha}(U) := \bigvee_{I \subset U} \mathcal{A}^{\alpha}(I)$$

- $\{\mathcal{A}^{\alpha}(U)\}_{U}$ is a cocycle conjugacy invariant
- U finite union of intervals $\Rightarrow \mathcal{A}^{\alpha}(U)$ is a type I factor
- α is type I $\Rightarrow \mathcal{A}^{\alpha}(U)$ is a type I factor
- $\mathcal{U}_{\alpha} \neq \emptyset \Rightarrow \mathcal{A}^{\alpha}(U)$ has a type I summand

Generalized CCR flows

Lemma

G: Real Hilbert space.

 $\{S_t\}_{t\geq 0}$, $\{T_t\}_{t\geq 0}$: C_0 -semigroups satisfying

(C1)
$$T_t^* S_t = I$$
 for $\forall t > 0$.

(C2) $T_t - S_t$ is Hilbert-Schmidt for $\forall t > 0$.

H: Symmetric Fock space of $G^{\mathbb{C}}=G\otimes\mathbb{C}$. $W(f+ig),\ f,g\in G$: Weyl operator.

 $\Rightarrow \exists_1 \ E_0$ -semigroup α satisfying

$$\alpha_t(W(f+ig)) = W(S_tf+iT_tg).$$

<u>Def.</u> Call α the generalized CCR flow associated with $(\{S_t\}, \{T_t\})$.

<u>Th.</u>(Bhat-Srinivasan, M.I.-Srinivasan) GCCR flows are either of type I or type III

- When S_t is an isometry for all t > 0, one may identify G with $L^2((0,\infty),K)$ and $\{S_t\}_{t\geq 0}$ with the shift up to cocycle conjugacy.
- Tsirelson's examples of type III E_0 -semigroups are obtained in this way with dim K=1.

Perturbation Problem

 $\{S_t\}_{t>0}$: Shift semigroup of $L^2(0,\infty)$. Classify C_0 -semigroups $\{T_t\}_{t>0}$ acting on $L^2(0,\infty)$ satisfying

(C1)
$$T_t^* S_t = I$$
 for $\forall t > 0$.

(C2) $T_t - S_t$ is Hilbert-Schmidt for $\forall t > 0$.

Notation

For $f, g \in L^2(0, \infty)$, (f, g) = Dual paring (not inner product),

$$\int_0^\infty f(x)g(x)dx.$$

 $f \otimes g$: Rank one operator $(f \otimes g)h = (g,h)f$.

 \mathbb{H}_r : The right half plane.

$$e_z(x) := e^{-xz} \text{ for } z \in \mathbb{H}_r.$$

 $\mathcal{L}[f]$: Laplace transformation of f

$$\mathcal{L}[f](z) = \int_0^\infty f(x)e^{-xz}dx.$$

 $\mathcal{G}(A)$: Graph of an operator A.

Infinitesimal theory

- A:=Generator of $\{S_t\}_{t>0}$. Af = -f', f(0) = 0 $A^*f = f'$, without boundary condition
- B:=Generator of $\{T_t\}_{t>0}$. (C1) $\Leftrightarrow \langle S_t f, T_t g \rangle = \langle f, g \rangle \Leftrightarrow B \subset -A^*$ B is a differential operator Bf = -f'. D(B) is perturbed!
- \exists non-zero vector in $\mathcal{G}(-A^*) \cap \mathcal{G}(B)^{\perp}$.
- For $p \in D(A^*)$, set $A_p f := -f'$ $D(A_p) := \{ f \in D(A^*); \ (f,p) + (f',p') = 0 \}.$ A_p is densely defined iff $p' \notin D(A)$.
- $\mathcal{O} := \{ p \in D(A^*); \ p' \notin D(A) \}.$ $\exists p \in \mathcal{O} \text{ s.t. } B \subset A_p \text{ (in fact } B = A_p).$

Th. (M.I.)

(1) For $p \in \mathcal{O}$ and $z \in \mathbb{H}_r$, set

$$\mathcal{M}[p](z) = (p, e_z) + (p', e_z')$$
$$= \int_0^\infty (p(x) - zp'(x))e^{-xz}dx.$$

 \Rightarrow z is in the resolvent set of A_p if and only if $\mathcal{M}[p](z) \neq 0$ and

$$(zI - A_p)^{-1} = (zI - A)^{-1} + e_z \otimes \xi_{p,z},$$
$$\xi_{p,z} = -\frac{zp + p' + (1 - z^2) \int_0^\infty e^{-zt} S_t^* p dt}{\mathcal{M}[p](z)}.$$

(2) $\{T_t\}$: C_0 -semigroup satisfying (C1)

B: generator of $\{T_t\}$

 $\Rightarrow B = A_p \text{ for some } p \in \mathcal{O}.$

 $H^2(\mathbb{H}_r) :=$ Hardy space for the right half plane.

 $\mathcal{HD}:=$ The set of analytic functions M(z) on \mathbb{H}_r s.t.

$$M(z)/(1+z) \in H^2(\mathbb{H}_r)$$
 and $M(z) \notin H^2(\mathbb{H}_r)$.

Lemma

The map $\mathcal{O} \ni p \mapsto \mathcal{M}[p] \in \mathcal{HD}$ is a bijection.

• When $M = \mathcal{M}[p]$, we abuse notation $A_M := A_p$, $\xi_{M,z} := \xi_{p,z}$.

For M=1, $\xi_{M,z}=0$ and $A_M=A$.

•

$$\mathcal{L}[\xi_{M,z}](w) = \frac{M(z) - M(w)}{(z - w)M(z)}.$$

• $|M(i\lambda)|^2$ corresponds to spectral density function of Tsirelson's off white noise. Our class of functions is slightly larger than the class he considered.

Def.

 $\mathcal{HD}_b := \text{The set of } M \in \mathcal{HD} \text{ such that } A_M \text{ generates a } C_0\text{-semigroup}$ ((C1) is automatically satisfied).

For $1 \leq p \leq \infty$, $\mathcal{HD}_p := \text{The set of } M \in \mathcal{HD}_b \text{ such that } e^{tA_M} - S_t \text{ belongs to the Schatten class } C_p \text{ for all } t > 0.$

Problem Characterize \mathcal{HD}_2 .

It is a much harder problem to characterize \mathcal{HD}_b (or \mathcal{HD}_p with $p \neq 2$).

Global theory

For $M \in \mathcal{HD}_2$, set $K_t = e^{tA_M} - S_t \in C_2$.

- Semigroup relation
- $\Rightarrow \exists$ kernel function k(x,y) such that

$$K_t f(x) = \begin{cases} \int_0^\infty k(x - t, y) f(y) dy & (x < t) \\ 0 & (x \ge t) \end{cases}$$

$$||K_t||_{\mathsf{H.S.}}^2 = \int_0^t \int_0^\infty |k(x,y)|^2 dy dx < \infty, \quad \forall t > 0.$$

ullet For $z\in \mathbb{H}_r$ with sufficiently large Re z,

$$(zI - A_M)^{-1} = \int_0^\infty e^{-tz} e^{tA_M} dt$$
$$= (zI - A)^{-1} + \int_0^\infty e^{-tz} K_t dt.$$

Compare this with

$$(zI - A_M)^{-1} = (zI - A^{-1}) + e_z \otimes \xi_{M,z}.$$

$$\int_0^\infty e^{-tz} K_t dt = e_z \otimes \xi_{M,z}$$

implies

$$\xi_{M,z}(y) = \int_0^\infty k(r,y)e^{-rz}dr.$$

$$\int_0^\infty \int_0^\infty k(r,s)e^{-(rz+sw)}drds = \frac{M(z)-M(w)}{(z-w)M(z)}.$$

• The Paley-Wiener theorem characterizes $M \in \mathcal{HD}_2$!

Th. (M.I.)

 $M \in \mathcal{HD}_2 \Leftrightarrow \exists a > 0 \text{ s.t.}$

$$\sup_{x\geq a} \frac{1}{x} \int_{-\infty}^{\infty} \left(\frac{\mathcal{P}[|M(i\cdot)|^2](x+iy)}{|M(x+iy)|^2} - 1 \right) dy < \infty,$$

where $\mathcal{P}[f](x+iy)$ is the Poisson integral of f,

$$\mathcal{P}[f](x+iy) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{xf(\lambda)}{x^2 + (y-\lambda)^2} d\lambda, \quad x > 0.$$

Cor

Let $M \in \mathcal{HD}$.

If there exist positive constants a, n, and C s.t.

$$\frac{1}{|M(z)|} \le C(1+|z|)^n, \quad \forall \text{Re } z \ge a,$$

$$\int_{-\infty}^{\infty} \left(\frac{\mathcal{P}[|M(i\cdot)|^2](x+iy)}{|M(x+iy)|^2} - 1 \right) dy < \infty, \quad \exists x > a,$$

then $M \in \mathcal{HD}_2$.

Th.(M.I.)

 $M(z) \in \mathcal{HD}$,

B(z): Blachke component of M(z),

S(z): Singular inner component of M(z),

F(z): Outer component of M(z).

Then,

 $M \in \mathcal{HD}_2 \Leftrightarrow \text{ each component is in } \mathcal{HD}_2.$

Moreover,

• $B(z) \in \mathcal{HD}_2$ iff

$$B(z) = \left(\frac{z-1}{z+1}\right)^k \prod_n \frac{|1-\beta_n^2|}{1-\beta_n^2} \cdot \frac{z-\beta_n}{z+\overline{\beta_n}},$$
$$\sum_n \operatorname{Re} \beta_n < +\infty.$$

• $S(z) \in \mathcal{HD}_2$ iff

$$S(z) = \exp\left[-\int_{-\infty}^{\infty} \frac{\lambda z + i}{\lambda + iz} d\mu(\lambda)\right],$$
$$\int_{-\infty}^{\infty} (1 + \lambda^2) d\mu(\lambda) < +\infty.$$

• $F \in \mathcal{HD}_2$ if and only if

$$\sup_{y \in \mathbb{R}} \left(\log \mathcal{P}[e^{\rho}](x+iy) - \mathcal{P}[\rho](x+iy) \right) = O(1),$$

$$\int_{-\infty}^{+\infty} \Big(\log \mathcal{P}[e^{\rho}](x+iy) - \mathcal{P}[\rho](x+iy) \Big) dy = O(x),$$
 as x tends to $+\infty$, where $\rho(\lambda) = \log |M(i\lambda)|^2$.

Examples of $M(z) \in \mathcal{HD}_2$

• off white noise

$$\int_{\mathbb{R}^2} \frac{|\rho(x) - \rho(y)|^2}{|x - y|^2} dx dy < \infty$$

$$M(z) = \exp\left\{\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\lambda z + i}{\lambda + iz} \cdot \frac{\rho(\lambda)d\lambda}{1 + \lambda^2}\right\}$$

•
$$M(z) = \left(\log(a+z)\right)^{\beta}$$
, $a \ge 1$, $\beta > 0$.

•
$$\varphi \in L^1_{loc}[0,\infty) \cap L^2((0,\infty),(1-e^{-x})dx),$$

$$M(z) = 1 - \int_0^\infty \varphi(x)e^{-xz}dx,$$

Example of $M(z) \in \mathcal{HD}_b \setminus \mathcal{HD}_2$

•
$$M(z) = (1+z)^{\beta}$$
, $-1/2 < \beta < 1/2$, $\beta \neq 0$.

•
$$M(z) = 1 - re^{-az}$$
, $a > 0$.

Applications

 $\varphi \in L^1_{\mathsf{loc}}[0,\infty) \cap L^2((0,\infty),(1-e^{-x})dx)_{\mathbb{R}},$

$$M(z) := 1 - \int_0^\infty \varphi(x) e^{-xz} dx,$$

 α^{φ} : GCCR flow for $T_t = e^{tA_M}$.

Th. (M.I.-Srinivasan) α^{φ} is of type III $\Leftrightarrow \varphi \notin L^2(0,\infty)$.

 $\underline{\alpha^{\varphi}}$ has the same Tsirelson invariant as the CCR flow of index 1.

Lemma (M.I.-Srinivasan)

 \mathcal{T}_M : Toeplitz operator

$$\mathcal{T}_M f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{L}[f](i\lambda) M(i\lambda) e^{i\lambda x} d\lambda$$

Then

$$\mathcal{A}^{\alpha^{\varphi}}(U) = \{ W(\mathcal{T}_M f + i(\mathcal{T}_M^*)^{-1} g); f, g \in L^2(U)_{\mathbb{R}} \}''$$

<u>Th.</u> (M.I.-Srinivasan) $\mathcal{A}^{\alpha^{\varphi}}(U)$ is either a type I or type III factor.

When φ is non-increasing on a neighborhood of 0, $\mathcal{A}^{\alpha^{\varphi}}(U)$ is type III \Leftrightarrow

$$\int_0^\infty ||1_U - 1_{x+U}||_{L^1} |\varphi(x)|^2 dx = \infty.$$

Functions $\varphi(x) = x^{\beta-1}e^{-x}$, $0 < \beta \le 1/2$, give mutually non-cocycle conjugate type III GCCR flows.

Conjecture

- (1) α^{φ_1} and α^{φ_2} are cocycle conjugate $\Leftrightarrow \varphi_1 \varphi_2 \in L^2(0, \infty)$. (\Leftarrow is true)
- (2) For general GCCR flows, the asymptotic behavior of $||S_t T_t||_{H.S.}$ for $t \to +0$ is a cocycle conjugacy invariant.

(2)'
$$||S_t - T_t||^2_{H.S.} = O(t) \Leftrightarrow \text{type I}$$

(true for $M = 1 - \mathcal{L}[\varphi]$)

cf.

• For
$$\varphi \in L^2(0,t)$$
, $||S_t - T_t||^2_{H.S.} \sim t||\varphi||^2_2$

• For
$$\varphi(x) \sim x^{\beta-1}L(x)$$
, $(x \to +0)$, $0 < \beta < 1/2$, $L(x)$ slowly varying,

$$||S_t - T_t||_{H.S.}^2 \sim \frac{t^{2\beta}L(t)^2}{2\beta(1-2\beta)}$$

References

M. Izumi,
A perturbation problem for the shift semigroup,
Preprint, arXiv:0702439, 2007,
to appear in J. Funct. Anal.

M. Izumi, R. Srinivasan, Generalized CCR flows, Preprint, arXiv:0705.3280, 2007