Constrained Liftings

(joint work with Rolf Gohm)

Santanu Dey
Institut für Mathematik u. Informatik
E-M-A-Universität Greifswald
17487 Germany

1. Introduction

- Row-contraction: $\quad \underline{T}=\left(T_{1}, \cdots, T_{d}\right)$, $T_{i} \in B(\mathcal{H}), \sum_{i=1}^{d} T_{i} T_{i}^{*} \leq 1 \quad\left(\operatorname{or} \underline{T} \underline{T}^{*} \leq 1\right)$.

Coisometric if $\underline{T} \underline{T}^{*}=1$.

- Minimal isometric dilation (mid) (G. Popescu) for row-contractions.
- Constrained dilations for row-constractions satisfying polynomial relations. (B.V.R.Bhat, Popescu, Zacharias, S.D.) (Arveson, Drury - commuting dilation)
- Polynomial relations: $\left\{p_{\eta}(\underline{z})\right\}_{\eta \in J}$ a finite set of polynomials in d n.c. variables (indexed by J).
\underline{T} is said to be J-constrained if

$$
p_{\eta}(\underline{T})=0 \quad \forall \eta \in J .
$$

- Given \underline{R} on \mathcal{L}, there exists maximal subspace \mathcal{L}^{J} s.t.
$R_{i}=\left(\begin{array}{cc}R_{i}^{J} & 0 \\ * & R_{i}^{N}\end{array}\right) \quad$ where $\quad R_{i}^{J}=\left.P_{\mathcal{L}^{J}} R_{i}\right|_{\mathcal{L}^{J}}$
and $p_{\eta}\left(\underline{R}^{J}\right)=0$ for all $\eta \in J$. $\underline{R}^{J}:=$ maximal J-constrained piece.
- 1. $p_{i, j}(\underline{z})=z_{i} z_{j}-z_{j} z_{i}$ for $(i, j) \in\{1,2, \cdots, d\}^{2}$.

2. $p_{i, j}(\underline{z})=z_{i} z_{j}-q_{j i} z_{j} z_{i}$ for $(i, j) \in\{1,2, \cdots, d\}^{2}$ where $\left|q_{i j}\right|=1$ and $q_{i j}=q_{j i}^{-1}$.
3. $p_{i, j}(\underline{z})=z_{i} z_{j}-a_{i j} z_{i} z_{j}$ for $(i, j) \in\{1,2, \cdots, d\}^{2}$ where $A=\left(a_{i j}\right)_{d \times d}$ is a $0-1$-matrix.

If case 1 , we write J^{s} instead of J. If combination of all three, we write J^{\prime}.

- $\underline{E}=\left(E_{1}, \ldots, E_{d}\right)$ on $\mathcal{H}_{E}=\mathcal{H}_{C} \oplus \mathcal{H}_{A}$.
if $\underline{E} \underline{E}^{*} \leq 1, \quad E_{i}=\left(\begin{array}{cc}C_{i} & 0 \\ B_{i} & A_{i}\end{array}\right)$
then \underline{E} is a lifting of \underline{C} by \underline{A}.

2. Minimal constrained dilation

- Denote by \underline{V} the mid of \underline{T}.
- A result from previous work:

Theorem 1 Let \underline{T} be a J^{\prime}-constrained row contraction. Then $\underline{V}^{J^{\prime}}$ is the minimal J^{\prime}-constrained dilation of \underline{T}.

- Question: Is $\underline{V}^{J^{\prime}}$ the minimal constrained dilation of $\underline{T}^{J^{\prime}}$?

Theorem 2 Suppose $\operatorname{dim} \mathcal{H}<\infty, T_{i} \in B(\mathcal{H})$ and $\underline{T} \underline{T}^{*}=1$. Then:
(1) the maximal commuting subspace of \underline{V} is contained in \mathcal{H}.
(2) $\underline{V}^{J^{s}}$ is the standard commuting dilation of \underline{T}^{J}.

- A lifting \underline{E} of \underline{C} is subisometric if the mids of \underline{E} and \underline{C} are unitarily equivalent.

Corollary 3 Let \underline{E} on a f.d. Hilbert space be a coisometric lifting of \underline{C} by $a *$-stable \underline{A} (i.e., $\lim _{n \rightarrow \infty} \sum_{|\alpha|=n} \underline{A}_{\alpha} \underline{A}_{\alpha}^{*}=0$).
Then $\underline{E}^{J^{s}}=\underline{C}^{J^{s}}$.
Theorem 4 Suppose $\underline{T} \underline{T}^{*}=1$ and \underline{T}^{N} is $*$-stable. Then $\underline{V}^{J^{\prime}}$ is the minimal J^{\prime} constrained dilation of a $\underline{T}^{J^{\prime}}$.

3. Characteristic function

- \underline{E} is contractive lifting of \underline{C}, then there exist a contraction $\gamma: \mathcal{D}_{*, A} \rightarrow$ \mathcal{D}_{C} between the defect spaces.
- $\mathcal{H}_{A}^{1}:=\left\{h \in \mathcal{H}_{A}: \sum_{|\alpha|=n}\left\|A_{\alpha}^{*} h\right\|^{2}=\|h\|^{2}\right.$ for all $n \in \mathbb{N}\}$. If $\mathcal{H}_{A}^{1}=0$, then \underline{A} is called completely non-coisometric (cnc).
- \underline{E} is reduced lifting of \underline{C} if \underline{A} is cnc and γ is injective.
- $\Gamma:=\mathbb{C} \oplus \mathbb{C}^{d} \oplus\left(\mathbb{C}^{d}\right)^{\otimes 2} \oplus \cdots \oplus\left(\mathbb{C}^{d}\right)^{\otimes n} \oplus \cdots$

$$
L_{i} x:=e_{i} \otimes x \quad \text { for } \quad x \in \Gamma, i=1, \cdots, d,
$$

where $\left\{e_{1}, \cdots, e_{d}\right\}$ std basis of \mathbb{C}^{d}.
Popescu's construction of mid on $\mathcal{H} \oplus(\Gamma \otimes$ \mathcal{D}_{T}) is

$$
\begin{aligned}
V_{i}\left(h \oplus \sum_{\alpha \in \tilde{\Lambda}} e_{\alpha} \otimes d_{\alpha}\right)= & T_{i} h \oplus\left[e_{0} \otimes\left(D_{T}\right)_{i} h\right. \\
& \left.+e_{i} \otimes \sum_{\alpha \in \tilde{\Lambda}} e_{\alpha} \otimes d_{\alpha}\right]
\end{aligned}
$$

- a dilation \underline{S}^{T} of \underline{T} obtained by a compression of the Popescu's realization of mid to $\mathcal{H} \oplus\left(\Gamma_{J} \otimes \mathcal{D}_{T}\right)$ is called pseudo J-constrained dilation.
- $\mathbb{W} \underline{S}^{E}=\left(\underline{S}^{C} \oplus \underline{Z}\right) \mathbb{W}$
for some unitary \mathbb{W}. The constrained characteristic function is defined as

$$
M_{J, C, E}:=\left.P_{\Gamma_{J} \otimes \mathcal{D}_{C}} \mathbb{W}\right|_{\Gamma_{J} \otimes \mathcal{D}_{E}}
$$

- Denote by \mathbf{K}_{J} the space on which \underline{S}^{E} are defined. $\Delta_{\theta_{J, C, E}}:=\left(1-M_{J, C, E}^{*} M_{J, C, E}\right)^{\frac{1}{2}}$. For reduced liftings
$\mathbb{W K}_{J}:=\mathcal{H}_{C} \oplus\left(\Gamma_{J} \otimes \mathcal{D}_{C}\right) \oplus \overline{\Delta_{\theta_{J, C, E}}\left(\Gamma_{J} \otimes \mathcal{D}_{E}\right)}$,
(1)
$\mathbb{W} \mathcal{H}_{E}:=\mathbb{W K}_{J} \ominus\left(M_{J, C, E} \oplus \Delta_{\theta_{J, C, E}}\right)\left(\Gamma_{J} \otimes \mathcal{D}_{E}\right)$.
(2)

Theorem 5 For a constrained row contraction, its constrained reduced liftings are unitarily equivalent if and only if its constrained characteristic functions coincide.

4. Invariants of Hilbert modules

- Assume γ to be isometry.
- From equation (1) and (2) we get $\left\|\left(M_{0}^{J}\right)^{*} v\right\|=\left\|P_{\mathbb{W} \mathcal{H}_{E}}(v \oplus 0)\right\|$, for $v \in \Gamma \otimes \mathcal{D}_{C}$ and

$$
\|v\|^{2}=\left\|P_{W \mathcal{W}} \mathcal{H}_{E}(v \oplus 0)\right\|^{2}+\left\|M_{J, C, E}^{*} v\right\|^{2} .
$$

(where $M_{0}^{J}: \mathcal{H}_{A} \rightarrow \Gamma_{J}\left(\mathbb{C}^{d}\right) \otimes \mathcal{D}_{C}$

$$
\left.M_{0}^{J} h:=\sum_{\alpha} e_{\alpha} \otimes \gamma D_{*, A} A_{\alpha}^{*} h\right)
$$

- comparing above two equations we get

$$
\begin{equation*}
M_{0}^{J}\left(M_{0}^{J}\right)^{*}+M_{J, C, E} M_{J, C, E}^{*}=1_{\Gamma_{J}\left(\mathbb{C}^{d}\right) \otimes \mathcal{D}_{C}} . \tag{3}
\end{equation*}
$$

- Hilbert module (Popescu, Kribs; and before in commuting case by Arveson):
$\mathbb{C F}_{n}^{+}=$free semigroup algebra with n generators.
To $\underline{E}=\left(E_{1}, \cdots, E_{d}\right)$ on \mathcal{H}_{E}, a Hilbert (left) module over $\mathbb{C F}_{n}^{+}$is associated, by $g . h:=g\left(E_{1}, \cdots, E_{d}\right) h$, for $g \in \mathbb{C F}_{n}^{+}, h \in \mathcal{H}_{E}$, $\left\|g_{1} h_{1}+\cdots+g_{n} h_{n}\right\|^{2} \leq\left\|h_{1}\right\|^{2}+\cdots+\left\|h_{n}\right\|^{2}$.
- Assume rank $D_{C}<\infty$
- Following well-known invariants are defined as:

$$
\begin{aligned}
\operatorname{curv} A & :=\lim _{n \rightarrow \infty} \frac{\operatorname{tr}\left[K^{*}(A)\left(P_{\leq n} \otimes \mathbf{1}_{\mathcal{D}_{*, A}}\right) K(A)\right]}{d^{n}} \\
\chi(A) & :=\lim _{n \rightarrow \infty} \frac{\operatorname{rk}\left[K^{*}(A)\left(P_{\leq n} \otimes \mathbf{1}_{\mathcal{D}_{*, A}}\right) K(A)\right]}{1+d+\ldots+d^{n-1}}
\end{aligned}
$$

where $K(A)$ is the Poisson kernel of \underline{A}.

Theorem 6

$$
\begin{aligned}
& \operatorname{curv} A=r k D_{C}-\lim _{n \rightarrow \infty} \frac{\operatorname{tr}\left[M_{C, E} M_{C, E}^{*}\left(P_{\leq n} \otimes \mathbf{1}\right)\right]}{d^{n}}, \\
& \chi(A)=\lim _{n \rightarrow \infty} \frac{r k\left[\left(\mathbf{1}-M_{C, E} M_{C, E}^{*}\right)\left(P_{\leq n} \otimes \mathbf{1}\right)\right]}{1+d+\ldots+d^{n-1}} .
\end{aligned}
$$

- In commuting case

$$
\begin{aligned}
& \operatorname{curv} A=\int_{\partial \mathbb{B}_{d}} \lim _{r \rightarrow 1} \operatorname{tr}\left[1-\theta_{J^{s}}(r \zeta) \theta_{J^{s}}^{*}(r \zeta)\right] d \sigma(\zeta), \\
& =r k D_{C}-(d-1)!\lim _{n \rightarrow \infty} \frac{\operatorname{tr}\left[\theta_{J^{s}} \theta_{J^{s}}^{*}\left(Q_{\leq n} \otimes 1\right)\right]}{d^{n}}, \\
& \chi(A)=d!\lim _{n \rightarrow \infty} \frac{\mathrm{rk}\left[\left(1-\theta_{J^{s}} \theta_{J^{s}}^{*}\right)\left(Q_{\leq n} \otimes 1\right)\right]}{n^{d}} .
\end{aligned}
$$

