Constrained Liftings

(joint work with Rolf Gohm)

Santanu Dey

Institut für Mathematik u. Informatik E-M-A-Universität Greifswald 17487 Germany

1. Introduction

• Row-contraction: $\underline{T} = (T_1, \dots, T_d),$ $T_i \in B(\mathcal{H}), \sum_{i=1}^d T_i T_i^* \leq 1 \quad (\text{or } \underline{T} \underline{T}^* \leq 1).$

Coisometric if $\underline{T} \ \underline{T}^* = 1$.

- Minimal isometric dilation (mid) (G. Popescu) for row-contractions.
- Constrained dilations for row-constractions satisfying polynomial relations.
 (B.V.R.Bhat, Popescu, Zacharias, S.D.)
 (Arveson, Drury - commuting dilation)
- Polynomial relations: {p_η(<u>z</u>)}_{η∈J} a finite set of polynomials in d n.c. variables (indexed by J).
 <u>T</u> is said to be J-constrained if

$$p_{\eta}(\underline{T}) = 0 \qquad \forall \eta \in J.$$

• Given <u>R</u> on \mathcal{L} , there exists maximal subspace \mathcal{L}^J s.t.

 $R_{i} = \begin{pmatrix} R_{i}^{J} & 0 \\ * & R_{i}^{N} \end{pmatrix} \text{ where } R_{i}^{J} = P_{\mathcal{L}^{J}}R_{i}|_{\mathcal{L}^{J}}$ and $p_{\eta}(\underline{R}^{J}) = 0$ for all $\eta \in J$. $\underline{R}^{J} := \text{maximal } J\text{-constrained piece.}$

- 1. $p_{i,j}(\underline{z}) = z_i z_j z_j z_i$ for $(i, j) \in \{1, 2, \cdots, d\}^2$.
 - 2. $p_{i,j}(\underline{z}) = z_i z_j q_{ji} z_j z_i$ for $(i, j) \in \{1, 2, \dots, d\}^2$ where $|q_{ij}| = 1$ and $q_{ij} = q_{ji}^{-1}$.
 - 3. $p_{i,j}(\underline{z}) = z_i z_j a_{ij} z_i z_j$ for $(i, j) \in \{1, 2, \dots, d\}^2$ where $A = (a_{ij})_{d \times d}$ is a 0 - 1-matrix.

If case 1, we write J^s instead of J. If combination of all three, we write J'.

•
$$\underline{E} = (E_1, \dots, E_d)$$
 on $\mathcal{H}_E = \mathcal{H}_C \oplus \mathcal{H}_A$.
if $\underline{E} \ \underline{E}^* \leq 1$, $E_i = \begin{pmatrix} C_i & 0 \\ B_i & A_i \end{pmatrix}$
then \underline{E} is a **lifting** of \underline{C} by \underline{A} .

2. Minimal constrained dilation

- Denote by \underline{V} the mid of \underline{T} .
- A result from previous work:

Theorem 1 Let \underline{T} be a J'-constrained row contraction. Then $\underline{V}^{J'}$ is the minimal J'-constrained dilation of \underline{T} .

• Question: Is $\underline{V}^{J'}$ the minimal constrained dilation of $\underline{T}^{J'}$?

Theorem 2 Suppose dim $\mathcal{H} < \infty, T_i \in B(\mathcal{H})$ and $\underline{T} \ \underline{T}^* = 1$. Then: (1) the maximal commuting subspace of \underline{V} is contained in \mathcal{H} . (2) \underline{V}^{J^s} is the standard commuting dilation of \underline{T}^{J^s} .

• A lifting \underline{E} of \underline{C} is **subisometric** if the mids of \underline{E} and \underline{C} are unitarily equivalent.

Corollary 3 Let \underline{E} on a f.d. Hilbert space be a coisometric lifting of \underline{C} by a *-stable \underline{A} (i.e., $\lim_{n\to\infty} \sum_{|\alpha|=n} \underline{A}_{\alpha} \underline{A}_{\alpha}^* = 0$). Then $\underline{E}^{J^s} = \underline{C}^{J^s}$.

Theorem 4 Suppose $\underline{T} \ \underline{T}^* = 1$ and \underline{T}^N is *-stable. Then $\underline{V}^{J'}$ is the minimal J'-constrained dilation of a $\underline{T}^{J'}$.

3. Characteristic function

- \underline{E} is contractive lifting of \underline{C} , then there exist a contraction $\gamma : \mathcal{D}_{*,A} \rightarrow \mathcal{D}_{C}$ between the defect spaces.
- $\mathcal{H}_A^1 := \{h \in \mathcal{H}_A : \sum_{|\alpha|=n} ||A_{\alpha}^*h||^2 = ||h||^2$ for all $n \in \mathbb{N}\}$. If $\mathcal{H}_A^1 = 0$, then <u>A</u> is called **completely non-coisometric (cnc)**.
- <u>E</u> is **reduced lifting** of <u>C</u> if <u>A</u> is cnc and γ is injective.

•
$$\Gamma := \mathbb{C} \oplus \mathbb{C}^d \oplus (\mathbb{C}^d)^{\otimes 2} \oplus \cdots \oplus (\mathbb{C}^d)^{\otimes n} \oplus \cdots$$

$$L_{i}x := e_{i} \otimes x \quad \text{for} \quad x \in \Gamma, i = 1, \cdots, d,$$

where $\{e_{1}, \cdots, e_{d}\}$ std basis of \mathbb{C}^{d} .
Popescu's construction of mid on $\mathcal{H} \oplus (\Gamma \otimes \mathcal{D}_{T})$ is
 $V_{i}(h \oplus \sum_{\alpha \in \tilde{\Lambda}} e_{\alpha} \otimes d_{\alpha}) = T_{i}h \oplus [e_{0} \otimes (D_{T})_{i}h + e_{i} \otimes \sum_{\alpha \in \tilde{\Lambda}} e_{\alpha} \otimes d_{\alpha}].$

• a dilation \underline{S}^T of \underline{T} obtained by a compression of the Popescu's realization of mid to $\mathcal{H} \oplus (\Gamma_J \otimes \mathcal{D}_T)$ is called **pseudo** *J*-constrained dilation.

 W<u>S</u>^E = (<u>S</u>^C ⊕ <u>Z</u>)W for some unitary W. The constrained characteristic function is defined as

$$M_{J,C,E} := P_{\Gamma_J \otimes \mathcal{D}_C} \mathbb{W}|_{\Gamma_J \otimes \mathcal{D}_E}.$$

• Denote by \mathbf{K}_J the space on which \underline{S}^E are defined. $\Delta_{\theta_{J,C,E}} := (1 - M^*_{J,C,E} M_{J,C,E})^{\frac{1}{2}}$. For reduced liftings

$$\mathbb{W}\mathbf{K}_{J} := \mathcal{H}_{C} \oplus (\Gamma_{J} \otimes \mathcal{D}_{C}) \oplus \overline{\Delta_{\theta_{J,C,E}}} (\Gamma_{J} \otimes \mathcal{D}_{E}),$$
(1)

 $\mathbb{W}\mathcal{H}_E := \mathbb{W}\mathbf{K}_J \ominus (M_{J,C,E} \oplus \Delta_{\theta_{J,C,E}})(\Gamma_J \otimes \mathcal{D}_E).$ (2)

Theorem 5 For a constrained row contraction,

its **constrained reduced liftings** *are unitarily equivalent if and only if its* **constrained characteristic functions** *coincide.*

4. Invariants of Hilbert modules

- Assume γ to be isometry.
- From equation (1) and (2) we get $\|(M_0^J)^*v\| = \|P_{\mathbb{WH}_E}(v\oplus 0)\|, \text{ for } v \in \Gamma \otimes \mathcal{D}_C$ and

 $||v||^{2} = ||P_{\mathbb{W}\mathcal{H}_{E}}(v \oplus 0)||^{2} + ||M_{J,C,E}^{*}v||^{2}.$

(where
$$M_0^J : \mathcal{H}_A \to \Gamma_J(\mathbb{C}^d) \otimes \mathcal{D}_C$$

 $M_0^J h := \sum_{\alpha} e_{\alpha} \otimes \gamma D_{*,A} A_{\alpha}^* h$)

• comparing above two equations we get

$$M_{0}^{J}(M_{0}^{J})^{*} + M_{J,C,E}M_{J,C,E}^{*} = \mathbf{1}_{\Gamma_{J}(\mathbb{C}^{d})\otimes\mathcal{D}_{C}}.$$
(3)

• **Hilbert module** (Popescu, Kribs; and before in commuting case by Arveson):

 $\mathbb{CF}_n^+ = \text{free semigroup algebra with } n$ generators. To $\underline{E} = (E_1, \cdots, E_d)$ on \mathcal{H}_E , a Hilbert (left) module over \mathbb{CF}_n^+ is associated, by $g.h := g(E_1, \cdots, E_d)h$, for $g \in \mathbb{CF}_n^+, h \in \mathcal{H}_E$, $\|g_1h_1 + \cdots + g_nh_n\|^2 \le \|h_1\|^2 + \cdots + \|h_n\|^2$.

- Assume rank $D_C < \infty$
- Following well-known invariants are defined as:

$$curvA := \lim_{n \to \infty} \frac{\operatorname{tr}[K^*(A)(P_{\leq n} \otimes 1_{\mathcal{D}_{*,A}})K(A)]}{d^n},$$
$$\chi(A) := \lim_{n \to \infty} \frac{\operatorname{rk}[K^*(A)(P_{\leq n} \otimes 1_{\mathcal{D}_{*,A}})K(A)]}{1 + d + \ldots + d^{n-1}},$$
where $K(A)$ is the Poisson kernel of A.

Theorem 6

$$curvA = rkD_C - \lim_{n \to \infty} \frac{tr[M_{C,E}M^*_{C,E}(P_{\leq n} \otimes 1)]}{d^n},$$

$$\chi(A) = \lim_{n \to \infty} \frac{rk[(1 - M_{C,E}M^*_{C,E})(P_{\leq n} \otimes 1)]}{1 + d + \dots + d^{n-1}}.$$

• In commuting case $curvA = \int_{\partial \mathbb{B}_d} \lim_{r \to 1} tr[1 - \theta_{J^s}(r\zeta)\theta_{J^s}^*(r\zeta)]d\sigma(\zeta),$ $= rkD_C - (d-1)! \lim_{n \to \infty} \frac{tr[\theta_{J^s}\theta_{J^s}^*(Q_{\leq n} \otimes 1)]}{d^n},$ $\chi(A) = d! \lim_{n \to \infty} \frac{rk[(1 - \theta_{J^s}\theta_{J^s}^*)(Q_{\leq n} \otimes 1)]}{n^d}.$